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A B S T R A C T   

Introduction: Functional brain-imaging techniques have revealed that clinical examination of disorders of con
sciousness (DoC) can underestimate the conscious level of patients. FDG-PET metabolic index of the best pre
served hemisphere (MIBH) has been reported as a promising measure of consciousness but has never been 
externally validated and compared with other brain-imaging diagnostic procedures such as quantitative EEG. 
Methods: FDG-PET, quantitative EEG and cognitive evoked potential using an auditory oddball paradigm were 
performed in minimally conscious state (MCS) and vegetative state (VS) patient. We compared out-sample 
diagnostic and prognostic performances of PET-MIBH and EEG-based classification of conscious state to the 
current behavioral gold-standard, the Coma Recovery Scale – revised (CRS-R). 
Results: Between January 2016 and October 2019, 52 patients were included: 21 VS and 31 MCS. PET-MIBH had 
an AUC of 0.821 [0.694–0.930], sensitivity of 79% [62–91] and specificity of 78% [56–93], not significantly 
different from EEG (p = 0.628). Their combination accurately identified almost all MCS patients with a sensi
tivity of 94% [79–99%] and specificity of 67% [43–85]. Multimodal assessment also identified VS patients with 
neural correlate of consciousness (4/7 (57%) vs. 1/14 (7%), p = 0.025) and patients with 6-month recovery of 
command-following (9/24 (38%) vs. 0/16 (0%), p = 0.006), outperforming each technique taken in isolation. 
Conclusion: FDG-PET MIBH is an accurate and robust procedure across sites to diagnose MCS. Its combination 
with EEG-based classification of conscious state not only optimizes diagnostic performances but also allows to 
detect covert cognition and to predict 6-month command-following recovery demonstrating the added value of 
multimodal assessment of DoC.   

1. Introduction 

Disorders of consciousness (DoC) are common consequences of se
vere brain injury. They comprise heterogeneous conditions, with pa
tients either suffering from a complete loss of awareness, as in the 
vegetative state (also termed unresponsive wakefulness syndrome – VS/ 
UWS) (Jennett and Plum, 1972; Laureys et al., 2010), or patients 

exhibiting minimal but definite signs of external awareness, as in the 
minimally conscious state (MCS) (Giacino et al., 2002). The differential 
diagnosis is mainly based on behavioral assessments, among which the 
coma recovery scale – revised (CRS-R) is the current gold-standard 
(Kalmar and Giacino, 2005). However, recent advances indicate that 
behavioral evaluation alone may be inadequate, as residual signs of 
awareness can be identified using brain-imaging techniques in 
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~15–25% of clinically unresponsive patients (Cruse et al., 2011; King 
et al., 2013b; Owen et al., 2006). The presence of covert cognition 
furthermore appears to hold important prognostic significance (Sitt 
et al., 2014; Claassen et al., 2019). In light of these considerations, 
neuroimaging tools are essential both to complement the clinical diag
nosis and to investigate the neurophysiological basis of the disorders 
(Hermann et al., 2020a). Among the available tools, 18F-fluoro-deoxy
glucose positron emission tomography (FDG-PET) has consistently 
demonstrated a metabolic reduction to approximately 50% of brain 
glucose uptake across various unconscious conditions, from anesthesia, 
to sleep, to DoC. As such it has been proposed as a diagnostic tool for 
DoC patients (Stender et al., 2014, 2015). Yet, in the aforementioned 
studies, diagnostic labels relied on the subjective assessment of PET 
results and/or seed-based normalization procedures, prone to odd re
sults in this specific population. In 2016, Stender et al., proposed a novel 
normalization procedure resulting in a simple measure of cerebral 
metabolic activity, which showed the best diagnostic performances to 
date (Stender et al., 2016). Alas, this measure, which requires on-site 
acquisition of healthy controls, has never been validated outside the 
initial center and its generalizability remains unknown. Other diagnostic 
tools, easier to implement at bedside, have been proposed. Electro
physiology allows reliable and robust automatic classification of 
conscious versus unconscious states based both on EEG brain activity 
(Engemann et al., 2018; Sitt et al., 2014) and event-related potentials 
(ERP) during cognitive tasks such as the auditory local–global paradigm 
(Bekinschtein et al., 2009a; Faugeras et al., 2011, 2012). As these 
techniques develop and become more readily available, it is increasingly 
necessary to understand the interrelation of the physiological data they 
provide. In this context, glucose metabolism as measured by FDG-PET 
has been previously associated with EEG-derived network metrics of 
interconnected central hubs (Chennu et al., 2017) and correlated with 
resting-state fMRI connectivity maps (Soddu et al., 2016). While such 
comparative studies remain rare, they are nonetheless critical to the 
wider implementation of multimodal neuroimaging techniques in 
routine care as recommended in the latest guidelines (Giacino et al., 
2018). 

We here aimed to determine the external validity of the FDG-PET 
metabolic index for DoC diagnosis, in comparison with EEG-based 
classification. We further explored whether a multimodal approach 
combining PET and EEG would add value to the diagnosis and prog
nostication of DoC. 

2. Material and methods 

2.1. Ethics statement 

The protocol conformed to the Declaration of Helsinki, to the French 
regulations, and was approved by the local ethic committee (Comité de 
Protection des Personnes n◦ 2013-A01385-40) Ile de France 1 (Paris, 
France) under the code ‘Recherche en soins courants’ (routine care 
research). Informed consent was obtained from patient’s relative. 

2.2. Population inclusion and exclusion criteria 

We prospectively included patients with prolonged DoC, admitted to 
the Neurological Intensive Care Unit of the Pitié-Salpêtrière university 
hospital (Paris, France) between January 2016 and October 2019. All 
patients were transferred for specialized diagnosis, in order to determine 
their state of consciousness. The admission lasted approximately one 
week, during which they undergone repeated behavioral assessment, 
high-density EEG recording and FDG-PET. Only patients without me
chanical ventilation could be scanned and were included. Patients who 
received sedation in the 48 h prior to acquisition were excluded. Pre
viously acquired PET images from 32 healthy subjects without history of 
neurological disorders were used as controls. 

2.3. Behavioral assessment 

Behavioral evaluation relied on the gold-standard CRS-R (Giacino 
and Kalmar, 2005). This scale evaluates the patient’s response to a set of 
hierarchically ordered items in six different domains: auditory, visual, 
motor, language and oromotor, communication and arousal. During the 
hospitalization, several CRS-R were performed by trained physicians in 
order to increase diagnostic accuracy. The reference standard was the 
highest detected level of consciousness, as defined by the best response 
obtained among all CRS-R scorings. We collected the 6-month outcome 
by phone interview of the treating physician and/or family. Since re
covery of consciousness is expected to be rare in this short timeframe for 
chronic DoC, we focused on a more reasonable yet clinically relevant 
outcome, the recovery of command-following (defined as the repro
ducible response to command following CRS-R scoring guidelines) in 
initially unresponsive patients as in Claassen et al. (2019). 

2.4. PET acquisition and image analysis 

2.4.1. Acquisition 
PET images were acquired on a Philips Gemini GXL scanner (Philips 

Medical Systems) in the nuclear medicine department. Patients and 
controls received a bolus injection of FDG adjusted to body weight (2 
MBq/kg) and were kept at rest in a dark and quiet room. PET images 
were recorded starting from 20 min to 1 h after the circulation of the 
tracer using two different protocols: the first consisted in the static 
acquisition of a single 15 min frame, the second, used in restless patients 
in order to minimize motion artifacts, consisted in the acquisition of 
three consecutives frames of 5 min each. Images were then recon
structed using iterative LOR-RAMLA algorithm (2 iterations), with a « 
standard » post-reconstruction filter. All corrections (attenuation, scat
ter and random coincidence) were integrated in the reconstruction. 

2.4.2. Quantitative normalization procedure 
Quality of PET images was assessed by nuclear medicine physicians, 

blinded to the patients state of consciousness and PET data of insuffi
cient quality were discarded. PET acquired more than one hour after the 
tracer injection were also discarded according to standard clinical 
practice. The uptake quantification procedure followed steps described 
by Stender et al. (2016). The image is hereby normalized to match 
uptake-histograms of extracerebral cephalic tissues, as opposed to 
common methods normalizing brain metabolism to a specific cerebral 
region (such as the cerebellum). First, images were registered to a 
common template in MNI space by affine and non-linear trans
formations. They were then segmented (left and right cerebral cortices 
and extracerebral tissue) and normalized on the metabolism of the 
extracerebral tissue in reference to controls (by minimization of the 
Jensen-Shannon divergence between patients and the control distribu
tion). Finally, brain metabolic activity was scaled by setting the mean 
activity of extracerebral regions to an index value of one. Metabolic 
index of the best preserved hemisphere (MIBH) was computed as the 
highest mean metabolic activity of the two hemispheres. For the dy
namic acquisition, the quantification procedure was performed on each 
one of the three frames and the resulting normalized images were then 
averaged. 

2.5. EEG acquisition and analysis 

2.5.1. Acquisition and preprocessing 
High-density (256 electrodes) scalp EEG were recorded at bedside 

the during local–global auditory oddball paradigm. This paradigm 
probes the unconscious and conscious processing of auditory novelty 
through the manipulation of two temporal levels of auditory regularities 
violation, respectively on a short-time scale (local, within a series of five 
sound, the last one being either a standard or a deviant tone according to 
the four preceding sounds) or on a long-time scale (global, across series 
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of five sounds) (see Supplementary Material 1a). The latter is able to 
elicit the P3b signature of conscious auditory processing (Bekinschtein 
et al., 2009a; King et al., 2013a). EEG were preprocessed using a pre
viously described pipeline (epochs segmentation, automated rejection of 
artifacted epochs and channels based on amplitude and variance of the 
signal, bad channels interpolation, discarding of EEG of insufficient 
quality based on a priori specified criteria and lastly, baseline correc
tion) (Engemann et al., 2018, 2015) (see Supplementary Material 1b). 

2.5.2. EEG-based automatic classification of conscious states 
112 features reflecting averages and fluctuations in time and space of 

28 markers of spectral power (normalized and raw δ [1–4 Hz], θ [4–8 
Hz], α [8–12 Hz], β [12–30 Hz], and γ [30–45 Hz] power, spectral en
tropy, median spectral frequency, spectral edge 90th and 95th), con
nectivity (weighted symbolic mutual information in the theta-alpha 
range [4–10 Hz] (King et al., 2013b), complexity (Kolmogorov-Chaitin 
complexity and permutation entropy) and evoked responses (contingent 
negative variation, P1, P3a, P3b and contrasts from the local–global 
oddball paradigm including mismatch negativity) were computed from 
the EEG signal and subsequently used to predict the patients state of 
consciousness using a linear support vector machine (SVM) algorithm as 
previously described (Sitt et al., 2014; Engemann et al., 2018) (see 
Supplementary Material 1c for details regarding the markers computa
tion and the SVM algorithm). 

2.5.3. Auditory oddball local and global effect 
Evoked responses to the local and global contrasts were computed 

using t-tests for unequal variance over the whole time-series. To deter
mine the presence of a local and/or global effect in individual subjects, 

we used the previously published stringent triple-threshold criteria 
(Faugeras et al., 2012). An effect was considered present, if a significant 
difference (p-value ≤ 0.01) was observed on at least 5 consecutive time 
samples and 10 adjacent electrodes starting from the onset of the fifth 
sound and if this difference was stronger than any differences observed 
during the baseline period (either lower minimal p-value or if equal, 
longer duration). Accordingly, three groups of patients were identified: 
absent local and global effect, local effect only and global effect 
(regardless of the presence of a local effect, as the global effect indexes a 
higher level in the auditory novelty processing hierarchy). 

2.6. Statistical analysis 

We assessed in-sample and out-of-sample diagnostic performances of 
two index tests, the FDG-PET MIBH and the EEG-based prediction of 
conscious state, using the standard following discrimination metrics 
with their 10,000 bootstrapped 95% confidence interval (CI95%): area 
under the ROC curves (AUC), sensitivity, specificity, positive and 
negative predictive values, positive and negative likelihood ratios, and 
accuracy. For the FDG-PET, in-sample performances were derived from 
the optimal MIBH threshold according to the ROC curve, while out-of- 
sample performances were derived from the use of the 3.18 MIBH 
threshold value set by Stender et al. based on data from Liège University 
Hospital (Stender et al., 2016). For in-sample EEG performances, the 
SVM algorithm was trained and tested on the same patients, namely the 
cohort of patients included in the study. Out-of-sample performances 
were obtained by training the SVM classifier on a previously published 
dataset (Engemann et al., 2018) from which we excluded the patients 
included in the study to avoid overfitting, yielding a total of 341 

Fig. 1. Flow chart. CRS-R: coma recovery 
scale – revised; EMCS: emergence from 
minimally conscious state; FDG-PET: 18F-flu
oro-deoxyglucose positron emission tomog
raphy; MCS: minimally conscious state; 
MIBH: metabolic index of the best preserved 
hemisphere; VS/UWS: vegetative state/unre
sponsive wakefulness syndrome. In order to 
diagnose MCS (target condition), the new 
diagnostic procedure, the FDG-PET MIBH 
(index test), was compared to the best state of 
consciousness observed across the repeated 
CRS-R (reference standard).   
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recordings (VS/UWS n = 170, MCS n = 171 acquired from 267 inde
pendent subjects). Predicted probability of MCS classification (as 
opposed to VS/UWS) was obtained from the SVM output through Platt 
scaling. Since this output is probabilistic, discrimination metrics were 
computed for a 0.5 threshold in both conditions. ROC curves compari
sons were tested using 10,000 bootstrapped replicates. Sensitivities and 
specificities were compared using McNemar test for paired design. 
Quantitative data were expressed as median [interquartile range] and 
compared through Mann-Whitney-U and categorical data were 
expressed as number (percentage) and compared through chi-squared 

test or Fisher’s exact test as appropriate. Correlation between the 
MIBH and the CRS-R was performed using spearman correlation 
coefficient. 

3. Data and software availability 

Ethic committee does not allow the open sharing of raw human pa
tients data (notably of brain-imaging data). However, post-processed 
anonymized metadata are provided in supplementary material. The 
list of software used can be found in Supplementary material 1d. 

4. Results 

4.1. Population 

Among the 182 DoC patients evaluated during the study period, 89 
were eligible for PET, 74 were scanned and 57 were included in the 
analysis: 23 in VS/UWS and 34 in MCS (Fig. 1). Additionally, 7 FDG-PET 
recordings of patients in EMCS were available. Diagnostic performance 
measures of the FDG-PET and EEG were restricted to the VS/UWS and 
MCS population. Importantly, no significant differences were found 
between VS/UWS and MCS patients in terms of number of CRS-R per
formed, CRS-R arousal score, delay between PET and best CRS-R, and 
PET acquisition parameters (acquisition protocol, tracer dose and time 
from tracer injection, concomitant drugs), except for the blood glucose 
concentration which remained within normal range (5.9 [5.2–6.6] in 
VS/UWS patients vs. 5.3 [4.8–5.8] in MCS patients, p = 0.019, Table 1 
and Supplementary material 2a, b & c). 

4.2. Validation of the FDG-PET metabolic index as a reliable diagnostic 
tool 

We first evaluated the in-sample FDG-PET performances of the MIBH 
to diagnose MCS, as compared to the reference gold-standard, i.e. the 
best state of consciousness observed over CRS-R measurement(s). VS/ 
UWS patients had a significantly lower MIBH than MCS patients (median 
MIBH of 2.70 [2.40–3.03] vs. 3.65 [3.26–4.04], p < 10− 4), with an AUC 
of 0.821 [0.694–0.930]). 

At the optimal MIBH cut-off of 3.07, corresponding to 54% of the 
healthy controls metabolism (5.73 [5.20–6.39]), accuracy was 84% 
[71–92], positive predictive value was 85% [69–95], negative predic
tive value was 78% [56–93], sensitivity was 85% [69–95] and speci
ficity was 78% [56–93]. Similar discrimination performances were 
found when adjusting for blood glucose levels and scanning protocol 
(see Supplementary Material 2d). Using the previously published diag
nostic threshold of 3.18 for external validation still resulted in good 
discrimination performances with an accuracy of 79% [66–89], positive 
predictive value of 84% [67–95], negative predictive value of 72% 
[51–88], sensitivity of 79% [62–91] and specificity 78% [56–93]. As 
expected, all EMCS patients had a score above threshold (4.39 
[3.71–5.16]) and interestingly, all MCS patients with a score below 
threshold were MCS minus patients (MCS-), that is MCS patients without 
clinical evidence of language preservation, contrary to MCS plus patients 
(MCS+) (Fig. 2A). MIBH also correlated strongly with the CRS-R score 
(spearman ρ = 0.59, p < 10-4, Fig. 2B). These reliable performances 
validate the FDG-PET as a robust method to diagnose MCS across 
centers. 

4.3. FDG-PET outperforms EEG-based classification 

In order to evaluate the added value of the FDG-PET, we compared 
its diagnostic performances to a validated and robust EEG-based clas
sification tool (Sitt et al., 2014) which demonstrated its ability to 
generalize to different settings: centers, paradigms, number of EEG 
channels and length of recordings (Engemann et al., 2018). Among the 
57 EEG recordings, 5 did not pass the automated preprocessing and 

Table 1 
FDG-PET Population characteristics.  

Variable All 
N = 57 

VS/UWS 
N = 23 

MCS 
N = 34 

p 

Demographic characteristics 
Age, years, median 

[IQR] 
45.6 
[28.9–56.2] 

47.2 
[28.8–56.2] 

45.2 
[31.3–55.9] 

0.715 

Sex, M/F ratio 1.6 1.9 1.4 0.834 
Etiology, n(%) 

-Anoxia 
-Traumatic 
-Vascular 
-Other*  

21 (37%) 
18 (32%) 
8 (14%) 
10 (17%)  

15 (65%) 
6 (26%) 
0 (0%) 
2 (9%)  

6 (17%) 
12 (35%) 
8 (24%) 
8 (24%) 

<10- 

3̊

Time since injury, 
days 

209 [103–77] 194 
[105–500] 

340 
[104–940] 

0.317  

Behavior 
Nb of CRS-R 3 [2–4] 3 [2–4] 3 [2–4] 0.653 
CRS-R total score 9 [6–12] 6 [5–7] 11 [9–13] <10- 

3 

CRS-R arousal score 2 [1–2] 2 [1–2] 2 [1–2] 0.679  

FDG-PET acquisition 
Delay from best 

CRS-R 
− 1 [-1–1] 0 [-1–1] − 1 [-1–1] 0.973 

Weight, kg 64 [55–77] 70 [53–78] 60 [55–76] 0.474 
Blood glucose, 

mmol/L 
5.4 [4.8–6.1] 5.9 [5.2–6.6] 5.3 [4.8–5.8] 0.019 

Tracer dose, MBq 134 
[122–159] 

140 
[126–159] 

133 
[121–155] 

0.366 

Protocol 
-Static 
-Dynamic  

45 (79%) 
12 (21%)  

17 (74%) 
6 (26%)  

28 (82%) 
6 (18%) 

0.663 

Injection delay, 
minutes 

37.0 
[32.0–42.4] 

37.5 
[31.5–48.2] 

37.0 
[32.3–42.0] 

0.929  

EEG 
Delay from best 

CRS-R 
0 [0–0] 0 [0–0] 0 [-2.5–0] 0.904 

Acquisition 
-Recorded 
-Analyzable  

57 (100%) 
52 (91%)  

23 (100%) 
21 (91%)  

34 (100%) 
31 (91%)  

1.0 
1.0 

Preprocessing 
-Nb of rejected 
channels 
-Nb of rejected 
epochs  

15 
[11.75–23.5] 
109 
[31–216.75]  

15 [13–23] 
105 [14–228]  

16 [11.5–23] 
129 
[37.5–203]  

0.588 
0.569 

Local-global 
paradigm (n = 52) 
-Global effect 
-Local effect 
-No effect  

16 (31%) 
15 (29%) 
21 (40%)  

5 (24%) 
5 (24%) 
11 (52%)  

11 (26%) 
10 (32%) 
10 (32%) 

0.402̊

CRS-R: coma recovery scale – revised; EEG: electroencephalogram; MCS: mini
mally conscious state; Nb: number; VS/UWS: vegetative state/unresponsive 
wakefulness syndrome. 
Quantitative data are expressed as median [interquartile range] and compared 
Mann-Whitney-U test. Categorical data are expressed as number (percentage) 
and compared through chi-squared test (except when̊ in which case Fisher’s 
exact test was used). 

* Other etiologies are: hypoglycemia (n = 2), status epilepticus (n = 2), 
neurologic sequelae of craniopharyngioma surgery (n = 1), tuberculosis men
ingitis (n = 1), opioid toxic encephalopathy (n = 1), cerebral fat embolism 
syndrome (n = 1), acute demyelinating encephalomyelitis (n = 1) and leu
coencephalopathy of unknown origin (n = 1). 
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quality control pipeline, leaving a population of 52 patients (21 VS/UWS 
and 31 MCS) in which we compared FDG-PET and EEG performances 
(Table 2 and Fig. 3). 

In-sample FDG-PET performances in this population were similar to 
the one of the whole PET population and EEG and FDG-PET perfor
mances were not significantly different (p = 0.218). EEG out-of-sample 
discrimination performances were: AUC of 0.770 [0.619–0.896], accu
racy of 67% [53–80], sensitivity of 58% [39–75] and specificity of 81% 
[58–95]. While AUC were not significantly different (p = 0.628), the 
FDG-PET had a higher sensitivity than EEG (paired McNemar test p =
0.033) with no difference in specificity (p = 0.655). 

4.4. A multimodal approach identifies covert consciousness and improves 
prognostication 

Ideally, a perfect brain-imaging diagnostic tool for DoC patients 
should first identify all clinically MCS patients. We thus tested if 
multimodal brain-imaging combining FDG-PET and EEG (MIBH higher 
than Liège threshold for MCS and/or EEG-based predicted probability of 
MCS > 0.5) could outperform any of the two imaging modality taken in 
isolation. The combination of the PET MIBH with the EEG-based clas
sification indeed accurately identified almost all MCS patients, yielding 
an improved sensitivity of 94% [79–99%] with a specificity of 67% 

Fig. 2. FDG-PET metabolic index and conscious
ness. (A) Higher metabolic index of the best pre
served hemisphere values are observed with 
increasing state of consciousness, from vegetative 
state/unresponsive wakefulness syndrome (VS/ 
UWS), minimally conscious state minus (MCS-), 
minimally conscious state plus (MCS+) to emer
gence from minimally conscious state (EMCS) pa
tients (control patients used for the normalization 
are in black). Dashed lines optimal in-sample (black) 
and out-of-sample (gray) thresholds for VS/UWS 
discrimination. (B) Significant correlation of the 
metabolic index with the Coma Recovery Scale – 
revised (CRS-R) scores, Spearman’s rho = 0.59, p <
10-4.   
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[43–85], a positive predictive value of 81% [62–99] and negative pre
dictive value of 88% [62–98]. Sensitivity of the combination was 
significantly higher than the one of EEG alone (paired McNemar test p <
0.001) and there was a trend towards a higher sensitivity than the one of 
FDG-PET alone (p = 0.083). But more importantly, since residual ac
tivity in higher-order cortical areas (higher-order cortex motor dissoci
ation [HMD]) and even preserved brain activation in response to motor 
commands during active tasks despite absent behavioral response 
(cognitive-motor dissociation [CMD]) have been demonstrated in some 
clinically unresponsive patients using brain-imaging (Owen et al., 2006; 
Cruse et al., 2011; Claassen et al., 2019; Schiff, 2015; Edlow, 2018), the 
CRS-R may not be an adequate gold-standard to measure the ability of a 
new diagnostic tool to detect residual signs of cognition. We thus 
investigated the potential added value of the combination of FDG-PET 
and EEG in unresponsive patients using two measures independent 
from the CRS-R and relevant to the diagnosis of consciousness: an ERP 
correlate of conscious auditory perception and 6-month outcome. Seven 
out of the 21 (33%) clinically VS/UWS patients exhibited a higher 
metabolism and/or richer brain electrophysiological activity than ex
pected. Interestingly 4 of these (57%) also exhibited an ERP global effect 
that indicates preserved conscious processing of auditory novelty 
(Bekinschtein et al., 2009a; Faugeras et al., 2011; King et al., 2013a). 
This was in contrast to the very low proportion of patients classified as 
VS/UWS by both behavior and neuro-imaging techniques and showing a 
global effect (1/14 (7%), fisher exact test p = 0.025). Moreover, the 
combination of PET and EEG was significantly associated with 6-month 
recovery of command-following in initially unresponsive patients (re
covery in 9/24 (38%) of patients with high FDG-PET metabolism and/or 
rich EEG activity vs. in 0/16 (0%) of patients with low-level FDG-PET 
metabolism and EEG activity, fisher exact test p = 0.006), while either 
FDG-PET or EEG alone were not significantly associated with 6-month 
command-following (7/19 (37%) vs. 2/21 (10%), fisher exact test p 
= 0.060 for FDG-PET and 5/13 (38%) vs. 4/27 (15%), p = 0.120 for 
EEG). These results strongly suggest that the combination of FDG-PET 

and EEG accurately identified residual signs of high cognitive function 
fostering the recovery of command-following in otherwise clinically 
unresponsive patients. 

5. Discussion 

In this study, we showed that external implementation and gener
alization of the MIBH quantification procedure of FDG-PET glucose 
uptake was practically feasible, and enabled accurate diagnosis of pro
longed DoC. In our cohort, we found that the approximate metabolic 
boundary between MCS and VS/UWS was 50% of normal metabolism, 
slightly higher than previously found by Stender et al. (2016). While this 
difference could be due to site and/or protocol specific factors, our re
sults align well with previous findings in DoC patients, sleep and anes
thesia (Braun et al., 1997; Maquet et al., 1997; Nofzinger et al., 2002; 
Laureys et al., 2004; Shulman et al., 2009; Laureys and Schiff, 2012). 
More generally, these differences could be due to the natural variability 
of brain metabolism even among normal healthy subjects. All in all, our 
results confirm that quantitative FDG-PET using the MIBH quantifica
tion procedure is easy to apply, accurate and robust across sites to di
agnose the state of consciousness in this severely brain-injured 
population. 

We also showed that FDG-PET performed slightly better than EEG to 
diagnose DoC, with a difference in performance seemingly driven by a 
greater number of EEG-based false-negatives (i.e. clinically MCS pa
tients estimated by the EEG classification to be unconscious). This 
phenomenon may be explained by common fluctuations of awareness 
among DoC (Bekinschtein et al., 2009b). While FDG-PET integrates 
brain activity across tens of minutes and could therefore be less sus
ceptible to these fast and transient changes, EEG records brain activity in 
the millisecond range and is likely more affected. Yet, EEG availability 
and robust performances (Engemann et al., 2018) still make it a great 
candidate to bedside diagnostic assessment of patients, at least as a first- 
line/screening diagnostic procedure. Indeed, FDG-PET logistic 

Table 2 
Diagnostic performances of PET-FDG and EEG.  

IN-SAMPLE PERFORMANCES 

Imaging Metrics FDG-PET EEG FDG-PET|EEG 

Contingency table  MCS VS All  MCS VS All  MCS VS All 
þ 27 5 32 þ 29 6 35 þ 31 8 39 
¡ 4 16 20 ¡ 2 15 17 ¡ 0 13 13 
All 31 19 52 All 31 21 52 All 31 21 52 

AUC 0.816 [0.681–0.928] 0.912 [0.807–0.986] 0.810 [0.714–0.905] 
Accuracy 83 [70–92] 85 [72–93] 85 [72–93] 
Sensitivity 87 [70–96] 94 [79–99] 100 [89–100] 
Specificity 76 [53–92] 71 [48–89] 62 [38–82] 
Positive PV 84 [67–95] 83 [66–93] 79 [64–91] 
Negative PV 80 [56–94] 88 [64–99] 100 [75–100] 
Positive LR 3.66 [1.68–7.96] 3.27 [1.65–6.48] 2.62 [1.52–4.53] 
Negative LR 0.17 [0.07–0.44] 0.09 [0.02–0.35] 0.00 [0.00-Inf]  

OUT-OF-SAMPLE PERFORMANCES 

Imaging Metrics FDG-PET EEG FDG-PET | EEG 

Contingency table  MCS VS All  MCS VS All  MCS VS All 
þ 26 5 31 þ 18 4 22 þ 29 7 36 
¡ 5 16 21 ¡ 13 17 30 ¡ 2 14 16 
All 31 21 52 All 31 21 52 All 31 21 52 

AUC 0.816 [0.681–0.928] 0.770 [0.619–0.896] 0.801 [0.689–0.905] 
Accuracy 82 [69–91] 67 [53–80] 83 [70–92] 
Sensitivity 84 [66–95] 58 [39–75] 94 [79–99] 
Specificity 76 [53–92] 81 [58–95] 67 [43–85] 
Positive PV 84 [66–95] 82 [60–95] 81 [62–99] 
Negative PV 76 [53–92] 57 [37–75] 88 [62–98] 
Positive LR 3.52 [1.61–7.69] 3.05 [1.20–7.73] 2.81 [1.52–5.17] 
Negative LR 0.21 [0.09–0.49] 0.52 [0.33–0.82] 0.10 [0.02–0.38] 

EEG: electroencephalogram; LR: likelihood ratio; MCS: minimally conscious state; PV: predictive value; VS: vegetative state/unresponsive wakefulness syndrome state; 
|: and/or; +: test positive; − : test negative. 
Values are expressed with their 95% confidence interval. 
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requirements exceed those of bedside EEG, and it should be noted that 
even in our expert center, PET-scanning of mechanically ventilated pa
tients was not possible. Besides, whereas FDG-PET provides information 
on the localization and amount of neuronal firing, it does not inherently 
provide insights into the underlying information processing. In contrast, 
EEG explores the qualitative features of the information exchange, but 
has limited anatomical resolution and the signal is difficult to quantify. 
Thus EEG and FDG-PET theoretically capture partially overlapping, yet 
independent, features of the DoC pathophysiology, which could com
plement each other. Although the good diagnostic agreement between 

the two modalities fulfills the need of consilience between brain- 
imaging procedures to address the diagnostic challenge of HMD and 
CMD (Peterson, 2016), the combination of both techniques clearly im
proves both the diagnosis and prognostication of DoC. Indeed, this 
combination satisfies the criterion of maximization of MCS diagnosis 
sensitivity, but most importantly, it allows to identify covert cognition in 
otherwise unresponsive patients. Although, our study does not provide 
definite answers as to the cognitive status of the seven clinically VS/ 
UWS patients, who were classified as MCS using both PET and EEG, it is 
notable that their proportion corresponds to previous reports on the 

Fig. 3. FDG-PET and EEG performances. ROC curves of in-sample (left) and out-of-sample (right) diagnostic performances of FDG-PET (yellow) and EEG-based 
classification (green) with corresponding discrimination area under the curve (AUC). Similar in-sample AUC were found for FDG-PET and EEG (0.816 vs. 0.912, 
p = 0.218) while FDG-PET slightly outperformed EEG, however not significantly, on out-sample performances (0.816 vs. 0.770, p = 0.628). (B) Scatterplot rep
resentation of the support vector machine (SVM) classifier probability to be classified MCS according to the FDG-PET metabolic index of the best preserved 
hemisphere (MIBH) and the absence (circle) or presence of unconscious (local effect, triangle) or conscious (global effect, square) auditory processing of auditory 
novelty during the ‘local-global’ paradigm. Dashed gray lines represent thresholds for minimally conscious state (MCS) vs. vegetative state/unresponsive wakefulness 
syndrome (VS/UWS) discrimination. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.) 
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prevalence of covert cognition after severe brain injury (Kondziella 
et al., 2016). Besides, more than half of these patients with absent 
behavioral responsiveness but rich PET/EEG activity showed an ERP 
neural signature of conscious access in the local–global paradigm. In 
contrast, only 1 of the 14 behaviorally VS/UWS patients confirmed by 
PET/EEG showed this global effect signature (Bekinschtein et al., 2009a; 
Faugeras et al., 2011, 2012; Raimondo et al., 2017), suggesting a covert 
cognitive state richer than the one inferred from their behavior in the 
former (Schiff, 2015; Edlow et al., 2017). This is further supported by 
the higher recovery of command-following at 6 months observed in 
initially unresponsive patients with rich PET and/or EEG activity. This 
finding is in line with previous studies showing that both FDG-PET 
(Stender et al., 2014, 2016) and EEG-based classification (Sitt et al., 
2014; Claassen et al., 2019; Chennu et al., 2017) convey meaningful 
prognostic information. Here, again, we show that the combination of 
PET and EEG outperforms both modalities in isolation. Overall, our re
sults provide evidence in favor of the multimodal assessment of DoC, as 
previously proposed theoretically (Bayne et al., 2017; Naccache, 2018) 
and recommended although with little evidence so far (Giacino et al., 
2018). Such assessment should combine different clinical and brain- 
imaging techniques to investigate the degree of preservation of 
neuronal architecture involved in conscious processing and conscious
ness recovery. 

Our study still have some limitations that should be underlined. First 
and foremost, clinical misdiagnosis cannot be excluded in a few VS/UWS 
patients due to the limited number of CRS-R performed. Indeed, ac
cording to the recent monocentric report from Wannez et al. (2017), 
several CRS-R (at least 3 and optimally 5) are requested to capture the 
patient’s best conscious state due to frequent fluctuations in arousal and 
consciousness in this population. Although there was no statistical dif
ference in the number of CRS-R performed between VS/UWS and MCS 
patients, we may have underestimated the conscious state of some VS/ 
UWS as one VS/UWS patient had only one CRS-R and 6 had two CRS-R 
(individual data with the number of CRS-R performed are provided in 
supplementary material). However, all of these VS/UWS patients had 
congruent brain-imaging data (below threshold PET MIBH and VS/UWS 
EEG classification) and outcome (all were still alive and unresponsive at 
6 months), making a clinical misclassification very unlikely. Second, 
EEG, FDG-PET and the best CRS-R were not always performed on the 
same day, although the delay was short and did not differ between VS/ 
UWS and MCS. Although we externally validated both the FDG-PET and 
EEG, their limited availability still limit their use in DoC diagnosis. It 
should also be noted that the local-global auditory oddball paradigm is a 
passive paradigm, by contrast to active ‘command-following’ paradigm 
usually used to diagnose CMD. In the latter, patients are instructed to 
perform a task and subsequent changes in cerebral activity provide 
stimulus-independent activations whose interpretations regarding the 
intentionality and residual awareness of patients is less ambiguous than 
in passive paradigm. The latter allow to detect activation in higher-order 
associative cortices in response to environmental stimuli, corresponding 
to what has been called HMD, which may or may not be associated with 
the presence of the ability to follow command. Nonetheless, there are 
several reasons to believe that a global effect is indicative of conscious 
processing, since i) during the local-global paradigm, the patient is 
instructed to actively count the number of deviant sound sequences, ii) 
the presence of a global effect is thought to reflect the recognition of the 
violation of auditory regularities over a long-time scale which requires 
the active maintenance of the rule in working memory, a property 
associated with conscious perception, and iii) the global effect corre
spond to a late and sustained P3b component, which was repeatedly 
associated with conscious access in healthy subjects as well as in patients 
(Bekinschtein et al., 2009a; Faugeras et al., 2011; Hermann et al., 
2020b; Pérez et al., 2021). 

6. Conclusion 

FDG-PET MIBH is an accurate and robust procedure across sites to 
diagnose MCS. Its combination with EEG-based classification of 
conscious state not only optimizes diagnostic performances but also 
allows to detect residual cortical activation suggestive of remaining 
conscious processing and to predict 6-month command-following re
covery. Overall, we show that a multimodal approach combining FDG- 
PET and EEG provide complementary information on DoC physiopa
thology improving both their diagnosis and prognostication. 
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