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Abstract Cyber Physical Systems (CPS) are built upon digital and analog
circuits, making it necessary to handle different Models of Computation (MoC)
during their design and verification (e.g. by simulation). When designing these
systems, an important aspect to consider is the causality between the different
domains. For this, we introduce a new model-driven framework able to identify
causality problems and to suggest a valid schedule between the analog and
digital domains. Once a valid schedule has been computed, our framework can
generate cycle & bit accurate virtual prototypes (in SystemC/SystemC AMS)
from high-level SysML models.

Keywords Cyber-physical systems, Virtual prototyping, Co-simulation

1 Introduction

Model-driven techniques rely on high level models in order to assist engineers
in designing embedded systems combining software and hardware aspects.
Model transformations are now a common practice to generate verification
or executable code from models at different levels of abstraction. Nonetheless,
in most cases, these approaches are limited to the digital parts of systems, i.e.
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to the design of embedded software and the hardware platform. Yet, many
embedded systems contain sensors and actuators, such as in robotics, med-
ical and automotive: the design of the whole system commonly relies on a
combination of models and simulation techniques from different domains.

Our former work [20] explained how SysML models can be used to capture
both digital and analog aspects, to generate analog/digital virtual prototypes,
and to simulate these systems [14] using the TTool framework.

The present work focuses on algorithms that can identify valid schedules
—if they exist— between analog and digital domains. While causality issues
are usually detected only at simulation or execution time, we propose a way
to statically detect them directly in high-level SysML models, thus before
any simulation or executable code is generated. As a result, the design of
such mixed systems (software, hardware, analog) is facilitated. Once defined,
schedules are enforced by the used of delays, as explained in the paper.

Obviously, once a valid schedule has been identified, the designer is ex-
pected to use other verification techniques, such as simulation and model-
checking —that are also integrated in TTool— to verify that the system still
respects all other requirements, e.g. real-time constraints such as deadlines
and real-time schedulability.

The next Section shows how similar work addresses schedulability and
causality issues between domains. Then, Section 3 presents the bases of our
contribution to address synchronization aspects in our framework. Section 4
and 5 detail our contribution and explain our algorithms. Section 6 compares
our approach with the two closest related works, while Section 7 concludes the
paper and draws perspectives.

2 Related Work

Embedded systems can be modeled in different Models of Computation (MoC),
with different notions of concurrency and time [25]. Note that a Model of Com-
putation only precises the properties of model execution, not one execution in
particular.

Our approach combines two operational semantics. For the digital part of
the system, we use a Discrete Event (DE) MoC, which models the operation
of a system as a discrete sequence of events in time, changing the state of the
system. For the analog part, we use a Dataflow model, detailed in Section 3.3.
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Well established tools in analog/mixed signal design, like Ptolemy II [27]
are based upon a Dataflow model. They address heterogeneous systems by
defining several sub domains. Instantiating elements controlling the time syn-
chronization between domains is left to the responsibility of designers.

Metro II [16] allows Adaptors for data synchronization as a bridge between
the semantics of components belonging to different MoCs. The model designer
still has to implement time synchronization. As a common simulation kernel
handles all process execution, MoCs are not well separated.

Modelica [19] is an object-oriented modeling language for component-orien-
ted systems containing e.g. mechanical, electrical, electronic and hydraulic
components. Classes contain a set of equations that can be translated into
objects running on a simulation engine. Yet, since time synchronization is
not predefined, the simulation engine must manipulate objects in a symbolic
way in order to determine an execution order between components of different
MoCs. Linking simulation with different MoCs can be done by using e.g. the
Functional Mockup Interface [10]. Yet, in our case, we need to take into account
both DE semantics and a semantics for the analog part from the beginning, in
the high-level models, because our aim is to compute a valid schedule before
simulation.

Discrete Event System Specification (DEVS [12]) is a modular and hier-
archical formalism which supports discrete events and continuous systems.
Continuous functions can be described by differential equations. A dozen of
platform implementations based on DEVS exist, ranging from Petri Net based
over object oriented to Python based. DEVS is also used for timing model
transformations [36]. However, it relies on a global homogeneous time in all
parts of the model.

Zelus [7] is a synchronous language [8] like Lustre and Lucid synchrone, but
is specifically conceived for hybrid systems. It combines Ordinary Differential
Equations to express continuous time with synchronous data-flow equations.
Zelus has an elaborate type system and an execution model that alternates
between continuous phases and sequences of "run-to-completion" discrete ac-
tions. Instantaneous feedback loops are statically rejected. Zelus neither pro-
poses a graphical interface nor the generation of a virtual prototype.

MARTE [17], a very popular UML profile for modeling embedded real-time
systems, can model jitter and polymorphic time through its Time subprofile.

CCSL [31] is a language for specifying constraints on clocks. It relies on a
model of time similar to the one used by MARTE, but clocks have no associ-
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ated time scale: CCSL is exclusively event-based, but cannot specify an event
occurring at an arbitrary time or with an arbitrary delay.

TESL [11] is inspired by CCSL [31]. It reconciles time scales in several mod-
els of a heterogeneous nature. TESL models causality between the occurrences
of events, time advancing on different scales, and supports both event-driven
and time-driven specifications. Like our approach, it uses timestamps. Like
Zelus, TESL reasons with multiple clocks and takes into account periodicity
and continuous values. TESL uses timed finite state machines and fixed-point
iteration; its deterministic nature makes it less well adapted for specification
on a high level of abstraction.

On the other hand, approaches which aim at full-system simulation com-
bine a hardware model, with software mapped onto it and an operating system.
UML/SysML based modeling techniques such as MARTE have been employed
to model cyber-physical systems [34], but are scarcely used for low-level sim-
ulation. With very few exceptions such as [37], modeling tools based on the
MARTE approach do not support full-system simulation.

In the simulation domain, many approaches are based on SystemC [24],
with or without alteration of the simulation kernel, which was initially tar-
geted only toward discrete systems simulation. Among the frameworks based
on SystemC are HetSC [23], HetMoC [40] and ForSyDe [32], all having the dis-
advantage that instantiation of elements and synchronization control is totally
left to designers.

SystemC-H [33] and SystemC-A [39] extend the SystemC simulation ker-
nel. The former allows only one hierarchical level in the description of models.
Execution of models is based on a master-slave relation: a modified DE kernel
initializes and simulates the processes described by means of different MoC-
specific kernels. The SystemC scheduler preserves the initialization, evaluate,
update, delta and time notification phases, but some of them are modified.
Synchronization mechanisms are not available among components defined un-
der different models of computation. In SystemC-A, which allows hierarchy,
the scheduler calls the analog kernel phases (iteration and verification) before
SystemC scheduling. The independent analog kernel is able to synchronize
with the DE simulation kernel.

SystemC AMS extensions [1] is a standard describing an extension of Sys-
temC with AMS (Analog/Mixed Signal) and RF (Radio Frequency) features
[38] and predefines several Models of Computation. In the scope of the project
BeyondDreams [9], a mixed analog-digital systems proof-of-concept simula-
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tor has been developed [18], based on the SystemC AMS extension standard.
Unfortunately, causality issues may invoke errors at simulation time - the sim-
ulation is aborted with an error message.

Another simulator, Multi Domain Virtual Prototyping (MDVP) is pro-
posed in the H-Inception project[22]. A major result of that work is that
causality issues can be automatically checked before simulation [2]. The sim-
ulation phases of SystemC are not modified. MDVP comes with a full-system
simulation based on SoCLib [35], a free library of hardware models written
in SystemC, for the digital part and a proprietary SystemC AMS simulator
for the analog part. However, scheduling and causality checking starts from
SystemC AMS code, not from a SysML representation.

3 Context

The context of our work is twofold. First, a modeling and verification frame-
work named TTool [4]. This tool supports both modeling and verification
aspects, in particular the generation of a SystemC virtual prototype. Second,
TTool can generate a SystemC AMS specification from the analog parts of
models, as explained in this paper. Yet, as explained before, TTool is ex-
tended with the early detection of causality between domains. This results in
proposing a schedule of operations between domains that can be applied to
the SystemC AMS cluster. Finally, this section presents TTool and SystemC
AMS which are at the root of our contribution.

3.1 TTool

TTool is a UML/SysML free and open-source software for model-based engi-
neering and verification of embedded systems at different abstraction levels:
functional, partitioning, software design and deployment [30]. From SysML di-
agrams, TTool can generate virtual prototypes for full-system simulation based
on SoCLib. Until recently, only digital aspects could be considered in TTool.
To each of the aforementioned abstraction levels is associated a dedicated view
as shown in Figure 1.

The method follows these abstraction levels e.g. it explains how to take
hardware/software partitioning decisions at a high level of abstraction and
how to regularly (re)validate them during software development [21]. The blue
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Fig. 1: Hardware/software partitioning and code generation for system-on-chip platforms

boxes represent the functional/partitioning and the software design/deploy-
ment levels in TTool.

Figure 1 shows, encircled in orange, the additions which were made in [20].
To the hardware model, we added the possibility to generate the SystemC
AMS parts of the virtual prototype. They can be integrated in the deployment
model (orange rectangles) along with the digital parts.

In both partitioning and deployment views, tasks must be allocated to pro-
cessing elements (processors, hardware accelerators, ...), while communications
between tasks are to be allocated to communication elements (e.g., buses and
bridges) and to storage elements (e.g. memories).

An important advantage of TTool is that it offers an automated approach
for formal verification and fast simulation. Formal verification is based on
internal model-checkers, or external tools like UPPAAL [6].

TTool can also generate a SystemC specification from the deployment view.
Such a specification can be simulated with a cycle & bit accurate simulator,
using hardware models stemming from the SoCLib [35] public domain library
targeting shared-memory multiprocessor-on-chip system architectures.

3.2 SystemC

SystemC is a system design modeling language based on C++, which adds
libraries to address the modeling of both hardware and software systems.
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3.2.1 Language features

SystemC includes important hardware oriented features such as a global dis-
crete time model, concurrent execution of multiple processes supported by
a cooperative multitasking model (scheduler), and hardware data types, sup-
porting explicit bit widths for integer and fixed point quantities. SystemC sup-
ports hierarchy via modules. The communication and synchronization models
are implemented by a set of mechanisms such as interfaces, ports and channels.

SystemC follows a block-oriented approach: it allows the representation of
systems by a combination and interconnection of blocks and signals: blocks
represent behaviors and can have multiple inputs and outputs; signals ensure
the communication among blocks. Ports are connected to channels through
interfaces, while processes describe the operation of the modules.

User-specific processes can be called by the Discrete-Event kernel during
simulation. Two kinds of processes can be defined in SystemC: (1) methods,
which are always executed from beginning to end; and (2) threads, which can
suspend themselves during simulation using wait statements. These kinds of
processes are also known as static processes because they are registered in the
DE kernel before simulation.

3.2.2 Discrete Event Simulation Kernel

The simulation kernel provides the core features for the elaboration and sim-
ulation of models [24], relying on the Discrete Event (DE) MoC. Elaboration
creates the data structures required to support the simulation semantics: it
creates the module hierarchy, instantiates processes, bounds ports and chan-
nels, and sets the time resolution to be used (by default 1ps). Simulation runs
the scheduler and deletes the data structures created during elaboration.

The scheduler controls the timing and the order for executing the pro-
cesses. Execution is performed in five phases: (1) initialization, where all de-
fined processes are entirely executed (methods) or until the first wait statement
(threads); (2) evaluation, where each process ready to run is selected and its
execution is resumed (this may cause new processes ready to run in the same
phase); (3) update, where channels are updated thanks to the results of the
evaluation phase; (4) delta notification, where are analyzed the notifications
made during the previous two phases: if they should be executed in the current
simulation time then, the evaluation phase is re-executed; (5) timed notifica-
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tion, where the notifications are also evaluated: if they should not be executed
in the current simulation time, such time is increased and then, the evalua-
tion phase is re-executed. When no more notifications are present, execution
is stopped.

3.3 SystemC Extensions for AMS

Timed Data Flow (TDF) is the (main) MoC of SystemC AMS for representing
analog systems. TDF is based on the timeless Synchronous Data Flow (SDF)
semantics [28]. SystemC AMS adds to SystemC support for signals where
continuous data values are considered as signals and sampled with a constant
time step. TDF maintains two important properties of the SDF formalism: the
abilities to determine a static schedule, and a periodic execution.

A TDF module is described by an attribute representing a time step and
a processing function. The time step is associated to a time period during
which the processing function should be executed. The processing function
corresponds to a mathematical function depending on both inputs and internal
states. At each time step, a TDF module reads a fixed number of samples from
each of its input ports, executes the processing function, and writes a fixed
number of samples to each of its output ports.

TDF modules have the following attributes:

1. A Module time step (Tm) denotes the period during which the module is
activated. A module is activated only if there are enough samples available
at its input ports.

2. The Rate (R). Each module reads or writes a fixed number of data samples
each time it is activated, annotated to the port as port rate.

3. Port time step (Tp) denotes the time interval between two operations (read
or write).

4. A Delay (D) associated to a port is the number of samples which are
added to this port at module initialization. A delay makes the port handle
a fixed number of samples at each activation, and read or write them in
the following activation of the port.

A cluster is a set of interconnected modules. Figure 2 shows a cluster
in the System C AMS standard notation [1]. The DE modules X and Y are
represented as white blocks, TDF modules A and B as gray blocks, TDF ports
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as black squares, TDF converter ports as black and white squares, DE ports
as white squares and signals as arrows.
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Fig. 2: TDF Cluster with two DE modules X and Y

The module time step of A is 6 ms, its input port time step is 6 ms, and
port rate 1, respectively. Output port time step is 2 ms and rate 3. B has an
input port time step of 2 ms and rate of 2, and module time step of 4ms, rate
of 1 and time step of 4 ms in the output port, respectively. The input port of A
and the output port of B are converter ports by which TDF modules interact
with DE modules.

Since SystemC AMS is an extension of SystemC, and SoCLib is written
in SystemC, the choice of extending TTool with SystemC AMS generation
capabilities for integrating analog/mixed signal components was natural.

4 Detecting and solving schedulability issues

This section presents definitions and examples, before describing in detail each
algorithm —the main contribution of the paper—, for determining (i) a valid
schedule and (ii) detecting and resolving causality issues. We also show how
the two are related and interdependent.

4.1 Schedulability definition

We now define what we mean schedulability and we give several examples to
illustrate the schedulability concept.

Definition 1 Schedulability denotes the correct and static execution-order
of TDF modules in one cluster, consistently with the data flow characteristics
within a cluster. A cluster is schedulable if the module time step is consistent
with the rate and time step of any port within a module.
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The relation between time steps and rates is as follows. TM denotes the
module time step, Tpi and Tpo respectively denote the input and output port
time steps, Rpi and Rpo respectively denote the input and output port rates:

TM = Tpi ×Rpi = Tpo ×Rpo

Before the static schedule of a cluster can be computed, the time steps and
sampling rates that are not indicated in the model need to be calculated.

It is not necessary to indicate all time steps and rates. One time step and
one rate provided initially are sufficient. Then, the next time steps and rates
are calculated by upstream and downstream propagation, as explained in [1].
The main point here is that the consistency of a cluster exclusively relies
on the compatibility of port rate and delay values and is thus intrinsically
independent of the initially selected time step.

4.2 Analysis

Since the TDF MoC is based on the SDF MoC, it computes the static schedule
in a very similar way. Thus, TDF modules can be related to nodes of SDF
graphs, while signals between ports of TDF modules can be related to arcs of
SDF graphs. According to [29], the following elements can be used in order to
compute a static schedule:

1. A topology matrix Γ , where the number of columns corresponds to the
number of TDF modules, and where the number of rows correspond to the
number of signals connecting the TDF modules. The entries of the matrix
correspond to the rates of the ports of a module. For an an output port,
the entry is positive. On the contrary, an input port has a negative rate
value.
Let us take an example with only TDF modules, and a feedback loop.
Using the model depicted in Figure 3, the following topology matrix Γ is
constructed. The first column corresponds to module A and the second
column to module B. The first row represents the arc named sig1 and the
second row refers to sig2.

Γ =

[
1 −1
−1 1

]
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Fig. 3: TDF Cluster with feedback loop

2. A buffer vector b(i) represents the data available in the arcs of the graph at
time i. The size of the buffer is the number of arcs of the graph. Note that
b(0) represents the delays of the ports of the TDF modules since at time
i = 0 the delay samples are available in the buffer (initial configuration).
The following vector represents buffer b(0) for the model of Figure 3. Once
again, the first row corresponds to the delays generated for the arc named
sig1 and the second row for sig2. There is a delay of 1 in port B.out.

b(0) =

[
0

1

]
3. The column vector q represents the number of executions of a node. To

computer these numbers, the Matrix Equation 1 needs to be solved for q:
the smallest positive integer solution is selected.

Γ · q = 0 (1)

Using the model from Figure 3 and Equation 1, we have:[
1 −1
−1 1

]
·

[
qA

qB

]
= 0

And solving for the smallest positive integer vector q, we have: qA = 1

and qB = 1, representing the number of executions for each module of the
cluster.

Using the model from Figure 2, the following topology matrix Γ is con-
structed. It is formed by two columns representing the modules A and B and
one row that represents the signal sig2.

Γ =
[
3 −2

]
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Since there are no delays, the buffer b(0) is:

b(0) =
[
0
]

Using Equation 1, we have:

[
3 −2

]
·

[
qA

qB

]
= 0

And solving for the smallest positive integer vector q : qA = 2 qB = 3. We thus
have to schedule two instances of module A and three of B.

4.3 Algorithm for static scheduling

The sequential scheduling algorithm proposed in [29] is used to compute a
static schedule of TDF clusters. Listing 1 shows an adaptation of this algo-
rithm, which has been slightly modified in lines 12 and 13 to calculate the
necessary delays that will solve scenarios where no schedule can be found. A
node here represents a TDF module.

Listing 1 Sequential Scheduling algorithm (Adapted from [29]).
1: procedure computeStaticSchedule
2: Solve Matrix eq. for the smallest positive integer vector q
3: Form an ordered list L of the nodes (α) of the model.
4: for each node α do
5: if α is runnable then
6: Schedule α
7: end if
8: end for
9: if each node α has been scheduled qα times then

10: STOP
11: else if no node could be scheduled then
12: Deadlock detected: calculate suggested delay to solve deadlock
13: STOP_AND_RESTART
14: else GO to 4
15: end if
16: end procedure

The ComputeStaticSchedule procedure of this algorithm assumes that
the topology matrix Γ is already built and the buffer vector b(0) is already
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filled with the delays of the ports at time 0. The first step of the algorithm
shown in line 2 is to solve the Matrix Equation 1 for q and to provide the
smallest positive integer solution for the equation. In line 3, an arbitrarily
ordered list of the nodes of the TDF cluster is computed. Then, all runnable
nodes are scheduled for execution as shown in lines 4 - 8. Note that in line 5,
a node is considered runnable if it has not run q times and it will not cause
buffer b(i) to be negative. When a node runs, it consumes from the buffer the
number of units that the rate of its ports specifies. In line 9, if each node has
already been scheduled q times, then the algorithm stops. Otherwise, if no
node could be scheduled during this cycle, in line 12 a deadlock is detected,
which implies that a schedule could not be found because of feedback loops in
the graph: delays have to be added in order to find a schedule.

Here, the suggested delay (Dsug) that will solve the deadlock can be calcu-
lated based on the last node α that tried to be scheduled and that made the
buffer bα to go negative. Equation 2 shows how Dsug is calculated. It uses the
current delay Dcur of the port associated to the buffer and subtracts it from
the value of buffer bα. Indeed, since buffer bα is negative, doing so will result
in computing a new delay, which will make bα to stop being negative.

Dsug = Dcur − bα (2)

4.4 Example: inserting delays

Let us continue the example from section 4.2. Supposing that all delays of the
TDF cluster from Figure 3 are zero. Buffer b(0) would be:

b(0) =

[
0

0

]

Neither Module A nor Module B are runnable because they would make buffer
b(0) go negative. Suppose that module A was the last node that tried to be
scheduled and made buffer b(0) go negative:

b(0) =

[
0

−1

]

Using Equation 2 we have:

Dsug = 0− (−1) = 1



14 R. Cortés Porto et al.

Hence, the suggested delay that needs to be added to the input port of Module
A or the output port of Module B is 1.

Finally as stated in line 13, once a delay has been calculated, the scheduling
algorithm from Listing 1 will run again to make sure that no other deadlocks
exist. This algorithm will run iteratively, as shown in line 14, until all nodes
have been scheduled q times.

Thus, the schedule for the example in Figure 2 is ABABB. For the example
given in Figure 3, the schedule is AB.

5 Synchronizing time between DE and TDF

In [15], it is stated that the execution of the SystemC DE modules is blocked
while the SystemC AMS simulation kernel executes. As a consequence, the
DE simulation time (tDE) does not advance at all, while the TDF simulation
time (tTDF ) runs according to the time steps of the TDF modules and ports.
On access to a TDF converter port, the SystemC AMS simulation kernel is
interrupted and yields to the SystemC DE simulation kernel. This way, tDE
advances until it is equal to tTDF . In general tTDF runs ahead of the tDE.

Definition 2 Causality is guaranteed, if the following Equation 3 always
holds:

tTDF ≥ tDE (3)

.
The following synchronization operations may provoke causality issues.

1. Periodic synchronization operation: this operation occurs when the period
of a TDF cluster has been completed. A causality check is done using
Equation 3. The SystemC AMS simulation kernel is interrupted and yields
to the SystemC DE simulation kernel. In consequence, the tDE advances
until it is equal to the tTDF.

2. Read synchronization operation: this operation occurs when there is an ac-
cess to an input converter port. A causality check is done using Equation 3.
The SystemC AMS simulation kernel is interrupted and yields to the Sys-
temC DE simulation kernel. In consequence, the tDE advances until it is
equal to the tTDF.



Handling Causality and Schedulability 15

3. Write synchronization operation: this operation occurs when there is an
access to an output converter port. A causality check is done using Equa-
tion 3. But in this case, the SystemC AMS simulation kernel is not inter-
rupted, hence the tDE does not advance.

SystemC AMS may detect —but not solve— these problems during simu-
lation, whereas SystemC MDVP can detect and solve them before simulation,
but requires SystemC AMS code as an input. In [2], synchronization at con-
verter ports is modeled with the help of Colored Timed Petri Nets [26] derived
from the SystemC AMS code. Causality issues between TDF and DE MoC
are then automatically checked. However, this analysis is performed from Sys-
temC AMS code, whereas we propose a way to detect causality issues directly
from SysML models.

5.1 Occurrence of time synchronization issues

In [13], possible scenarios are analyzed. Our finding was that only in two cases
the SystemC AMS simulation kernel is interrupted to yield to the SystemC
DE simulation kernel and in consequence tDE advances:

1. When there is an access to a TDF input converter port and Equation 3
holds (read synchronization operation).

2. When one period of the TDF cluster has finished executing (periodic syn-
chronization operation).

Time synchronization issues between DE and TDF MoCs thus can only
occur when there was an access to an input converter port that advanced tDE

further than the tTDF of the output converter port that is being currently
accessed.

As a conclusion, time synchronization issues may only occur when there is
a read synchronization operation before a write synchronization operation.

5.2 Timing analysis

Whenever there are multi-rate TDF clusters that interact with the DE domain
using input/output converter ports, a time analysis including all the input and
output converter ports is required. The interactions of each converter port of
a TDF cluster with the DE domain cannot be considered independently, since
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they maintain a time relation with each TDF converter port and their DE
counterparts. The time relation is based on the static schedule of the TDF
Cluster which is pre-computed in the same way as the static schedule of an
SDF MoC [29], see Section 4. This means that once a static schedule has
been found, the timestamps of the DE domain should be tracked after each
execution of a TDF module that accesses a converter port.

The following equations derived from [2] show how to perform this DE
timestamp tracking. TmM is the module time step of the TDF module M;
Tpp is the time step of the TDF converter port p of module M; Dp is the
delay associated to this converter port and Rp is the rate associated to the
converter port.

Here, jM is the number of times that the TDF module M has been ex-
ecuted, considering that jM is increased only when the number of samples
indicated by the rates of the input and output ports have been consumed/pro-
duced and the module has finished executing. Finally, k represents the number
of times that the converter port has been accessed within one activation of the
module M - i.e. the sample number that has been produced or consumed.

Equation 4 shows how time step tDE advances when there is an access to
an input converter port.

tDE = (jM ∗ TmM) + ((k − 1) ∗ Tpp)−Dp ∗ Tpp k = [1...Rp] (4)

On the other hand, Equation 5 is used in order to determine if a future
access to an output converter port will generate a causality problem. This
equation determines the tTDFM.p

of an access to an output converter port p
of module M.

tTDFM.p
= (jM ∗ TmM) + ((k − 1) ∗ Tpp) +Dp ∗ Tpp k = [1...Rp] (5)

In order to fix a time synchronization issue that has occurred (Equation 3
does not hold), a delay has to be inserted into the TDF module’s output
converter port that is being currently accessed. The delay should be of at least
the next integer value of the difference between the tDE and the tTDF of the
port.

In general, the minimum required delay that has to be inserted in port p
of module M (DreqM.p

) is defined by Equation 6. The difference between the
two simulation times should be divided by the time step TpM.p because the
ports are accessed periodically based on this time step.
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DreqM.p
=

⌈
tDE − tTDFM.p

TpM.p

⌉
(6)

Equation 6 should be used to suggest a delay to the author of the model.
This is what SystemC AMS does, too, but one by one every time the model
is simulated. Our algorithm will find all the delays required to fix causality
issues, but it is up to the designer to decide whether he or she applies these
delays, or tries to find another solution for his model.

5.3 Algorithm for detection of causality issues

As mentioned in section 5.1, time synchronization issues only occur when an
access to an input converter port precedes an access to an output converter
port. Thus, in order to validate that Equation 3 always holds, only read syn-
chronization operations before write synchronization operations have to be
analyzed.

For this purpose and based on the static schedule for one complete TDF
cluster period, each time each module is executed, the minimum timestamp
tTDFM.p

of all the accessed output converter ports of the current executed
module, calculated in Equation 5, should be greater or equal than the maxi-
mum timestamp (tDE) of all the accessed input converter ports of previously
executed TDF modules in the schedule. This is shown in Equation 7.

MIN
(
tTDFM.p

(m(o))
)
≥MAX

(
tDE(n(i))

)
m = current_executed_module,

o = [1...#out_converter_ports],

n = [first_executed_module...m],

i = [1...#in_converter_ports]
(7)

If Equation 7 does not hold, then a delay calculated from Equation 6 should
be inserted in the corresponding output converter port. It is important to
mention that, even if these equations are only applied for the case when there
is a read synchronization operation before a write synchronization operation,
the same equations will work in all the other possible scenarios. Only the
parameters i and o from Equation 7 should be adapted to the specific scenario
that is being validated.
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The following algorithm solves causality issues by iterating over additional
delays and recomputing schedules until all causality issues are solved. The algo-
rithm shown in Listings 2 and 3 makes use of the previously defined equations
to detect time synchronization issues between the TDF and DE MoCs and to
suggest an appropriate port Delay that can solve these causality problems.

Listing 2 Sub algorithm to detect time synchronization issues between TDF
and DE
1: procedure walkThroughSchedule(static_schedule)
2: max_tDE ← 0
3: jM ← 0 . For each module M
4: for each module M in static_schedule do
5: detectTimeSyncIssues(M.converterPorts, jM , max_tDE)
6: jM ← jM + 1
7: end for
8: end procedure

Listing 3 Algorithm to detect time synchronization issues
1: procedure detectTimeSyncIssues(converterPorts, jM , max_tDE)
2: for each converterPort p in converterPorts do
3: if p.origin = input then
4: k ← Rp
5: tDE ← (jM ∗ TmM) + ((k − 1) ∗ Tpp)−Dp ∗ Tpp
6: max_tDE ← max(max_tDE, tDE)
7: else if p.origin = output then
8: k ← 1
9: tTDFM.p

← (jM ∗ TmM) + ((k − 1) ∗ Tpp) +Dp ∗ Tpp
10: if !(tTDFM.p

≥ max_tDE) then
11: Dreq ←

⌈
(max_tDE − tTDFM.p

)/Tpp
⌉

12: CAUSALITY ERROR - STOP
13: end if
14: end if
15: end for
16: end procedure

In the procedure walkThroughSchedule in lines 1-8, the global variable
max_tDE (initialized to 0 in line 2) is used to store the maximum calculated
tDE from all the accessed input converter ports. The variable jM (number of
times that module M has been executed) is local to each module M and is
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initialized to 0 for each module M of the model at line 3. In lines 4-7, the
procedure goes over the pre-computed static schedule list; for each module
M in the schedule, it calls the detectTimeSyncIssues procedure in List-
ing 3, giving as parameters the list of all converter ports of the module M
(M.converterPorts), and the variables jM and max_tDE. In line 6, it incre-
ments jM, meaning that the module M has been executed one more time.

The detectTimeSyncIssues procedure checks for time synchronization
issues in the current scheduled module M. In lines 2-15, it goes over the list
of converterPorts. In line 3, it checks whether the current port is an input
converter port. Note that in line 4 the variable k is set to the value of the
port rate Rp: according to Equation 7, we strive to obtain the biggest value of
tDE for that input converter port. Thus, in this case, it is useless to calculate
the tDE for previous samples (in case the port rate is greater than 1). Line
5 calculates tDE using Equation 4. In line 6, the computed tDE is compared
against the previously stored value max_tDE, in order to keep track of the
maximum calculated tDE from all the accessed input converter ports.

Line 7 checks whether the converter port is an output converter port. Notice
that according to Equation 7, we are looking for the minimum tTDFM.p

of all
the accessed output converter ports of the current executed module. For that
reason, the variable k is set to 1 in line 8, since calculating bigger values of
tTDFM.p

is useless in this case. Then, the tTDFM.p
is calculated in line 9 using

Equation 5.
Now that the minimum tTDFM.p

has been computed, Equation 7 can be
applied. This is done in line 10. And as explained before, if this equation does
not hold, it means that a causality problem is present and a delay should
be inserted in that output converter port to solve the problem. This delay is
computed in line 11 using Equation 6. After this, the execution of the program
is stopped because a time synchronization issue was found (line 12).

5.4 Illustrating example

We illustrate our proceeding by the example from Figure 2, applying the al-
gorithms given in Listings 2 and 3.

Table 1 shows all the parameters to calculate tDE, tTDF and the detection
of synchronization issues. Since the rates (Rp) of the converter ports of this
model are equal to 1, the parameter k always has a value of 1: it is therefore
not shown in the table.
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Step

Executed
Module/
port
(M.p)

jM
TmM

(ms)
Tpp

(ms)
Dp

tDE

(ms)
(Eq. 4)

max_tDE

(ms)

tTDFM.p

(ms)
(Eq. 5)

Causality
Check
(Eq. 7)

1 A.in 0 6 6 0 0 0 – –
2 A.in 1 6 6 0 0 0 – –
3 B.out 0 4 4 0 – 0 0 True
4 B.out 1 4 4 0 – 0 0 –
5 A.in 1 6 6 0 6 6 – –
6 A.in 2 6 6 0 6 6 – –
7 B.out 1 4 4 0 – 6 4 False

Table 1: Execution without delay, computation of DE and TDF simulation times

Below, a description of the execution and calculation of the simulation
times of the model is presented. Remember from section 4.3 that the static
schedule of this model is ABABB.

1. Starting from the walkThroughSchedule procedure, module A is ex-
ecuted for the first time (jA = 0) according to the schedule. Procedure
detectTimeSyncIssues is called. Module A has only one converter port,
which is an input converter port. Since Rin = 1, k is set to 1 as mentioned
before. The tDE is calculated and the max_tDE is chosen as shown in Ta-
ble 1. Since there is no access to an output converter port, the causality
check is not performed.

2. There are no more converter ports, so the procedure detectTimeSyncIs-

sues finishes and jA is incremented.
3. Next, module B is executed for the first time (jB = 0) according to the

schedule. Procedure detectTimeSyncIssues is called. Module B has only
one converter port, which is an output converter port. Hence k is set up to
1, and tTDFB.out

is calculated. Then the causality check using Equation 7
is performed. In this case max_tDE = 0 ms and tTDFB.out

= 0 ms so there
is no causality problem.

4. Module B has no more converter ports, so detectTimeSyncIssues fin-
ishes and jB is incremented.

5. Now, module A is executed for the second time (jA = 1). The procedure
detectTimeSyncIssues is called. For its only input converter port the
tDE is calculated and max_tDE is chosen.

6. There are no more converter ports, so the procedure detectTimeSyncIs-

sues finishes and jA is incremented.
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7. Then, module B is executed for the second time (jB = 1). The proce-
dure detectTimeSyncIssues is called. For the output converter port, the
tTDFB.out

is calculated. As it can be seen in Table 1, since the max_tDE of
all previously accessed input converter ports is 6 ms and tTDFB.out

= 4 ms,
Equation 7 does not hold and a causality problem is generated. The min-
imum required delay is calculated as before using Equation 6, that is
DreqB.out

= 1. Execution is then stopped.

Now we can apply the same algorithm in order to verify that the synchro-
nization issues are solved when this new delay is inserted. Table 2 shows how
the simulation times are calculated using this new delay as well as the causality
check.

Step

Executed
Module/
port
(M.p)

jM
TmM
(ms)

Tpp
(ms) Dp

tDE
(ms)
(Eq. 4)

max_tDE
(ms)

tTDFM.p

(ms)
(Eq. 5)

Causality
Check
(Eq. 7)

1 A.in 0 6 6 0 0 0 – –
2 A.in 1 6 6 0 0 0 – –
3 B.out 0 4 4 1 – 0 4 True
4 B.out 1 4 4 1 – 0 4 –
5 A.in 1 6 6 0 6 6 – –
6 A.in 2 6 6 0 6 6 – –
7 B.out 1 4 4 1 – 6 8 True
8 B.out 2 4 4 1 – 6 8 True
9 B.out 2 4 4 1 – 6 12 True
10 B.out 3 4 4 1 – 6 12 True

Table 2: Execution with delay and computation of DE and TDF simulation times

Below, the description of the execution of the model with the new delay
added is presented.

1. Starting from the walkThroughSchedule procedure, module A is ex-
ecuted for the first time (jA = 0) according to the schedule. Procedure
detectTimeSyncIssues is called. Module A has only one converter port,
which is an input converter port. Since Rin = 1, k is set to 1 as mentioned
before. The tDE is be calculated and max_tDE is chosen as shown in Ta-
ble 2. Since there is no access to an output converter port, the causality
check is not performed.

2. There are no more converter ports, so the procedure detectTimeSyncIs-

sues finishes and jA is incremented.
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3. Next, module B is executed for the first time (jB = 0) according to the
schedule. Procedure detectTimeSyncIssues is called. Since module B
has only one output converter port, the tTDFB.out

is calculated using the
new delay Dout = 1 as shown in Table 2. Then the causality check using
Equation 7 is performed. In this casemax_tDE = 0 ms and tTDFB.out

= 4 ms
so there is no causality problem.

4. Module B has no more converter ports, so detectTimeSyncIssues fin-
ishes and jB is incremented.

5. Now, module A is executed for the second time (jA = 1). The procedure
detectTimeSyncIssues is called. For its only input converter port the
tDE is calculated and max_tDE is chosen.

6. There are no more converter ports, so the procedure detectTimeSyncIs-

sues finishes and jA is incremented.
7. Then, module B is executed for the second time (jB = 1). The proce-

dure detectTimeSyncIssues is called. For the output converter port, the
tTDFB.out

is calculated. As it can be seen in Table 2, since the max_tDE of
all previously accessed input converter ports is 6 ms and tTDFB.out

= 8 ms,
Equation 7 holds and there is no causality problem.

8. Module B has no more converter ports, so detectTimeSyncIssues fin-
ishes and jB is incremented.

9. According to the schedule, module B needs to be executed one last time
(jB = 2). The procedure detectTimeSyncIssues is called. For the output
converter port, the tTDFB.out

is calculated. Once again, sincemax_tDE = 6 ms
and tTDFB.out

= 12 ms, Equation 7 holds and there is no causality problem.
10. Finally, module B has no more converter ports, so detectTimeSyncIs-

sues finishes and jB is incremented.

Synchronization issues are thus avoided with the introduction of the delays.
Finally, our proposal to check for causalities and deduce schedules and delays
can be integrated in our model-driven approach. This integration also allows
to generate a causality-issue free simulation code (SystemC, SystemC AMS).

6 Comparison

This section compares our schedulability and causality approach to the ones
of SystemC MDVP [2] and the SystemC AMS simulator. We selected a toy
example presented in [18] and a vibration sensor case study first introduced
in [3].
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SystemC AMS detects causality issues only at run time. Each causality
issue is treated separately, the simulator thus has to be run anew each time.

The SystemC MDVP simulator can detect time synchronization issues be-
tween the DE and TDF MoCs by transforming the TDF clusters and their
interaction with the DE domain into an equivalent timed-Colored Petri Net
model. To do so, the SystemC code must be generated and executed in order
to find any possible causality problems during the pre-simulation phase and
provide the necessary delay suggestions to avoid these issues.

6.1 Dependency of delays on the static schedule

The model shown in Figure 4 stems from the SystemC MDVP example models
[5]. Tm is provided for module A only.

A B

G

Tm
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= 4ms

in_tdf1out

out_tdf
C

D
out

in

out
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outin
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R=1
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R=6

R=3

R=3

Fig. 4: SysML Model with feedback loops and multiple DE components

Our algorithm, implemented in TTool, finds a schedulability issue due to
delays missing in the feedback loop between B, C andD. Also, causality issues
are detected within the converter ports of module B. These causality issues
are due to the interaction between the TDF module B with the DE modules
E, F and G through the use of converter ports.

The same model is simulated in SystemC MDVP, see Table 3. If suggested
delays for B.out_de_1 = 4 and B.out_de_2 = 1 match, TTool suggests to
insert a delay of 3 in the B.in_tdf_2 port, while MDVP suggests to insert
delays of 3 in the C.in port and 1 in the D.out port.
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Port TTool MDVP
B.out_de_1 4 4
B.out_de_2 1 1
B.in_tdf_2 3 –
C.in port – 3
D.out – 1

Table 3: Suggested delays in TTool and SystemC MDVP

TTool MDVP
A-A-B-A-C-D-B-C-D-C-D-D C-D-A-A-B-A-C-D-C-D-B-D

Table 4: Comparison of schedules

The difference concerning the suggested delays is in fact due to the static
schedule each tool produces. Table 4 compares the schedules produced by
TTool and SystemC MDVP.

The static schedule of TTool shows that module A is executed twice in
the beginning. Since module B requires 2 samples in port B.in_tdf2 to be
executed, a delay of 2 is needed. The next time module B needs to be executed,
module D has only delivered 1 sample to B, so module B needs another delay
of 1; in total it needs a delay of 3 in its input.

In the static schedule determined by MDVP, C needs to be executed first,
requiring a delay of 3 in its input port C.in. D executes and delivers 1 sample
to B. Again, when module B needs to execute, it still requires one extra
sample, thus a delay in D.out of 1 is suggested. The same model is simulated
in SystemC AMS without inserting any delays. Since there are missing delays
in the feedback loop, the simulator indicates a schedule error.

We conclude that both delay suggestions, the one given by TTool and the
one by SystemC MDVP are equally valid, since they both solve the schedula-
bility problem that exists when delays are missing in a feedback loop.

This model demonstrates that in the presence of feedback loops, the delay
suggestions by SystemC MDVP and TTool can differ. They depend on the
static schedule computed by each simulator. Anyway, both suggestions are
found to be valid when used in the model created in SystemC AMS.
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6.2 Vibration sensor

The small case study is based on a vibration sensor model taken from the
TDF model examples provided with the SystemC MDVP simulator [3,5]. It
was already shown in [14] to illustrate the implementation of our prototyping
tool.

The model of the vibration sensor in SystemC AMS notation is shown in
Figure 5. It consists of six TDF modules and one DE module as described
below.
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Fig. 5: Vibration sensor model (Adapted from [3]).

The SRC module represents the vibration source, which is modeled as a
generator of harmonic sinusoidal wavelets representing a displacement signal
(x_sig).

The SENSOR module represents the vibration sensor itself. It takes as an
input the displacement signal (x_sig) and gives as an output a voltage signal
(v_sig) which is proportional to the vibration velocity.

ThePGAmodule represents a programmable gain amplifier, that amplifies
the voltage input signal (v_sig) by a factor of 2k, where k is the input value
from signal k_sig. This signal is controlled by the gain controller DE module
CTRL. The output is an amplified voltage signal vamp_sig.

The ADC module represents an analog to digital converter with a resolu-
tion of 5 bits. The ADC has a rate of 10 in its input port in. Hence, it takes 10
samples from the amplified voltage signal vamp_sig and produces a digitized
integer value of N-bits (adc_sig) where the most significant bit corresponds
to the sign. The module time step is assigned to this module as 10µs.

TDF2DE is a converter module from the TDF signal adc_sig to a DE
signal out_sig. Note that the delay Dout, written in red, of its output con-
verter port out has not been set yet.
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The AAVG module represents an absolute amplitude averager. It calcu-
lates and outputs to the amp_sig the absolute average amplitudes of the
received samples from the adc_sig. Its input port in has a rate of 64, it
will thus receive 64 samples to calculate the absolute average amplitude. This
module also generates a rate 2 clock signal clk_sig at its output port clk

meaning that a clock edge will be generated twice per activation of the mod-
ule. Note that initially the delays Dclk and Damp of its output converter ports,
marked in red, have not yet been set.

The CTRL DE module represents the gain controller. It controls the out-
put signal k_sig based on the calculated absolute average amplitude given
by amp_sig, and two given thresholds low_threshold and high_threshold.

Fig. 6: Screenshot showing the SystemC AMS panel and port parameter configuration

6.3 Co-simulation

In the following, we employ the vibration sensor example to compare the vir-
tual prototypes generated by TTool to SystemC AMS and MDVP. The vibra-
tion sensor was modeled in TTool, as shown in Figure 6.

In contrast to the SystemC AMS graphical notation, in our SysML no-
tation, ports and modules are parameterized in pop-up menus, limiting the
overload of the graphical representation. On the lower left of the Figure, we
show the port parameter configuration window for the output converter port
amp, where the Delay has been set to 1.
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TTool supports full-system co-simulation (i.e. including software) of the
analog and digital part, while MDVP co-simulates analog and digital hardware.
Both use SoCLib models of digital hardware, whereas SystemC AMS uses
TDF models for analog and DE models for digital hardware. All combine
event-based and TDF co-simulation.

For a first validation, the three output converter port delays (in red in
Figure 5) were set to 0. Figure 7 shows the output of the validation panel of
TTool’s code generation window: causality issues were found and delays on
three ports were suggested to solve them.

Fig. 7: Suggested delays for the vibration sensor in TTool.

The model was also simulated with the MDVP simulator without providing
any delays for its output converter ports. Figure 8 shows the output of the
simulator. It suggests the same three delays as TTool.

Fig. 8: Suggested delays for the vibration sensor in SystemC MDVP.

Finally, we modify a SystemC AMS model taken from the H-Inception
project in order to include the same parameters as the ones used in TTool and
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SystemC MDVP —i.e. the same port rates and ADC resolution—. Again, the
simulation was executed without assigning any delays to the output converter
ports.

Here, the simulator has to be run three times. As shown in Figure 9, syn-
chronization issues are detected by the simulator each time the simulation is
run, and delays referring to time units are suggested to solve the causality
problems. For the first time the simulation was run, a delay of 9 µs in port
tdf2de.out is suggested as shown in Figure 9(a). This delay corresponds to
a delay of 1 since the propagated time step of this port is 10 µs. After setting
this delay, the simulation was run again. This time another synchronization
problem was found, and a delay of 639 µs is suggested to the aavg.clk port,
as Figure 9(b) shows. Since the time step of this port is of 320 µs, a delay of
2 is needed. Finally, after setting this new delay, the simulation was run for
the third time. Another causality problem was detected, and a delay of 639 µs
suggested for port aavg.amp. The time step of this port is of 640 µs, thus a
delay of 1 is required (Figure 9(c)).

(a)

(b)

(c)

Fig. 9: Suggested delays for the vibration sensor in SystemC AMS: three runs.

All the suggested delays by SystemC AMS simulator are the same as the
ones suggested by TTool and the SystemC MDVP simulator, as shown in
Table 5. The main difference is that in TTool, the causality problems can
be found directly from SysML views thus before any code is generated. In
SystemC MDVP, the synchronization issues are found in the pre-simulation
phase. That means that the SystemC MDVP model needs to be executed only
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once to find any synchronization problems. In SystemC AMS, these issues are
found during the simulation phase, meaning that the simulation needs to be
executed once per causality problem that is found. In this case, it needed to
be executed three times.

Port TTool SystemC MDVP SystemC AMS
TDF2DE.out 1 1 1
AAVG.amp 1 1 1
AAVG.clk 2 2 2

Table 5: Comparison of suggested delays for the vibration sensor model.

Once all the delays are set, code generation can be executed and the traces
compared.

This case study demonstrates that thanks to the implementation in TTool
of our contribution, we can obtain, from SysML view, the same results as the
ones suggested by the SystemC AMS and the SystemC MDVP simulators, as
long as the computed static schedules of the three simulators present a similar
behavior.

7 Conclusion and future work

The main contribution of the paper is the detection of valid TDF schedules
and resolution of causality issues directly from high level SysML models, i.e.
before any code is generated. Conversely, in other approaches SystemC AMS
code needs to be generated / written by hand, compiled and executed.

Moreover, our approach can automatically solve causality problems by
adding delays inside feedback loops, and handle situations that cannot be
handled by other work. More concrete use cases, not presented in this pa-
per, also demonstrate the relevance of our contribution and the interest of our
implementation.

We are currently improving our algorithms so that suggested delays are al-
ways optimal. Reusing concepts coming from the simulation engine of SystemC
AMS may help reach this goal.

Simulation feedback is currently limited to the digital parts and only semi-
automatic. Automating and extending this mechanism to the entire system
would enable us to propose a full design space exploration environment for
Analog/Mixed Signal systems.
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