
HAL Id: hal-03156960
https://hal.sorbonne-universite.fr/hal-03156960v2

Submitted on 2 Mar 2021

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

SALAD: Self-Assessment Learning for Action Detection
Guillaume Vaudaux-Ruth, Adrien Chan-Hon-Tong, Catherine Achard

To cite this version:
Guillaume Vaudaux-Ruth, Adrien Chan-Hon-Tong, Catherine Achard. SALAD: Self-Assessment
Learning for Action Detection. IEEE/CVF Winter Conference on Applications of Computer Vision,
Jan 2021, virtual, United States. �hal-03156960v2�

https://hal.sorbonne-universite.fr/hal-03156960v2
https://hal.archives-ouvertes.fr

SALAD: Self-Assessment Learning for Action Detection

Guillaume Vaudaux-Ruth1,3, Adrien Chan-Hon-Tong1,2 and Catherine Achard3

1ONERA 2Université Paris Saclay 3Sorbonne Université
guillaume.vaudaux-ruth@onera.fr adrien.chan hon tong@onera.fr

catherine.achard@sorbonne-universite.fr

Abstract

Literature on self-assessment in machine learning

mainly focuses on the production of well-calibrated algo-

rithms through consensus frameworks i.e. calibration is

seen as a problem. Yet, we observe that learning to be prop-

erly confident could behave like a powerful regularization

and thus, could be an opportunity to improve performance.

Precisely, we show that used within a framework of ac-

tion detection, the learning of a self-assessment score is

able to improve the whole action localization process. Ex-

perimental results show that our approach outperforms the

state-of-the-art on two action detection benchmarks. On

THUMOS14 dataset, the mAP at tIoU@0.5 is improved

from 42.8% to 44.6%, and from 50.4% to 51.7% on Activ-

ityNet1.3 dataset. For lower tIoU values, we achieve even

more significant improvements on both datasets.

1. Introduction

Many psychological experiments [18, 24] have shown

that cross-confidence between two coworkers is strength-

ened by the ability of each partner to correctly evaluate the

quality of his, or her, current work. Recent work suggests

that these results are also consistent with human-system co-

operation [1], including systems based on machine learning.

Thus, a research direction towards even smarter machines

lies in their ability to assess confidence in their own output.

Despite many works dealing with this subject, either

by calibrating natural algorithm confidence [29, 11] or by

building a confidence model [21, 9], it seems that this notion

of correct confidence has not been intensively exploited as a

way to learn the algorithm itself. This is even more interest-

ing in the case of regression, where a confidence value is not

easily accessible. Thus, Gal et al. [14] extend an old idea

[33] to estimate the confidence by collecting the results of

stochastic forward passes obtained using dropout. This idea

is more a pooling of results than a real self-assessment. For

Figure 1. Joint learning of self-assessment and action localiza-

tion. At training time, self-assessment allows to improve regres-

sion, scoring and selection of temporal segments, as well as feature

extraction through multi-task regularization.

the particular and difficult task of data generation, GANs

allow to reach the confidence of the generated data by using

a binary classification in real or synthetic data. However,

such work does not allow the generator to self-assess.

In this paper, we propose to simultaneously learn a re-

gression task and a self-assessment of this task. This allows,

first of all, to access a confidence in the regressed value, but

above all to improve the results of the regression: for the

action detection task, we outperform current state of the art

[48, 27, 7, 25] by almost 2% of mean Average Precision, on

both THUMOS14 [43] and ActivityNet1.3 [5] benchmarks

while relying on the temporal regression of the action seg-

ments and a standard backbone. This idea is illustrated in

Figure 1, where the self-assessment assists in feature extrac-

tion, segment regression/scoring and selection of relevant

segments.

Such joint learning is particularly relevant for action de-

tection because it allows to naturally take into account some

of its specificities such as, for example, the importance of

predicting only one detection per action instance (avoiding

double detection). Thus, this learning optimizes both the

individual confidence of each predicted segment and their

mutual ability to provide a correct overall detection result.

More formally, the simultaneous learning of the regression

1269

task and the self-assessment of this task allows encoding

the complex mean Average Precision (mAP) metric that is

not directly taken into account using a simple regression,

based on local Intersection over Union (tIoU). Finally, this

confidence can also be used to prune some frames during

the learning. Such pruning, inspired by recent deep rein-

forcement work [49, 46, 45], is naturally integrated into the

proposed method as the self-assessment score could be in-

terpreted as an attentional value.

To summarize, the main contributions of this paper are

as follow:

• We show that we can simultaneously learn to be cor-

rectly confident and to regress action proposals.

• Such joint learning provides a confidence score on the

detection and, more importantly, improves detection

results by helping to find relevant features that address

both tasks.

• It also allows natural pruning of the frames during the

learning process, resulting in improved performance.

• The result is a new action detector named SALAD,

which stand for Self-Assessment Learning for Action

Detection, that outperforms current state-of-the-art at

tIoU@0.5 by 1.8% on THUMOS14 and by 1.4% on

ActivityNet1.3. SALAD also achieve more significant

improvements at lower tIoU .

In this paper, Section 2 presents related works. The pro-

posed method is then introduced in Section 3. The results

on action detection task, and a more general discussion on

the idea of confidence learning are presented in Section 4,

before the conclusion in Section 5.

2. Related Work

2.1. Video Analysis

Action Recognition. Action recognition is a highly

studied task in the field of video analysis. Recently, many

deep learning methods have been used to improve the

spatio-temporal video representations. These methods have

usually used features from both RGB frames and optical

flow sequences. 2D-CNNs have been used to produce

those features [13, 39, 44] before the use of 3D-CNNs

[41, 6, 34, 47]. In this work we use an action recognition

method to extract video features in order to use it as input

to our model.

Temporal Action Proposal. The goal of the temporal

action proposal task in untrimmed video is to detect ac-

tion instances by predicting their temporal boundaries and

giving them a confidence score. For proposal generation,

segment-based methods [13, 15, 37, 40, 16] or boundaries-

based [57, 27, 25, 28, 49] methods are the most used. The

first method generates direct propositions using a multi-

scale anchoring at regular time intervals or a direct regres-

sion. The second method locally predicts the presence of

temporal boundaries, at each temporal location in the video,

and globally generates propositions by combining them. In

this work, we present a segment-based method that is able

to accurately regress temporal proposals.

Action Detection. The objective of action detection

task is to detect action instances in untrimmed videos

by predicting their temporal boundaries and action cate-

gories. Two categories of action detection methods have

been studied: one-stage and two-stages approaches. One-

stage approaches generate both temporal proposals and their

action classes [2, 49, 26, 23], while the two-stages ap-

proaches focus on generating temporal proposals and uses

SOTA action detection method to classify the proposals

[38, 40, 57, 55, 7, 27, 25]. We show that we are able to

generate a one-stage method capable of accurately predict-

ing temporal proposals and their respective action class.

2.2. Beyond just answering correctly

The more mature machine learning becomes, the more

is expected of it. Thus, today’s machine learning modules

must not only be highly accurate, but also robust to adver-

sarial examples [31], be able to deal with out-of-distribution

samples [42], be explainable [4], or correctly calibrated [9].

All these functionalities, which can be seen as con-

straints, are now seen as opportunities because they can help

design more efficient algorithms. For example, work on ad-

versarial defense [56] have shown a trade-off between ro-

bustness and accuracy that is used to design a new defense

method optimizing a regularized surrogate loss that gener-

alizes the concept of maximum margin (of support vector

machine) to deep neural network. In another context, Yun

et al. [52] show that encoding overall confidence is more

relevant than relying on a simple local loss function that

only takes into account one sample and its ground truth.

Thus, they propose a regularization method that forces the

network to produce more meaningful and consistent pre-

dictions and significantly improves the generalization abil-

ity and calibration performance of convolutional neural net-

works.

In addition to these approaches, multi-task learning [54]

allows the network to jointly learn several tasks that help

each other, thereby improving individual performance.

In this work, we jointly learn to produce an output and

to produce a confidence score in this output. In a regres-

sion context, this allows us to exploit the opportunity to

improve the regression through the regularization effect of

calibration, unlike most works that focuses on confidence

in a regression context [33, 14]. Indeed, their work mainly

considers ensemble methods to provide a measure of con-

sensus, and not an end-to-end self-assessment learning.

1270

3. Proposed Method: Self-Assessement of Ac-

tion Segment Regression

3.1. Notations and preliminaries

Let V = x1, ..., xT with T frames (or T snippets of

frames) an untrimmed video where xt denotes the fea-

ture vector of the t-th frame (or t-th snippet). This video

is associated with a ground truth set of segments G =
{[sn, en], cn}

N

n=1, where sn, en and cn are respectively the

start time, the end time and the action class of the ground-

truth segment n.

The action detection task consist in predicting a set of M

proposals P = {[sm, em], cm}
M

n=1 from V corresponding

as closely as possible to G.

3.2. Overview of the SALAD Architecture

The overall architecture of SALAD network is presented

in Figure 2. Each frame (or snippet of frames), at time t,

is first characterized by a feature vector using a backbone

network. The time series of vectors is then processed by a

bidirectional Gated Recurrent Unit (GRU) which produces,

for each time t, two latent vectors. The first one can be con-

sidered as a representation of the video before the time step

t while the second one is a representation of the video af-

ter this time step. The two latent vectors are then shared by

3 fully connected modules that respectively produce a re-

gressed segment [ŝt, êt], a confidence score in this segment

p̂t and its action class ĉt.

But the main purpose of this article is not this architec-

ture but the joint learning of segment regression and confi-

dence assessment, instead of relying on an external module.

The use of self-assessment allows to prune frames (or snip-

pets) during training and the improvement of features by us-

ing an attention mechanism and a multi-task regularization,

as illustrated in Figure 3.

Let us start by explaining the principle of joint learning

in the case of a simple regression.

3.3. Naive regression self-assessment

When performing a regression, only one output is avail-

able: the regressed value. It is then impossible to know how

much confidence can be placed in this value. This is not the

case in classification where deep network outputs distribu-

tion of scores over the classes. From this distribution, one

could extract both the argmax (the predicted class) and the

margin between the max and the second max, classically

used as a confidence.

For regression, one solution is to assign a score to the

boxes a posteriori. Alternatively, we propose to estimate a

regression confidence using a two-head network, one that

performs a classical regression and the other that estimates

whether or not we can be confident in this regressed value.

Therefore, we express the confidence problem in the form

3D

CNN
GRU Scoring

Regression

Classification

Bidirectional

Memory Fetures
t-th Video

Snippet

I3D

Features

Network

Figure 2. Architecture of SALAD network. Each frame (or snip-

pet of frames) t is first represented by a feature vector using a

backbone network. A bidirectional GRU is then used to produce

a memory of the previous frames and a memory of the following

frames. Both memories are managed by three heads that produce

a proposal [ŝt, êt] comprising the time t, a confidence score p̂t and

an action class ĉt.

of a binary classification. For example, for an input x as-

sociated with a ground truth z(x), such a network should

produce ẑ(x) (regression) and p̂(x) (self-assessment). Let

 be the allowed tolerance on the regressed value, then a

loss could be:

l = ||z(x)− ẑ(x)||22 + ↵



y(x) log(p̂(x))+
(1− y(x)) log(1− p̂(x))

�

with y(x) = 1 if ||z(x)− ẑ(x)||22 <  and 0 otherwise

i.e. a regression term and a binary cross entropy term.

Firstly, by adding such a head, the system will be able

to output a confidence score which is a social requirement

for real life applications. Then, thanks to multi-task regu-

larization, this second head could help improve regression

(pre-existing idea of such framework could be found in [8],

but the benefit of self-assessment for the underlying task is

not the purpose of their work).

Our contribution is to adapt such a head for action detec-

tion where the benefit is even greater because this head can

be used as an attentional prior. Also, because it is easier to

encode the specificity of the action detection metric in the

self-assessment objective rather than in the regression itself,

which can therefore lead to much better performance.

3.4. Action detection self-assessment

Action detection problem is complex as an unknown

number of segments must be regressed. Moreover, we have

to manage the precision of the detected segments but also

the lack of detection, and double detection. The classi-

cal criterion used to measure the precision of the detected

segments is the temporal Intersection over Union (tIoU)

between the predicted segment [ŝ, ê] and the ground truth

[s, e], defined as

tIoU([ŝ, ê], [s, e]) =
min(e, ê)−max(s, ŝ)

max(e, ê)−min(s, ŝ)
(1)

Classical regression heads take into account this tIoU cri-

terion, which is estimated locally and therefore does not

1271

Network

Network

Network

+

-

-

-

-G
ro

u
n
d
-T

ru
th

0 1

Self-Assessment

Score

&

Self-Assessment

Training Effect

Pruning and

Regressing

Assessment

Adjustment

Figure 3. Illustration of the self-assessment learning. The regressed segments and their confidence are used, together with the ground

truth, to compute the loss. During this computation, some segments are pruned (crossed out in the figure) while others continue the

competition (not crossed out). The last are classified as sure or not, depending on their tIoU and their score. With this loss function, the

regressed boundaries of the unpruned segments can evolve as close as possible to the ground truth and the confidence of best segments is

optimized to increase while the others are optimized to decrease, as shown on the right of the figure with the signs +� and -�.

deal with relationships between segments, which can in-

duce, for example, double detections. Conversely, as in

[52], self-assessment could easily take into account the

overall behavior. Typically, it can consider whether a re-

gressed segment matches a ground truth with a minimum

tIoU µ and whether it is the best among all other segments

for that particular ground truth segment.

Another interest of such a self-assessment head is to ac-

cess the scoring during the training. Thus, this confidence

could be used to prune the predicted segments on which the

regression is performed, like an attentional clue. This prun-

ing strategy is consistent with recent work based on rein-

forcement learning, which shows that the use of all frames

is not optimal for detecting actions [46, 45].

Self-Assessment Loss. At each iteration, the network

predicts for each frame (or snippets) t, a regressed tem-

poral segment [ŝt, êt] containing the frame t and a self-

assessment score p̂t. Let us first forget about the action

classes, which will be managed separately.

Then, a status is computed for variables

(↵t,n)t,n∈[1,T]×[1,N] ∈ {0, 1} and (yt)t∈[1,T] ∈ {0, 1}:

↵t,n is set to 1 if the frame t is considered to regress

segment [sn, en], and, yt is set to 1 if optimization should

increase pt. These variables are assigned according to the

Algorithm 1 (a more literal explanation is presented after),

and are then used to compute the loss of regression and

self-assessment heads using:

Lr,sa =
T
P

t=1
(yt log(pt) + (1− yt) log(1− pt))

−�1

T
P

t=1

N
P

n=1
(↵t,ntIoU([sn, en], [ŝt, êt]))

(2)

where �1 is a weighting parameter.

Self-Assessment Training. More literally, first, we sort

the frames: � is a permutation such that ∀u ≤ v ∈
[1, T], p

σ(u) ≥ p
σ(v). Then, a frame �(t) outside of

all ground truth segments is never used for regression and

is expected to lead to low self-assessment y
σ(t) = 0,

(↵
σ(t),n)n = 0. Inversely, let us consider a frame �(t)

inside a ground truth segment [sn, en]. Two cases appear.

If this ground truth segment has already been matched with

another regressed segment (�n = 1), then it means that self-

assessment p̂
σ(t) is lower than the one which has matched

with [sn, en] (the loop on the frames is done by decreasing

order of p̂). So, we do not use this frame �(t) for regres-

sion (it is pruned) and set y
σ(t) = 0 in order to decrease

p̂
σ(t). In the other case, the frame is considered as com-

petitive ((↵
σ(t),n)n = 1) and participate to the regression

loss. Moreover, if the tIoU between its regressed segment

([ŝ
σ(t), êσ(t)] and the ground truth [sn, en]) is higher than µ,

1272

Algorithm 1 Computation of the self-assessment loss

Input: {[ŝt, êt], p̂t}
T
t=1 the segments regressed at each

frame and the self-assessment value. {[sn, en]}
N
n=1 the

ground truth action instances of the video. µ the tIoU

threshold.

1: Compute �(t)
//series of times t, sorted in decreasing order of p̂t
//p

σ(t+1) ≥ p
σ(t)

2: Initialize ↵ = 0, � = 0, y = 0

3: for t = 1, ..., T do

4: for n = 1, ..., N do

5: if �n = 0 then

6: if en ≤ �(t) ≤ sn then

7: ↵
σ(t),n ← 1

8: ⇢ ← tIoU([ŝ
σ(t), êσ(t)], [sn, en]) // Eq.1

9: if ⇢ > µ then

10: �n ← 1
11: y

σ(t) ← 1
12: end if

13: end if

14: end if

15: end for

16: end for

17: Compute self-assessment loss L using Eq. 2

Output: Loss L

then the frame �(t) is considered as the better one to predict

the ground truth segment (�n = 1) and y
σ(t) = 1 in order

to try to increase p̂
σ(t).

It is therefore a dynamic process where, at the beginning,

all frames participate in the regression of action bound-

aries. Then, gradually, some frames with a poor potential

are pruned in order to focus the regression on pertinent pre-

dictions and to improve them. In addition, self-assessment

is also evolving: while confidence in non-optimal frames

is encouraged to decrease, confidence in the best frames

(which match the ground truth with an tIoU higher than µ

and have the greatest confidence in the corresponding seg-

ment) is induced to increase.

This process is illustrated Figure 3 where five frames

produce a regressed segment around it [ŝt,êt], a confidence

p̂t and a class ĉt. The confidence is represented by a more

or less dark blue, according to the scale shown in the up-

per left corner of the figure. The proposals having a null

tIoU with the ground truth segment are pruned using grey

cross, while those pruned by the self-assessment process are

pruned using a red cross.

Classification. The classification is performed in par-

allel with the process. We chose to perform a frame-level

classification. So at each time step, the network output ĉt
a probability distribution over the action classes, including

a background class. We maximize the recall of the action

classes over the videos using the loss:

Lcls =

T
X

t=1

wt (ct log(ĉt) + (1− ct) log(1− ĉt)) (3)

where wt is set to 0 if ct is background, and 1 otherwise.

SALAD Loss function. The overall loss used for train-

ing is the sum of the regression/self-assessment loss and the

classification loss (with a �2 weighting parameter):

L = Lr,sa + �2Lcls (4)

Importantly, there is a classification loss at training, but

we do not use the classification confidence (see ablation

study in Section 4.5). Indeed, we find that classification

is good, but poorly calibrated. So there is no point in merg-

ing classification confidence (essentially random) with our

regression self-assessment score(which is crucial here for

action detection).

4. Experiments

In this section, we first discuss the datasets and the de-

tails of our implementation. Then, SALAD is compared to

state-of-the-art approaches. Finally, we examine the contri-

bution of each component of our self-assessment learning

to the task of action detection through ablation studies and

discussions.

4.1. Datasets

We evaluate our approach on two challenging datasets:

THUMOS14 [43] that contains 410 untrimmed videos

with temporal annotations for 20 action classes. Training

and validation sets include respectively 200 and 210 videos

and each video has more than 15 action instances.

ActivityNet1.3 [5] that contains 19,994 videos with 200

action classes collected from YouTube. The dataset is di-

vided into three subsets: 10,024 training videos, 4,926 vali-

dation videos and 5,044 testing videos.

4.2. Implementation details

Detection Metric. The common practice in action de-

tection is to use the mean Average Precision (mAP) at

different tIoU thresholds to evaluate the quality of a set

of detections. Following previous work, the tIoU thresh-

olds {0.1, 0.2, 0.3, 0.4, 0.5} and {0.5, 0.75, 0.95} are re-

spectively used for THUMOS14 and ActivityNet1.3.

Features. For both datasets, we use the same back-

bone network to extract features. As in the most recent

work [7, 55], we use the two-stream features, extracted by

I3D network [6], pre-trained on Kinetics. We use the pre-

extracted features provided by [32]. The videos are previ-

ously sampled at 25 frames per second, and TV-L1 opti-

cal flow algorithm [53] is applied. From that, the features

1273

Module Layer
Input Output

Activation
Size Size

Memory GRU 2048 2048 Identity

Regression

Linear 2048 2048 ReLu

Linear 2048 1024 ReLu

Linear 1024 1024 ReLu

Linear 1024 2 Sigmoid

Scoring

Linear 2048 2048 ReLu

Linear 2048 1024 ReLu

Linear 1024 1024 ReLu

Linear 1024 1 Sigmoid

Classification

Linear 2048 2048 ReLu

Linear 2048 1024 ReLu

Linear 1024 classes + 1 Softmax
Table 1. The detailed architecture of the network.

are extracted from non-overlapping 16-frame video slices to

produce 2 feature vectors of size 1024 (RGB and Flow).

Network Construction. The network architecture, pre-

sented Figure 2, has been designed with the parameters in

Table 1. RGB and Flow stream are computed together, the

features are then fused in a 2048 feature vector. Thus, we

keep this size for each GRU latent vector. The three net-

work heads, for regression, scoring and classification, have

respectively 4, 4 and 3 fully connected layers whose number

of neurons are given in Table 1. The boundary regression

is done relatively to the position t, as presented in Fig.2.

Thus, for a simplified implementation, the regression head

produces a normalized version of [✏t,start, ✏t,end].

Training and Inference. We implement our framework

using Pytorch 1.0, Python 3.7 and CUDA 10.0. The opti-

mization is done using Adam, with an initial learning rate

of 10−4. For THUMOS14 dataset, we set the batch size

to 4 and for ActivityNet1.3, we set it to 16. Both datasets

are trained during 100 epochs. Note that the convergence is

better when a pre-training of the classification head is done

before the whole training, done using �1 = 1, �2 = 0.1 and

µ = 0.5. During inference, we use all the proposals pro-

duced by the network, and soft-NMS for computing mAPs

on THUMOS14 (one per time step) while we use a maxi-

mum of 20 proposals for ActivityNet1.3 since the number

of ground-truth per video is lower.

4.3. Comparison with state-of-the-art results

THUMOS14. Table 2 compares our model with state-

of-the-art detectors on THUMOS14 dataset. The pro-

posed method achieves the highest mAP for all thresh-

olds, implying that the self-assessment process is capa-

ble in producing very accurate proposals. Especially, our

method outperforms the previous best performance reported

at tIoU@0.1 by more than 7% and improves the mAP at

tIoU@0.5 from 42.2% to 44.6%. We also combine our

tIoU 0.1 0.2 0.3 0.4 0.5

Oneata et al. [30] 36.6 33.6 27.0 20.8 14.4

Wang et al. [43] 18.2 17.0 14.0 11.7 8.3

Caba et al. [19] - - - - 13.5

Richard et al. [50] 39.7 35.7 30.0 23.2 15.2

Shou et al. [38] 47.7 43.5 36.3 28.7 19.0

Yeung et al. [49] 48.9 44.0 36.0 26.4 17.1

Yuan et al. [35] 51.4 42.6 33.6 26.1 18.8

DAPs [12] - - - - 13.9

SST [3] - - 37.8 - 23.0

CDC [36] - - 40.1 29.4 23.3

Yuan et al. [51] 51.0 45.2 36.5 27.8 17.8

SS-TAD [2] - - 45.7 - 29.2

CBR [17] 60.1 56.7 50.1 41.3 31.0

Hou et al. [22] 51.3 - 43.7 - 22.0

TCN [10] - - - 33.3 25.6

TURN-TAP [16] 54.0 50.9 44.1 34.9 25.6

R-C3D [47] 54.5 51.5 44.8 35.6 28.9

SSN [57] 66.0 59.4 51.9 41.0 29.8

BSN [27] - - 53.5 45.0 36.9

BMN [25] - - 56.0 47.4 38.8

Chao et al. [7] 59.8 57.1 53.2 48.5 42.8

G-TAD [48] - - 54.5 47.6 40.2

SALAD 73.3 70.7 65.7 57.0 44.6

BSN + PGCN [55] 69.5 67.8 63.6 57.8 49.1

G-TAD + PGCN - - 66.4 60.4 51.6

SALAD + PGCN 75.2 73.4 69.4 61.6 49.8

Table 2. Action detection results on testing set of THUMOS14,

measured by mAP (%) at different tIoU thresholds. SALAD sig-

nificantly outperforms all the other methods for all IoU and is even

slightly improved by a P-GCN combination.

method with P-GCN[55], the current state-of-the-art post-

processing method. This combination slighly improves our

results at every tIoU and outperforms all state of the art

methods at tIoU < 0.5. These results also show that our

self-assessment learning does not require as much post-

processing as other methods whose scores deteriorate with-

out it.

ActivityNet1.3. Tab.3 reports the state-of-the-art results

on ActivityNet1.3 dataset. Our algorithm outperforms the

previous best performance at tIoU@0.5 by 1.4%. At higher

tIoU, some state-of-the-art methods are more efficient than

ours.

However, any state-of-the-art algorithm performs poorly

at high tIoU values, especially for 0.95 where the best algo-

rithm only reaches 9% of mAP. Thus, we consider that all

current methods are not sufficiently mature to handle action

detection at high tIoU.

It is not surprising that self-assessment is not useful on

such ambiguous problem: the more ambiguous a problem

is, the less it is possible to have a consistent self-assessment.

1274

tIoU 0.5 0.75 0.95 Average

Singh et al. [40] 34.47 - - -

SCC [20] 40.00 17.90 4.70 21.70

CDC [36] 45.30 26.00 0.20 23.80

R-C3D [47] 26.80 - - -

SSN [57] 39.12 23.48 5.49 23.98

BSN [27] 46.45 29.96 8.02 30.03

Chao et al. [7] 38.23 18.30 1.30 20.22

P-GCN [55] 48.26 33.16 3.27 31.11

BMN [25] 50.07 34.78 8.29 33.85

G-TAD [48] 50.36 34.60 9.02 34.09

SALAD 51.72 31.21 3.33 31.02
Table 3. Action detection results on validation set of Activ-

ityNet1.3, measured by mAP (%) at different tIoU thresholds

and the average mAP. SALAD achieves the best performance for

IoU@0.5.

tIoU 0.1 0.2 0.3 0.4 0.5

BMN [25] 70.91 64.46 58.79 54.14 50.07

SALAD 77.68 70.66 64.06 57.45 51.72
Table 4. Action detection results on validation set of Activi-

tyNet1.3, measured by mAP (%) for lower tIoU thresholds than

0.5. SALAD significantly outperforms BMN at low tIoU.

Now, even on ActivityNet, we are improving the mAP

at tIoU < 0.5. Although these results are not conven-

tionally reported, we compare SALAD at lower IoU with

BMN [25], which is the best open-sourced method available

at the time of writing (JJBOY/BMN-Boundary-Matching-

Network). SALAD results, presented in Table 4, clearly

outperform those of BMN, for all tIoU ≤ 0.5.

As soon as the detection problem is well posed and un-

ambiguous, SALAD algorithm outperforms the state-of-

the-art methods on both THUMOS14 and ActivityNet1.3

datasets.

4.4. Ablation Studies / Discussions

The original purpose of this article is to jointly learn

segment regression and segment scoring through self-

assessment. Such learning leads, in particular, to an im-

provement in the features quality and thus to an increase in

performance as shown before.

In this section, we decompose the proposed loss in order

to understand which parts are important for the improve-

ment of the results and to better understand what leads to

this significant improvement. We continue to not use frames

outside of the ground truth segments (as in Section 3.4).

Pruning. We first investigate the influence of pruning.

Regarding Equation 2, it consists in quantifying the influ-

ence of the ↵t,n parameters. Precisely, we compare five

methods. (i) No pruning ((↵t,n)t,n = 1). (ii) Random prun-

ing where (↵t,n) values are randomly set to 0 or 1. (iii) Top

1 IoU pruning where only the proposal with the best IoU

mAP@tIoU 0.1 0.2 0.3 0.4 0.5

No Pruning 66.2 63.0 57.0 46.9 32.0

Top 1 IoU 55.7 53.4 48.3 38.9 27.4

Random 65.8 62.6 56.6 46.2 32.9

Frozen 63.2 57.5 45.4 45.4 31.5

SALAD (pruning) 73.3 70.7 65.7 57.0 44.6
Table 5. Comparison between our SALAD training and different

pruning and regression strategies on THUMOS14, measured by

mAP(%)

mAP@tIoU 0.1 0.2 0.3 0.4 0.5

yt = 1 ⇔ t = �(0) 59.4 56.7 51.3 42.0 30.6

yt = 1 ⇔ p̂t > 0.5 66.4 62.7 53.8 41.2 26.7

yt = 1 ⇔ tIoUt > µ 65.5 62.3 53.7 40.9 28.0

SALAD 73.3 70.7 65.7 57.0 44.6
Table 6. Comparison between SALAD and other self-assessment

strategies on THUMOS14, measured by mAP(%).

is regressed. (iv) Frozen pruning that consists in extracting

the final (↵t,n) values from SALAD and relearning the al-

gorithm from the beginning with these frozen values. (v)

SALAD.

Results, presented in Table 5, clearly show that pruning

is an import key to the algorithm, since too much pruning

(top 1) leads to very bad results and no pruning or random

pruning to bad results. This is consistent with previous work

as [46, 45] which also shows that pruning is important.

More importantly, by using the frozen pruning from our

best model, performance is worse. So, regression alone al-

lows to obtain similar results because it seems important

to adapt pruning to the current behavior of the algorithm.

Thus, even if pruning is a key component, it is not the only

one, which highlighting the relevance of self-assessment.

Learning self-assessment score. We then investigate

the influence of self-assessment (yt parameter in Equa-

tion 2) and compare different ideas. The first is to ignore

the IoU and set yt = 1 for the frame with the highest p̂t
inside each ground truth segment. The second idea is that

any segment with a confidence level p̂t greater than 0.5 is

considered sure. The last idea imposes a condition on the

IoU, that should be greater than the threshold µ (without

considering p̂t). Thus, the last two methods do not take

into account neighboring segments when assigning the self-

assessment.

The results, presented in Table 6, show that the three al-

ternative assignments of yt lead to a dramatic drop in per-

formance compared to SALAD. They highlight that the rel-

evance of self-assessment comes from the introduction of

action detection specificities during the learning process,

such as, for example, allowing just one predicted segment

per ground truth. So, for a given ground truth segment, the

regression, for example, of the segment with the best con-

fidence, degrades the results. Similarly, the regression of

1275

0.4s 8.4s 20.8s 25.4s

3.1s 9.4s
6.8s

score: 0.9 score: 0.81

20.2s 26.6s
21.0s

Time (s)

7.5s 56.4s52.1s47.3s42.5s

15.3s

8.8s 13.6s
10.0s

score: 0.85

42.7s 52.8s
43.6s

score: 0.88

46.2s 56.6s
54.0s

score: 0.92

20.0s 80.2s43.2s 90.9s 116.6s 134.8s

33.1s 44.3s
35.7s

score: 0.43

79.7s 87.3s
84.5s

score: 0.66

121.9s 131.6s
128.7s

score: 0.62

Figure 4. Qualitative results. We show qualitative localization results on THUMOS14 dataset. Ground-truth segments are red boxes. The

predictions made by SALAD are blue segments and the time of prediction are the black time steps.

segments with an high confidence, without taking into ac-

count other segments, or the regression of only the segments

with good IoU, are not optimal.

The previous ablation studies on pruning and self-

assessment learning clearly establish that SALAD success

comes from its ability to prune frames during training and

from the self-assessment process that allows to inject prior

on the mAP metric that can hardly be injected with classical

local loss.

4.5. Classification confidence

In all the experiments presented before, the natural clas-

sification confidence is discarded (classification head out-

puts a probability distribution over the classes from which

a naive level of confidence can be obtained). However, it is

questionable whether it would be relevant to merge the two

confidences. Let us note pr and pc the regression score and

classification confidence.

Thus, we show in Table 7 a comparison with different fu-

sion strategies: the arithmetic mean of the two confidences
pr+pc

2 , their geometric product
√
prpc and the product of

the regression confidence with a normalized classification

confidence pr × (1 − exp(−⇣pc)). The idea of this last

method is to decrease regression confidence in case of im-

portant ambiguity in classification. Finally, SALAD confi-

dence is only the regression confidence: pr + 0× pc.

Results clearly show that it is not relevant to merge our

self-assessment confidence with that of classification, high-

lighting why SALAD does not.

4.6. Qualitative Results

In Figure 4, we present some localization results on

THUMOS14 dataset. Of course, the display of some sam-

ples provides limited information about the overall behavior

mAP@tIoU 0.1 0.2 0.3 0.4 0.5

Arithmetic mean 63.5 61.7 58.2 51.1 41.1

Geometric mean 65.7 63.8 60.0 52.7 42.4

Normalized product 67.2 65.2 64.5 53.8 43.2

SALAD 73.3 70.7 65.7 57.0 44.6
Table 7. Comparison between SALAD and confidence fusion

methods on THUMOS14, measured by mAP(%).

of our algorithm. However, a very important point we want

to highlight is that the frame used to regress segment is uni-

formly distributed across the ground truth segment. It is

therefore very important to select the best frames during the

learning, as proposed in SALAD.

5. Conclusion

In this paper, we propose a new action detection algo-

rithm named SALAD that outperforms states-of-the-art on

both THUMOS14 and ActivityNet1.3 datasets.

This performance gain is achieved by adding self-

assessment directly into the network learning. Indeed,

this self-assessment allows to prune frames (or snippets of

frames) and to improve features by using attentional mech-

anism and multi-task regularization.

In addition, this self-assessment allows to capture all the

specificity of action detection metric in the loss function,

contrary to regression losses which only measure local

performance. Thus, contrary to the common opinion that

robustness, calibration or explainability are considered

constraints, we introduce one of them during the learning

process as a way to improve performance.

Acknowledgments: This work was performed using

HPC resources from GENCI-IDRIS (2019-AD011011269)

1276

References

[1] Bruno Berberian, Patrick Le Blaye, Victorien Marchand, and

Jean-Christophe Sarrazin. A preliminary experiment on the

concepts of authority sharing and agency in uas supervisory

control. 2nd HUMOUS (HUMans Operating Unmanned

Systems), Toulouse, France, 2010.

[2] Shyamal Buch, Victor Escorcia, Bernard Ghanem, Li Fei-

Fei, and Juan Carlos Niebles. End-to-end, single-stream tem-

poral action detection in untrimmed videos. In Proceedings

of the British Machine Vision Conference (BMVC), 2017.

[3] Shyamal Buch, Victor Escorcia, Chuanqi Shen, Bernard

Ghanem, and Juan Carlos Niebles. SST: Single-stream tem-

poral action proposals. In CVPR, 2017.

[4] Maxime Bucher, Stéphane Herbin, and Frédéric Jurie. Se-

mantic bottleneck for computer vision tasks. In Asian Con-

ference on Computer Vision, pages 695–712. Springer, 2018.

[5] Fabian Caba Heilbron, Victor Escorcia, Bernard Ghanem,

and Juan Carlos Niebles. Activitynet: A large-scale video

benchmark for human activity understanding. In Proceed-

ings of the ieee conference on computer vision and pattern

recognition, pages 961–970, 2015.

[6] João Carreira and Andrew Zisserman. Quo vadis, action

recognition? A new model and the kinetics dataset. CoRR,

abs/1705.07750, 2017.

[7] Yu-Wei Chao, Sudheendra Vijayanarasimhan, Bryan Sey-

bold, David A. Ross, Jia Deng, and Rahul Sukthankar. Re-

thinking the faster R-CNN architecture for temporal action

localization. CoRR, abs/1804.07667, 2018.

[8] Sungil Choi, Seungryong Kim, Kihong Park, and

Kwanghoon Sohn. Learning descriptor, confidence,

and depth estimation in multi-view stereo. In Proceedings

of the IEEE Conference on Computer Vision and Pattern

Recognition Workshops, pages 276–282, 2018.

[9] Charles Corbière, Nicolas Thome, Avner Bar-Hen, Matthieu

Cord, and Patrick Pérez. Addressing failure prediction by

learning model confidence. In Advances in Neural Informa-

tion Processing Systems, pages 2902–2913, 2019.

[10] Xiyang Dai, Bharat Singh, Guyue Zhang, Larry S. Davis,

and Yan Qiu Chen. Temporal context network for activity

localization in videos. In The IEEE International Conference

on Computer Vision (ICCV), Oct 2017.

[11] Yukun Ding, Jinglan Liu, Jinjun Xiong, and Yiyu Shi. Revis-

iting the evaluation of uncertainty estimation and its applica-

tion to explore model complexity-uncertainty trade-off. In

Proceedings of the IEEE/CVF Conference on Computer Vi-

sion and Pattern Recognition Workshops, pages 4–5, 2020.

[12] Victor Escorcia, Fabian Heilbron, Juan Carlos Niebles, and

Bernard Ghanem. Daps: Deep action proposals for action

understanding. volume 9907, pages 768–784, 10 2016.

[13] Christoph Feichtenhofer, Axel Pinz, and Andrew Zisserman.

Convolutional two-stream network fusion for video action

recognition. CoRR, abs/1604.06573, 2016.

[14] Yarin Gal and Zoubin Ghahramani. Dropout as a bayesian

approximation: Representing model uncertainty in deep

learning. In international conference on machine learning,

pages 1050–1059, 2016.

[15] Jiyang Gao*, Kan Chen*, and Ram Nevatia. Ctap: Com-

plementary temporal action proposal generation. In ECCV,

2018.

[16] Jiyang Gao, Zhenheng Yang, Kan Chen, Chen Sun, and Ram

Nevatia. Turn tap: Temporal unit regression network for tem-

poral action proposals. In The IEEE International Confer-

ence on Computer Vision (ICCV), Oct 2017.

[17] Jiyang Gao, Zhenheng Yang, and Ram Nevatia. Cas-

caded boundary regression for temporal action detection. In

BMVC, 2017.

[18] Dale Griffin and Amos Tversky. The weighing of evidence

and the determinants of confidence. Cognitive psychology,

24(3):411–435, 1992.

[19] Fabian Heilbron, Juan Carlos Niebles, and Bernard Ghanem.

Fast temporal activity proposals for efficient detection of hu-

man actions in untrimmed videos. 06 2016.

[20] F. C. Heilbron, W. Barrios, V. Escorcia, and B. Ghanem.

Scc: Semantic context cascade for efficient action detection.

In 2017 IEEE Conference on Computer Vision and Pattern

Recognition (CVPR), pages 3175–3184, 2017.

[21] Derek Hoiem, Yodsawalai Chodpathumwan, and Qieyun

Dai. Diagnosing error in object detectors. In European con-

ference on computer vision, pages 340–353. Springer, 2012.

[22] Rui Hou, Rahul Sukthankar, and Mubarak Shah. Real-time

temporal action localization in untrimmed videos by sub-

action discovery. 01 2017.

[23] Yupan Huang, Qi Dai, and Yutong Lu. Decoupling localiza-

tion and classification in single shot temporal action detec-

tion. In International Conference on Multimedia and Expo

(ICME), 2019.

[24] Adam Kepecs and Zachary F Mainen. A computational

framework for the study of confidence in humans and an-

imals. Philosophical Transactions of the Royal Society B:

Biological Sciences, 367(1594):1322–1337, 2012.

[25] Tianwei Lin, Xiao Liu, Xin Li, Errui Ding, and Shilei Wen.

BMN: boundary-matching network for temporal action pro-

posal generation. CoRR, abs/1907.09702, 2019.

[26] Tianwei Lin, Xu Zhao, and Zheng Shou. Single shot tempo-

ral action detection. CoRR, abs/1710.06236, 2017.

[27] Tianwei Lin, Xu Zhao, Haisheng Su, Chongjing Wang, and

Ming Yang. BSN: boundary sensitive network for temporal

action proposal generation. CoRR, abs/1806.02964, 2018.

[28] Yuan Liu, Lin Ma, Yifeng Zhang, Wei Liu, and Shih-Fu

Chang. Multi-granularity generator for temporal action pro-

posal. CoRR, abs/1811.11524, 2018.

[29] Chenri Ni, Nontawat Charoenphakdee, Junya Honda, and

Masashi Sugiyama. On the calibration of multiclass clas-

sification with rejection. In Advances in Neural Information

Processing Systems, pages 2586–2596, 2019.

[30] Dan Oneata, Jakob Verbeek, and Cordelia Schmid. The

LEAR submission at Thumos 2014, 2014. -.

[31] Nicolas Papernot, Patrick McDaniel, Somesh Jha, Matt

Fredrikson, Z Berkay Celik, and Ananthram Swami. The

limitations of deep learning in adversarial settings. In 2016

IEEE European symposium on security and privacy (Eu-

roS&P), pages 372–387. IEEE, 2016.

1277

[32] Sujoy Paul, Sourya Roy, and Amit K Roy-Chowdhury. W-

talc: Weakly-supervised temporal activity localization and

classification. In Proceedings of the European Conference

on Computer Vision (ECCV), pages 563–579, 2018.

[33] Alexey L Pomerantsev. Confidence intervals for nonlinear

regression extrapolation. Chemometrics and Intelligent Lab-

oratory Systems, 49(1):41–48, 1999.

[34] Zhaofan Qiu, Ting Yao, and Tao Mei. Learning spatio-

temporal representation with pseudo-3d residual networks.

CoRR, abs/1711.10305, 2017.

[35] A. Richard and J. Gall. Temporal action detection using a sta-

tistical language model. In 2016 IEEE Conference on Com-

puter Vision and Pattern Recognition (CVPR), pages 3131–

3140, 2016.

[36] Zheng Shou, Jonathan Chan, Alireza Zareian, Kazuyuki

Miyazawa, and Shih-Fu Chang. Cdc: Convolutional-de-

convolutional networks for precise temporal action localiza-

tion in untrimmed videos. In CVPR, 2017.

[37] Zheng Shou, Dongang Wang, and Shih-Fu Chang. Temporal

action localization in untrimmed videos via multi-stage cnns.

In CVPR, 2016.

[38] Zheng Shou, Dongang Wang, and Shih-Fu Chang. Temporal

action localization in untrimmed videos via multi-stage cnns.

In CVPR, 2016.

[39] Karen Simonyan and Andrew Zisserman. Two-stream con-

volutional networks for action recognition in videos. CoRR,

abs/1406.2199, 2014.

[40] Gurkirt Singh and Fabio Cuzzolin. Untrimmed video classi-

fication for activity detection: submission to activitynet chal-

lenge. CoRR, abs/1607.01979, 2016.

[41] Du Tran, Lubomir D. Bourdev, Rob Fergus, Lorenzo Torre-

sani, and Manohar Paluri. C3D: generic features for video

analysis. CoRR, abs/1412.0767, 2014.

[42] Apoorv Vyas, Nataraj Jammalamadaka, Xia Zhu, Dipankar

Das, Bharat Kaul, and Theodore L Willke. Out-of-

distribution detection using an ensemble of self supervised

leave-out classifiers. In Proceedings of the European Con-

ference on Computer Vision (ECCV), pages 550–564, 2018.

[43] Limin Wang, Yu Qiao, and Xiaoou Tang. Action recognition

and detection by combining motion and appearance features.

In THUMOS Action Recognition challenge, pages 1–6, 2014.

[44] Limin Wang, Yuanjun Xiong, Zhe Wang, and Yu Qiao. To-

wards good practices for very deep two-stream convnets.

CoRR, abs/1507.02159, 2015.

[45] Wenhao Wu, Dongliang He, Xiao Tan, Shifeng Chen, and

Shilei Wen. Multi-agent reinforcement learning based frame

sampling for effective untrimmed video recognition. In Pro-

ceedings of the IEEE International Conference on Computer

Vision, pages 6222–6231, 2019.

[46] Zuxuan Wu, Caiming Xiong, Chih-Yao Ma, Richard Socher,

and Larry S Davis. Adaframe: Adaptive frame selection for

fast video recognition. In Proceedings of the IEEE Con-

ference on Computer Vision and Pattern Recognition, pages

1278–1287, 2019.

[47] Huijuan Xu, Abir Das, and Kate Saenko. R-C3D: region con-

volutional 3d network for temporal activity detection. CoRR,

abs/1703.07814, 2017.

[48] Mengmeng Xu, Chen Zhao, David S. Rojas, Ali Thabet, and

Bernard Ghanem. G-tad: Sub-graph localization for tem-

poral action detection. In Proceedings of the IEEE/CVF

Conference on Computer Vision and Pattern Recognition

(CVPR), June 2020.

[49] Serena Yeung, Olga Russakovsky, Greg Mori, and Li Fei-

Fei. End-to-end learning of action detection from frame

glimpses in videos. CoRR, abs/1511.06984, 2015.

[50] J. Yuan, B. Ni, X. Yang, and A. A. Kassim. Temporal ac-

tion localization with pyramid of score distribution features.

In 2016 IEEE Conference on Computer Vision and Pattern

Recognition (CVPR), pages 3093–3102, 2016.

[51] Zehuan Yuan, Jonathan Stroud, Tong Lu, and Jia Deng. Tem-

poral action localization by structured maximal sums. pages

3215–3223, 07 2017.

[52] Sukmin Yun, Jongjin Park, Kimin Lee, and Jinwoo Shin.

Regularizing class-wise predictions via self-knowledge dis-

tillation. In Proceedings of the IEEE/CVF Conference on

Computer Vision and Pattern Recognition, pages 13876–

13885, 2020.

[53] Christopher Zach, Thomas Pock, and Horst Bischof. A du-

ality based approach for realtime tv-l1 optical flow. volume

4713, pages 214–223, 09 2007.

[54] Amir R Zamir, Alexander Sax, William Shen, Leonidas J

Guibas, Jitendra Malik, and Silvio Savarese. Taskonomy:

Disentangling task transfer learning. In Proceedings of the

IEEE conference on computer vision and pattern recogni-

tion, pages 3712–3722, 2018.

[55] Runhao Zeng, Wenbing Huang, Mingkui Tan, Yu Rong,

Peilin Zhao, Junzhou Huang, and Chuang Gan. Graph con-

volutional networks for temporal action localization. In

ICCV, 2019.

[56] Hongyang Zhang, Yaodong Yu, Jiantao Jiao, Eric P Xing,

Laurent El Ghaoui, and Michael I Jordan. Theoretically

principled trade-off between robustness and accuracy. arXiv

preprint arXiv:1901.08573, 2019.

[57] Yue Zhao, Yuanjun Xiong, Limin Wang, Zhirong Wu, Xi-

aoou Tang, and Dahua Lin. Temporal action detection with

structured segment networks. In ICCV, 2017.

1278

