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A VARIATIONAL SHEATH MODEL FOR
GYROKINETIC VLASOV-POISSON EQUATIONS ∗

M. Badsi1, M. Campos-Pinto2, B. Després3 and L. Godard-Cadillac4

Abstract. We construct a gyrokinetic variational model for sheaths close to the metallic wall of a
magnetized plasma, following a physical extremalization principle for the natural energy. By consider-
ing a reduced set of parameters we show that our model has a unique minimal solution, and that the
resulting electric potential has an infinite number of oscillations as it propagates towards the core of
the plasma. We prove this result for the non linear problem and also provide a simpler analysis for a
linearized problem, based on the construction of exact solutions. Some numerical illustrations show the
well-posedness of the model after numerical discretization. They also exhibit the oscillating behavior.

1991 Mathematics Subject Classification. 78A30, 49J05, 34C10.
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1. Introduction

The mathematical description and numerical simulation of a plasma interacting with a metallic surface is an
active topic of research in plasma physics [7, 15, 30, 38, 41, 42]. Applications are wide spread and span a very
large spectrum : ranging from the design of laboratory plasma devices to the simulation of solar wind. One of
the main feature of isolated plasmas interacting with a metallic surface is the development near the surface of
a thin positively charged layer of several Debye length in thickness. This layer is called a sheath and results
from the relative mobility difference between ions and electrons. In the sheath, a significant electric field aims
at repelling the electrons in the core plasma while ions are accelerated towards the surface so that an equal flux
of ions and electrons leaving the plasma to the wall is reached. The mathematical description of this transition
layer between the core plasma and the wall is fundamental for the understanding of the plasma properties in
its globality. Significant efforts have been made in this direction at the physical level [13, 15, 30, 42]. At the
mathematical level, the kinetic description of plasmas has become standard and the mathematical theory of
kinetic plasma models be it in the absence of boundaries or in the case of bounded plasma is by now well-
established [1, 5, 6, 8, 24–27, 36, 37, 39]. However efficient, little works on the mathematical side have focused on
the precise analysis of sheaths [3,4,17,31]. In [4], the authors showed the existence and uniqueness of a solution
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for a two species Vlasov-Poisson system with boundaries under a moment condition on the incoming flow of
ions that takes the form of a so called kinetic Bohm criterion [7, 38]. The extension of this work to the case
where a constant magnetic field is imposed was intended in [2]. At the physical level, when a magnetic field is
considered, numerical simulations [15,30,33] seem to show off different physical scenarios according to both the
angle of incidence of the magnetic field with respect to the surface and the ratio of force between the electric field
and the intensity of the magnetic field. The existence of physical stationary states seems nevertheless subjected
to the validity of the so called Bohm-Chodura condition [15, 42] whose mathematical justification is up to our
knowledge a condition for the existence of a monotonic electrostatic potential obtained via a linearized model.

As far as the mathematical modeling of magnetized plasma is concerned, gyrokinetic theory has emerged to
reduce the computational cost of computing the particles distribution functions in perpendicular directions to
the magnetic field. In the classical kinetic description, particles are usually described with their six coordinates
of positions and velocities. In the gyrokinetic description however, particles are identified, through their gyro-
center positions in R3 and two other components : their parallel component along the magnetic field and their
magnetic moment. The magnetic moment enables an identification with the perpendicular velocity. It yields a
representation of the particles distribution function in a five dimensional phase space. The mathematical and
physical justifications can be found in [9, 12, 20, 32, 40]. In practice [10], the transport of particles distribution
functions is made through the gyroaveraged fields which are non local in space. This non locality poses the
question of what are appropriate boundary conditions when material boundaries are considered.

By far, the construction of solutions in the presence of spatial boundaries for a two species gyrokinetic
Vlasov-Poisson system is up to our knowledge an open problem. In this work, we study a magnetized plasma
interacting with a metallic wall by considering a simplified two species gyrokinetic Vlasov-Poisson system. Using
symmetries, particles distribution functions in our model live in a three dimensional phase space where particles
gyrocenter positions are spotted by the variable x < 0, their velocity component along the magnetic field is
denoted v ∈ R and their magnetic moments is denoted µ ∈ R. The angle of the prescribed magnetic field is
arbitrary. Incoming flow of particles is considered at the infinity and partial absorption is considered at the wall.
In our model, the infinity is in fact the core of a plasma assumed to be neutral and at rest. The electrostatic
potential is assumed to vanish at the infinity, while at the wall its gyroaveraged value is computed so as to
ensure the neutrality of the current. These natural equations are supplemented by what we call the closure
relations. These closure relations are the simplest ones, have a clear physical meaning even if they are arbitrary,
and yield a well-posed global problem, as we show in this work.

To construct the model, our methodology follows a standard approach: we integrate the gyrokinetic Vlasov
equations with respect to the gyroaveraged electrostatic potential, and we then consider a non linear Poisson
equation that we treat as an extremalization problem. The density functions are peaked around an electronic
Larmor radius re and an ionic Larmor radius ri. These radii are arbitrary in the final model.

For the mathematical analysis, it is convenient to choose equal Larmor radius re = ri in order to minimize
technical difficulties. This hypothesis, the same unique radius for ions and electrons, is similar of other mono-
kinetic hypotheses in the mathematical literature [11]. This simplification has the advantage that well posedness
(convexity, existence and uniqueness of a minimum . . . ) is proved. A new result is a rigorous justification of
the oscillating behavior of the electric potential, a phenomenon that has been observed numerically [15] but, to
the best of our knowledge, never analyzed mathematically. Specifically, we are able to prove that under certain
conditions the exact electric potential admits an infinite number of oscillations of comparable length. This is
first shown with a method adapted to the non linearity of the problem, and also with a linear method which
calculates exact solutions to the linear problem far from the wall. Some illustrations are eventually provided in
the numerical section. These illustrations fully confirm our original theoretical findings.

The organization is as follows. The variational model is constructed in Section 2, by means of exact integration
of the kinetic Vlasov equations in the phase space. The value of the wall potential is obtained by solving a pair
of non linear equations which express the neutrality at infinity and the ambipolarity principle. The variational
principle is then formulated with a stability condition at infinity, corresponding to a kinetic Bohm-Chodura
inequality. In Section 3, the model is simplified so as to establish its main properties. The mathematical
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solution is based on the minimization of a strictly convex functional. The monotonicity of the solution at the
wall is proved in Section 3.1.2. The oscillating behavior of the solution is then proved by two different methods.
The first one is described in Section 3.1.3. It is non linear and proceeds by means of inequalities and comparison
with convenient test functions. The second one in Section 3.1.4 is linear in nature and is based on the calculation
of exact complex exponential solutions. Finally Section 4 is dedicated to simple numerical tests which illustrate
the theoretical findings. Several technical proofs and results are gathered in the Appendix.

2. Construction of a variational sheath model

2.1. Gyroaverage operator

In magnetized plasma physics, charged particles follow helicoidal trajectories. A key notion is the gyroaver-
aging on the Larmor radius. Let B 6= 0 be a constant non zero given magnetic field

B = |B| (cos θ ex + sin θ ey) ∈ R3 with θ ∈
(
0,
π

2

)
. (1)

Following [10,12], the dynamics of charged particles is described by averaging along helicoidal trajectories which
oscillate around center-guide trajectories. A typical helicoidal trajectory starting at X = (x1, x2, x3) involves
the Larmor vector ρr(α) := r (cosα v1 + sinα v2) ∈ R3 with α ∈ [0, 2π), and where v1 = (− sin θ, cos θ, 0) and
v2 = (0, 0, 1) are two vectors orthonormal to B. With these notations, a trajectory with radius r > 0, parallel
direction b = B

|B| , parallel velocity v‖ 6= 0 and cyclotron frequency ωc 6= 0 is

X(t) = X + ρr(ωct) + v‖bt =: X̃(t) + v‖bt. (2)

Given a characteristic length L, gyrokinetic models are based on the approximation u(X)← ωc
2π

∫ 2π/ωc
0

u(X̃(t))dt
in the regime ωc � v‖/L. Assume now that u is an univariate function of the coordinate x = x1. By averaging
on the Larmor circle, one gets the approximation u(x) ← 〈u〉r(x) = 1

2π

∫ 2π

0
u(x + ρr(α) · ex)dα. Using the

change of variable x = ρr(α) ·ex = −r sin θ cosα, the local gyroaverage operator takes the form of a convolution
operator. Namely for all u ∈ C∞c (R),

〈u〉r(x) :=
∫
R
w

(
x− y
r sin θ

)
u(y)

dy

r sin θ
(3)

where the convolution kernel w is defined almost everywhere by

w(x) =
1

π
√
1− x2

for |x| < 1 and w(x) = 0 for |x| > 1. (4)

The convolution kernel w belongs to Lp(R) for 1 ≤ p < 2 and its total mass is normalized,
∫
R w(x)dx = 1. Some

properties of the associated gyroaverage operator are stated in the Appendix. In particular it can be extended
to a linear continuous operator from Hs(R) to Hs+ 1

2 (R) for any s > 0.

2.2. Gyrokinetic equations

Following [10, 12, 19], a plasma made of one species of ions and electrons subject to a given magnetic field
B is modeled with gyrokinetic Vlasov-Poisson equations. Positions are denoted as x ∈ R. Velocities in the x
direction are denoted as v ∈ R. Magnetic moments are denoted as µ = ±|v⊥| ∈ R.

The unknowns are the electrostatic potential φ : x ∈ R 7→ φ(x) ∈ R, the particle density for ions fi : (x, v, µ) ∈
R×R×R 7→ fi(x, v, µ) ∈ R+ and the particle density for electrons fe : (x, v, µ) ∈ R×R×R 7→ fe(x, v, µ) ∈ R+.
They satisfy the gyrokinetic Vlasov-Poisson system (5-7)

v∂xfi − 〈∂xφ〉Ri(µ)∂vfi = 0, (x, v, µ) ∈ R3, (5)
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v∂xfe +
1

η
〈∂xφ〉Re(µ)∂vfe = 0, (x, v, µ) ∈ R3, (6)

− λ2 sin2 θ∂xxφ = ni(x)− ne(x), x ∈ R. (7)

In the equations, the notations are as follows. The Larmor radius is proportional to the square root of the
magnetic moment for both species, that is Ri,e(µ) = αi,e

√
|µ| > 0 where αi,e > 0. We refer to [10, page 5] for

the definition of the Debye length λ > 0 in function of physical quantities in the context of fusion plasmas. In
particular small Debye length arise from the physical scaling

ρ2s
λ2

=
4πnmc2

|B|2
>> 1. (8)

One has λ ≈ 6.4e−5 in fusion plasmas [19, page 126]. The mass ratio between ions and electrons is a natural
small parameter denoted as η = me

mi
≈ 1/2000. The coefficient sin2 θ in equation (7) comes from the fact that it

is the projection along the first coordinate of the operator ∇∗⊥∇⊥ where ∇⊥ is the gradient orthogonal to the
magnetic field B. Since one also has a sin θ in the gyroaveraging (3), it is immediate to observe that sin θ can
be conveniently eliminated after a rescaling of the space (it will be performed in the next section).

The macroscopic gyroaveraged densities and parallel current densities are

ni(x) =

∫
R2

〈fi〉Ri(µ)(x, v, µ)dvdµ, ne(x) =

∫
R2

〈fe〉Re(µ)(x, v, µ)dvdµ, (9)

Ji =

∫
R2

〈fi〉Ri(µ)(x, v, µ)vdvdµ, Je =

∫
R2

〈fe〉Re(µ)(x, v, µ)vdvdµ.

By integration of the Vlasov equations (5-6), we find that the parallel current densities Ji and Je are constant.
Using the order of magnitude of physical quantities in fusion plasma [19, page 146], the mean Larmor radius

for ions is ri ≈ 5e−3m and the mean Larmor radius for electrons is re ≈ 8.3e−5m. The ratio comes from
re/ri =

√
η =

√
me/mi. Therefore, for the ease of mathematical simplifications, we will consider particles

density which are peaked at their corresponding (positive) magnetic moment, µi such that Ri(µi) = ri and µe
such that Re(µe) = re. That is we will consider

fi(x, v, µ)←− fi(x, v)⊗ δ(µ− µi) and fe(x, v, µ)←− fe(x, v)⊗ δ(µ− µi).

2.3. Dimensionless equations

There are three characteristic lengths in the model which are λ, ri and rr. It is convenient to perform a
rescaling of the space variable

x̂ =
x

λ sin θ
, r̂i =

ri
λ
, r̂e =

re
λ
.

The convolution kernels given by (4) are rescaled as well, that is ŵi(x̂) = 1
r̂i
w
(
x̂
r̂i

)
and ŵe(x̂) = 1

r̂e
w
(
x̂
r̂e

)
.

The rescaled density functions are f̂i(x̂, v) = fi(x, v) and f̂e(x̂, v) = fe(x, v). The rescaled electric potential is
φ̂(x̂) = φ(x). One gets a dimensionless Vlasov equations

v∂x̂f̂i(x̂, v)− (ŵi ? φ̂)
′(x̂)∂v f̂i(x̂, v) = 0 and v∂x̂f̂e(x̂, v) +

1

η
(ŵe ? φ̂)

′(x̂)∂v f̂e(x̂, v) = 0 (10)

and a dimensionless Poisson equation

− ∂x̂x̂φ̂(x̂) = n̂i(x̂)− n̂e(x̂). (11)
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Here the dimensionless densities correspond to the gyroaveraged ones n̂i(x) = ni(x) and n̂e(x) = ne(x), namely

n̂i(x) =

∫
(ŵi ? f̂i)(x̂, v)dv = ŵi ? n̂

phys
i and n̂e(x) =

∫
(ŵe ? f̂e)(x̂, v)dv = ŵe ? n̂

phys
e (12)

where we have denoted by n̂physi :=
∫
f̂i(·, v)dv and n̂physe :=

∫
f̂e(·, v)dv the “physical” densities in dimensionless

variables. In the rest of this work, the non dimensional notation ·̂ will be discarded.

2.4. Modeling sheath and boundary conditions

A sheath is the boundary layer at a metallic wall observed in real devices. We write (10-11) in the domain

(x, v) ∈ D = (−∞, 0)× R

and we must complement the equations with boundary conditions. However there is still a major difficulty near
the wall, which is that some fundamental assumptions behind the gyroaveraging procedure are not satisfied
near the wall at x = 0: indeed the validity of helicoidal trajectories (2) in the vicinity of the wall is quite
questionable. This problem is well known in physical literature [7, 15,30,38,41,42].

In our approach, we will firstly use natural boundary conditions and we will secondly close the model with
the energy extremalization principle. The natural boundary conditions are generalization of a previous work [4].
The energy extremalization principle can be seen as a way to recover some compatibility with the Hamiltonian
description of Vlasov-Maxwell equations [34,43].

The zero reflection law for particles at the wall writes

fi(0, v < 0) = 0 and fe(0, v < 0) = 0. (13)

We will extend the functions inside the wall with{
∂xφ = 0 in (0,+∞),

fi = fe = 0 in (0,+∞)× R2.
(14)

These closure relations express that the spatial domain (0,+∞) corresponds to the inside of a perfectly con-
ducting wall. Consequently there is neither an electric field inside, nor plasma particles that travel inside. These
closure relations are arbitrary in a sense, however they are simple and have a clear physical meaning.

2.5. Electronic phase diagram

Starting from a given smooth potential

ψ = we ? φ, ψ ∈ C1(−∞, 0], (15)

which may have oscillations as described in Figure 1, the electronic phase diagram constructs a physically and
mathematically admissible solution of the gyroaveraged kinetic equation v∂xfe +

1
ηψ
′(x)∂vfe = 0 in D. The

oscillations of the gyroaveraged potential ψ are caused by similar oscillations of the physical potential φ. The
level curves are defined by 1

2v
2 − 1

ηψ(x) = constant. Where the potential is regular enough (ψ ∈ C1
loc for

example), then the level curves correspond locally to the characteristics curves solutions of the characteristics
equations x′ = v and v′ = 1

ηψ
′(x). Two points (x, v) ∈ D and (y, w) ∈ D are connected if and only if

1

2
v2 − 1

η
ψ(x) =

1

2
w2 − 1

η
ψ(y).
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φ, ψ, ϕ

x

Figure 1. Graph of potentials φ, ψ = we ? φ and ϕ = wi ? φ with oscillations. A priori
φ 6= ψ 6= ϕ, but the general shape is similar.

For y = 0, one gets the condition
1

2
v2 − 1

η
ψ(x) ≥ −1

η
ψ(0). (16)

Making the assumption that the minimum of ψ is reached at the wall, that is

ψ(0) = min
R−

ψ,

then the inequality (16) delimits 3 open regions in D, as described in Figure 2

D1 =
{
(x, v) ∈ D, v >

√
2
η (ψ(x)− ψ(0))

}
,

D2 =
{
(x, v) ∈ D, −

√
2
η (ψ(x)− ψ(0)) < v <

√
2
η (ψ(x)− ψ(0))

}
,

D3 =
{
(x, v) ∈ D, v < −

√
2
η (ψ(x)− ψ(0))

}
.

D2

x

v

D3

D1

Figure 2. Three different regions of the electron phase space. The dotted lines are general
characteristics. The bold line is the characteristic 1

2v
2 − 1

ηψ(x) = −
1
ηψ(0).

The superior region D1 is connected to x = −∞, so particles coming from the infinity with a positive velocity
travel through D1 and are absorbed at the wall. The internal region D2 contains closed loops because the
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function ψ may have some oscillations (we will prove this fact). Particles in this region do not reach the wall.
The inferior region D3 is connected to the wall at x = 0. However no electron with negative velocity is emitted
at the wall (13), so this region is empty of ion. We consider

fe(x, v) = nref exp
(
−η2v

2 + ψ(x)
)

for (x, v) ∈ D1 ∪ D2,
fe(x, v) = 0 for (x, v) ∈ D3,

(17)

where nref is a reference density that will be determined later in Section 2.7. This representation is compatible
with standard assumptions in plasma physics [14].

Lemma 2.1. The function fe defined in (17) is a weak solution in D to the equation v∂xfe + 1
ηψ
′(x)∂vfe = 0.

The “physical” electronic density nphyse =
∫
fedv, see (12), can be written in different ways

nphyse (x) = nref
∫
−
√

2
η (ψ(x)−ψ(0))

exp
(
−η2v

2 + ψ(x)
)
dv

= nref expψ(x)
√

2
η

∫
−
√
ψ(x)−ψ(0) e

−t2dt.

Another possibility that will be used later is

nphyse (x) = nref expψ(x)

√
π

2η

(
1 + erf

(√
ψ(x)− ψ(0)

))
(18)

where the Gauss error function is erf(x) = 2√
π

∫ x
0
exp(−t2)dt. The density at infinity n∞e = lim

−∞

∫
fe(x, v)dv is

n∞e = nref

√
π

2η

(
1 + erf

(√
−ψ(0)

))
. (19)

The constant electronic current is equal to its limit J∞e = lim
−∞

∫
fe(x, v)vdv, that is

J∞e =
nref
η

expψ(0). (20)

2.6. Ionic phase diagram

Next we construct the phase diagram for ions for the potential

ϕ = wi ? φ, ϕ ∈ C1(−∞, 0].

If ri = re, this potential is equal to the previous one (15). Note that the condition ri = re is unrealistic on
physical grounds, however we will use for mathematical purposes in Section 3. The function ϕ may also have
oscillations as in Figure 1. With the method of characteristics x′ = v and v′ = −ψ′(x), two points (x, v) ∈ D
and (y, w) ∈ D can be connected with a characteristic curve provided 1

2v
2 + ϕ(x) = 1

2w
2 + ϕ(y). The maximal

value
ϕ+ = sup

x∈R−
ϕ(x) = ϕ(x+)

is a barrier of the potential. For simplicity as illustrated in Figure 1, we assume that the maximum value ϕ+ > 0
is positive (consistently with the condition at infinity lim

−∞
ϕ = 0) and that x+ is unique. Indeed a point (x, v)

such that 1
2v

2 + ϕ(x) < ϕ+ cannot be connected to (x+, w). This is the reason of the decomposition of the
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D5

x

v

D4

D7

D6

Figure 3. Four different regions of the ion phase space. The dotted lines are general charac-
teristics. The bold line is the characteristic 1

2v
2 + ψ(x) = ψ+.

domain in four open regions

D4 =
{
(x, v) ∈ D, v >

√
2(ϕ+ − ϕ(x))

}
,

D5 =
{
(x, v) ∈ D, x+ < x < 0, −

√
2(ϕ+ − ϕ(x)) < v <

√
2(ϕ+ − ϕ(x))

}
,

D6 =
{
(x, v) ∈ D, v < −

√
2(ϕ+ − ϕ(x))

}
,

D7 =
{
(x, v) ∈ D, x < x+, −

√
2(ϕ+ − ϕ(x)) < v <

√
2(ϕ+ − ϕ(x))

}
.

To construct a weak solution of v∂xfi − ϕ′(x)∂vfi = 0 in D based on the diagram of Figure 3, we consider
a function at infinity for incoming ions f∞i (v). Using the approach [4], we assume that f∞i is continuous with
compact support in {v >

√
2ϕ+ + ε}. More precisely

f∞i ∈ C0(R), f∞i (v) = 0 for v ∈ (−∞,
√

2ϕ+ + ε] ∪ [A,+∞)

where 0 < ε is a small number and A is taken large enough so that
√
2ϕ+ + ε < A.

We consider the continuous function fi

fi(x, v) = f∞i

(√
v2 + 2ϕ(x)

)
for (x, v) ∈ D4,

fi(x, v) = 0 for (x, v) ∈ D5 ∪ D6 ∪ D7.
(21)

Lemma 2.2. The function fi defined in (21) is a weak solution in D to the equation v∂xfi − ϕ′(x)∂vfi = 0.

The “physical” ionic density nphysi =
∫
fidv, see (12), is

nphysi (x) =
∫ +∞√

2(ϕ+−ϕ(x)) f
∞
i (
√
v2 + 2ϕ(x))dv

=
∫ +∞√

2ϕ+
f∞i (w) w√

w2−2ϕ(x)
dw

=
∫ +∞
0

f∞i (w) w√
w2−2ϕ(x)

dw.

(22)

The ionic density at infinity is

n∞i =

∫ +∞

0

f∞i (w)dw.
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The electronic current is constant in space, so it is equal to its value at infinity

J∞i =

∫ ∞
0

f∞i (w)wdw.

2.7. Determination of the sheath potential ψwall and the reference density nref

In the physics of sheaths, the value of the potential at the wall is of critical importance. Here since the
current densities are constant we may use the method from [4] which is to consider the equations obtained from
n∞e = n∞i and J∞e = J∞i . Considering equations (19-20), we denote

ψwall = ψ(0). (23)

Observe that the condition of neutral charge at −∞ and and the condition neutral flux take the form{
nref

√
π
2η

(
1 + erf

(√
−ψwall

))
= n∞i ,

nref

η exp (ψwall) = J∞i .
(24)

In this system, the right hand side is given because it depends of the function f∞i which is independent of ψ
and φ. The unknown is the pair (ψwall, nref) with the sign conditions

ψwall < 0 and nref > 0. (25)

Proposition 2.3. There exists a unique solution (ψwall, nref) to (24-25) if and only if √πηJ∞i <
√
2n∞i .

Proof. From (24) one gets by division the reduced equation

H(u) =

√
2n∞i√
πηJ∞i

, H(u) =
(
1 + erf

(√
u
))

exp (u) , u = −ψwall > 0.

The function H is strictly monotone, with H(0) = 1 and H(+∞) = +∞. Therefore there exists a positive
solution, necessarily unique, if and only if 1 <

√
2n∞i√
πηJ∞i

. Once ψwall is determined, the reference density is
given. �

2.8. A principle of energy extremalization

Energy minimization, or more generally energy extremalization, is a general principle in mathematical physics.
It allows to identify those solutions which realize a minimum, or more generally a critical point, of some potential
referred to as an energy. In the sequel, we show how to use this principle in order to complete the construction
of our model.

Firstly we express the densities in function of the electric potential φ, secondly we give the energy and thirdly
we write the Euler-Lagrange equations for critical points. A stability condition is expressed in the form of a
Bohm-Chodura condition.

2.8.1. Potential representation of the densities
From the general definition (11) and (17), one gets

ne(φ)(x) = we ?

(
nref

√
π

2η
exp (we ? φ(·))

(
1 + erf

(√
we ? φ(·)− ψwall

)))
(x).

Let us define the function

Ne(ψ) = nref

√
π

2η

∫ ψ

0

exp (z)
(
1 + erf

(√
z − ψwall

))
dz, ψ ≥ ψwall. (26)
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By definition one has that ne(φ(x)) = we ? (N
′
e(we ? φ)) (x). In (26), the function Ne is defined as a double

integral because the Gauss error function erf is itself an integral. Another definition is possible with just one
integral.

Lemma 2.4. One has another formula

Ne(ψ) = 2nref

√
π

2η

(
expψ − 1− 2√

π

∫ ∞
√
−ψwall

exp(−w2)w
(√

w2 + ψ − w
)
dw

)
, ψ ≥ ψwall. (27)

Proof. Differentiate the claim N ′e(ψ) = nref
√

π
2η

(
2 expψ − 2√

π

∫∞√
−ψwall

exp(−w2) w√
w2+ψ

dw

)
. Make a change

of variable z2 = w2 + ψ with
√
(ψ − ψwall) ≤ z <∞. One obtains

N ′e(ψ) = nref
√

π
2η

(
2 expψ − 2√

π

∫∞√
ψ−ψwall

exp(−z2 + ψ)dz
)

= nref
√

π
2η expψ

(
2− 2√

π

∫∞√
ψ−ψwall

exp(−z2)dz
)

= nref
√

π
2η expψ

(
1 + 2√

π

∫√ψ−ψwall

0
exp(−z2)dz

)
= nref

√
π
2η expψ

(
1 + erf

(√
ψ − ψwall

))
By definition the function of the claim vanishes at the origin Ne(0) = 0. So it is equal to (26). �

We use a similar approach for the ions. Let us consider

ni(φ)(x) = wi ?

(∫
√

2(ϕ+−wi?φ(·))
f∞i

(√
v2 + 2wi ? φ(·)

)
dv

)
(x). (28)

Define the function

Ni(ϕ) = −
√
2

∫ ∞
√

2ϕ+

f∞i (z)z
(√

z2 − 2ϕ− z
)
dz, ϕ ≤ ϕ+ (29)

By definition Ni(0) = 0.

Lemma 2.5. One has the identity ni(φ)(x) = wi ? (N
′
i(wi ? φ)) (x).

Proof. One has N ′i(ϕ) =
∫∞√

2ϕ+ f
∞
i (z) z√

z2−2ϕ
dz. Make the change of variable z =

√
v2 + 2ϕ or equivalently

v =
√
z2 − 2ϕ which satisfies zdz = vdv. So N ′i(ϕ) =

∫∞√
2(ϕ+−ϕ) f

∞
i

(√
v2 + 2(ϕ− ϕ+)

)
dv. Plugging this

identity in (28) yields the claim. �

2.8.2. The energy
For mathematical correctness of the material presented below, it is necessary to have continuous extension

of the function Ne(ψ) for ψ < ψwall and continuous extension of the function Ni(ϕ) for ϕ > ϕ+. It can be made
on many ways, even if we expect that physical solutions might not depend on these continuous extensions, as
it will be visible in the numerical simulations at the end of this work. So, from now on, we will assume that

Ne, Ni ∈ C0(R), Ne, Ni are piecewise C1(R) and Ne, Ni ∈ C2(−ε, ε) for some ε > 0.

Definition 2.6. The energy is defined formally by

J(φ) =

∫ 0

−∞

(
1

2
|φ′(x)|2 +Ne(we ? φ(x))−Ni(wi ? φ(x))

)
dx. (30)
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An affine functional space naturally adapted to this energy is

V =
{
φ ∈ Ḣ1(R) ∩ L2(R−) | φ′ ∈ L2(R), φ(x) = φ(0) for x > 0, we ? φ(0) = ψwall

}
,

where we remind that Ḣ1(R) is the set of measurable functions φ such that φ′ ∈ L2(R). By definition, V
encounters for the first condition of (14) inside the wall and for the boundary condition (23) at the wall.
Functions φ ∈ V are such that lim+∞ φ(x) = 0. We observe that V is a complete for space for the norm
‖φ‖ =

√
‖φ‖L2(R−) + ‖φ′‖L2(R−). Since Ḣ1(R) is continuously embedded in L∞(R−) and functions in V are

constant on R+, then one has then

V ⊂ C0(R) ∩ L∞(R).

Lemma 2.7. The function J is continuously defined from Ṽ := V ∩ L1(R−) into R.

Remark 2.8. The need for L1 integrability is due to a mismatch between the Ni and Ne functionals at −∞,
it will be relaxed in the mathematical analysis of Section 3.

Proof. We need to prove that the integral (30) is convergent for functions in Ṽ and focus on the only problem
which is at −∞. Since any φ ∈ V tends to zero at −∞, we have |ψ(x)|, |ϕ(x)| → 0 as x→ −∞ for ψ = we ? φ
and ϕ = wi ? φ. Now, by construction Ne(0)−Ni(0) = 0 and

N ′e(0)−N ′i(0) = n∞e − n∞i = 0, (31)

so that one has a structural bound |Ne(ψ)−Ni(ψ)| ≤ Cψ2 for −x large enough. In particular, one has

|Ne(ψ)−Ni(ϕ)| ≤ |Ne(ψ)−Ni(ψ)|+ |Ni(ψ)−Ni(ϕ)| ≤ Cψ2 +D|ψ − ϕ|

for −x large enough. As ‖ψ‖Lp , ‖ϕ‖Lp ≤ ‖φ‖Lp for p ≥ 1 (see Appendix), this a priori estimate shows the
convergence of the integral for φ ∈ Ṽ . Refining this arguments shows that J is continuous from Ṽ into R. �

2.8.3. A stability condition at infinity
Here we study a condition such that J is convex with respect to small perturbation at x ≈ −∞ of the null

function. The condition is written as a convex condition around φ = 0

N ′′e (0)−N ′′i (0) > 0. (32)

Lemma 2.9. Assume
∫ +∞
0

f∞i (w) 1
w2 dw ≤

∫ +∞
0

f∞i (w)dw. Then the condition (32) of convexity at infinity
holds.

Remark 2.10. The condition of this Lemma takes the form of a kinetic Bohm-Chodura condition [15,30,41,42].

Proof. Using the physical densities, one gets easily

N ′′e (0)−N ′′i (0) = d
dψ

(
nref

√
2
η e
ψ
∫
−
√
ψ−ψwall

e−t
2

dt
)
(0)− d

dϕ

(∫ +∞√
2ϕ+

f∞i (w) w√
w2−2ϕ

dw

)
(0)

= nref
√

2
η

∫
−
√
−ψwall

e−t
2

dt+ nref
√

1
2η e

φwall −
∫ +∞√

2ϕ+
f∞i (w) 1

w2 dw.

Using ϕ+ ≥ 0, one gets N ′′e (0)−N ′′i (0) > n∞i −
∫ +∞
0

f∞i (w) 1
w2 dw ≥ 0 which ends the proof. �



12

2.8.4. Extremalization
Even if the functional is convex at infinity under the condition of Lemma 2.9, a general guarantee of convexity

is not known so far for arbitrary values of the physical coefficients (ri, re, f∞i , . . . ). Note however that a general
convexity result will be established in Section 3 but for ri = re which is usually not true in real plasmas. This
is the reason we focus on the weaker notion of extremal solutions in this Section.

Let Ṽ0 = V0 ∩ L1(R−) be the function space tangent to V , with

V0 =
{
h ∈ Ḣ1(R) ∩ L2(R−) | h(x) = h(0) for x > 0, we ? h(0) = 0

}
.

For φ ∈ Ṽ , the differential dJ(φ) ∈ Ṽ ′0 is defined weakly by

〈dJ(φ), h〉 =
∫ 0

−∞
[φ′(x)h′(x) +N ′e(we ? φ(x))we ? h(x)−N ′i(wi ? φ(x))wi ? h(x)] dx, ∀h ∈ Ṽ0.

Definition 2.11. We call φ ∈ Ṽ an extremal solution of the gyrokinetic Poisson equation if dJ(φ) = 0.

Let us define now the non linear operators

ñe(φ) = we ?
(
I− ×N ′e(we ? φ)

)
and ñi(φ) = wi ?

(
I− ×N ′i(wi ? φ)

)
where I− is a truncation function, I−(x) = 1 for x < 0 and I−(x) = 0 for x > 0. Using the physical densities
(18) and (22), we observe that

ñe(φ)(x) = we ?
(
I− × nphyse

)
(x) and ñi(φ)(x) = wi ?

(
I− × nphysi

)
(x)

so that ñe(φ) and ñi(φ) coincide with the gyroaveraged densities ne = we ?n
phys
e and ni = wi ?n

phys
i for x < −1,

see (9). Close to the wall they can be seen as a perturbation of the latter.

Proposition 2.12. An extremal solution satisfies (in the weak sense) the Euler-Lagrange relations
− φ′′(x) + ñe(φ)(x)− ñi(φ)(x)− σwe(x) = 0, x < 0,

σ = 2
[
φ′(0) +

∫ 1

0

(ñe(φ)− ñi(φ))(x)dx
]

we ? φ(0) = ψwall

(33)

where ψwall < 0 is the (electronic) gyroaveraged wall potential defined by Proposition 2.3, and σ ∈ R is a
Lagrange multiplier associated to the boundary constraint.

Remark 2.13. For x < −1 away from the wall, the first equation in (33) coincides with the initial gyrokinetic
Poisson equation (11).

Proof. Such formulations for extremal solutions with linear constraints are very classical. The shortest path
to the result is achieved with the Lagrangian L(φ, σ) = J(φ) − σ (we ? φ(0)− ψwall) for which a convenient
functional space is W̃0 =W0 ∩ L1(R−) with

W0 =
{
h ∈ Ḣ1(R) ∩ L2(R−) | h(x) = h(0) for x > 0

}
. (34)

Note that Ṽ ⊂ W̃0 and Ṽ 6= W̃0. Observing that the energy functional J is continuously defined from W̃0 into
R (and not only from Ṽ as in Lemma 2.7), we see that the Lagrangian L is also continuously defined from W̃0
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into R. Let us calculate the variation with respect to test functions h ∈ W̃0∫ 0

−∞
[φ′(x)h′(x) +N ′e(we ? φ(x))we ? h(x)−N ′i(wi ? φ(x))wi ? h(x)] dx− σ

∫
R
we(x)h(x)dx = 0.

One has ∫
R−

φ′(x)h′(x)dx = −
∫
R
φ′′(x)h(x)dx+ φ′(0)h(0),

then for s ∈ {e, i}, using the symmetry of the kernels ws,∫
R−

N ′s(ws ? φ(x))ws ? h(x)dx =

∫
R
I−(x)N

′
s(ws ? φ(x))ws ? h(x)dx =

∫
R
ñs(φ)(x)h(x)dx

=

∫
R−

ñs(φ)(x)h(x)dx+

(∫ 1

0

ñs(φ)(x)dx

)
h(0)

where we have also used the fact that the perturbed densities ñe, ñi vanish for x > 1, and finally∫
R
we(x)h(x)dx =

∫
R−

we(x)h(x)dx+
1

2
h(0).

This yields∫
R−

[−φ′′ + ñe(φ)− ñi(φ)− σwe] (x)h(x)dx+

[
φ′(0) +

∫ 1

0

(ñe(φ)− ñi(φ))(x)dx−
1

2
σ

]
h(0) = 0.

Taking an arbitrary h ∈ W̃0 with h(0) = 0 gives the first equation of (33). The second equation is the remaining
coefficient in front of h(0). Finally the boundary condition in (33) follows from the variations in σ. �

3. Mathematical study

To have clearer insight into the existence, uniqueness and qualitative properties of the solution of the phys-
ical extremalization problem (2.11), we simplify the problem so as to concentrate on the main features. A
simplification is that the physical characteristic lengths discussed in Section 2.2 are taken all three of them
equal to one

λ = re = ri = 1. (35)
We also modify the problem for mathematical simplicity: instead of working in the physical domain consisting
of a negative half-axis and a physical electric potential which is negative at the wall, we will now work in
the positive half axis x > 0 with a positive wall potential ψwall > 0. This modification is applied also to the
functional spaces which are (re)defined accordingly.

Thus, in this Section we consider the following simplified mathematical minimization problem:

min
φ∈V

J (φ) (36)

with an energy functional now defined as

J (φ) :=
∫ ∞
0

[
1

2

∣∣∣ d
dx
φ(x)

∣∣∣2 + F
(
w ? φ(x)

)]
dx. (37)

The functional space V is redefined as

V :=
{
φ ∈ Ḣ1(R) ∩ L2(R+) : w ? φ(0) = ψwall > 0 and φ(x) = φ(0) for x < 0

}
. (38)
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Figure 4. Condition (43) states that the function F ′′ may show integrable singularities, as it
is the case for the physical model in the vicinity of the wall at the value φwall.

Here the parameters are the function F : R → R whose properties will be discussed below, the gyroaveraging
kernel w defined in (4) and the wall potential ψwall, which is now assumed positive for mathematical simplicity,
as specified above. We also remind that the space Ḣ1 is defined as the set of measurable functions φ which
derivative is in L2, and that functions φ in the affine space V are such that lim+∞ φ = 0. The tangent space is

V0 :=
{
φ ∈ Ḣ1(R) ∩ L2(R+) : w ? φ(0) = 0 and φ(x) = φ(0) for x < 0

}
. (39)

Note that if the function w is replaced by a Dirac mass, we recover a standard nonlinear Poisson problem with
a Dirichlet constraint at x = 0.

With our simplification (35), the function F : R → R corresponds to the difference Ne − Ni from the
modeling Section 2.8.1. Thus it should gather some main properties of the density potentials Ne and Ni. For
the mathematical analysis we assume that it satisfies the following hypotheses:

• F (0) = 0 ; (40)

• F ′ is increasing ; (41)

• F ′′ is in L1
loc(R) ; (42)

• ∃ 0 < α < β, ∀ s ∈ R, min
{
α s ; β s

}
≤ F ′(s) ≤ max

{
α s ; β s

}
. (43)

The condition (40) expresses the physical condition Ni(0) = Ne(0) = 0. The condition F ′(0) = 0 expresses the
charge neutrality at infinity (31). The monotonicity (41) is a generalization of the physical stability condition
at infinity (32). Condition (43) means that the derivative F ′ lays between the curves y = αx and y = βx as
illustrated in Figure 4. We also draw in figure 4 the fact that the function F ′′ may have a mild singularity at
ψwall since it is the case for the physical model, see equations (26-27). Since the singularity there scales like
the inverse of a square root, it is locally integrable which gives a physical justification for the requirement (42).
The condition (43) is justified in the vicinity of the null electric potential s = φ = 0 by the local smoothness
of the functions Ni and Ne and the local convexity of Ne −Ni. This insures the coercivity of the function J .
Since the physical problem satisfies the four conditions (40-43), they are not a restriction. Finally all conditions
(40-43) imply the lower boundedness and upper boundedness inequalities for all s ∈ R

αs2 ≤ sF ′(s) ≤ βs2 and
α

2
s2 ≤ F (s) ≤ β

2
s2. (44)
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3.1. Main results

In this section we state our main results concerning the minimization problem defined by (36), (37), and (38).
For the clarity of the presentation, the proofs of the latter are postponed to Section B. Essentially we will show
that the minimization problem has a unique solution, and also prove that for certain parameters the solution
admits an infinite number of oscillations as it propagates towards the core of the plasma. This oscillating
behavior has already been observed in numerical simulations [15], it is related with the gyroaverage operator.

3.1.1. Existence, uniqueness, first properties
For the sake of readability, the proofs of the two next propositions are postponed in the appendix. They are

rather standard for such a problem.

Proposition 3.1 (Existence and uniqueness of the minimizer φ). The minimization problem given by (36), (37)
and (38) admits a unique solution. Moreover, φ ∈ V is solution to this problem if and only if it satisfies the
Euler-Lagrange equations

∀ x ∈ R∗+, − φ′′(x) + w ?
(
1R+

F ′(w ? φ)
)
(x) = σ w(x), (45)

where
σ

2
= φ′(0+) +

∫ 0

−∞
w ?

(
1R+F

′(w ? φ)
)
(x) dx, (46)

and w ? φ(0) = ψwall. (47)

The real number σ is the Lagrange multiplier associated to the constraint at the wall (47).

Concerning the function φ, minimizer of J on V , we are able to extract the following elementary properties.

Proposition 3.2 (Basic properties of the minimizer φ). Let φ ∈ V be the solution to the minimizing prob-
lem (36), (37) and (38). Then the solution φ satisfy the following properties.

(i) One has an estimate of the H1 semi-norm of φ:

α

∫ ∞
−1

∣∣w ? φ(x)∣∣2dx ≤ ∫ ∞
−1
|φ′(x)|2dx− σ

∫ 1

−1
w(x)φ(x) dx ≤ β

∫ ∞
−1

∣∣w ? φ(x)∣∣2dx
(ii) With β defined at (43), the energy satisfies J (φ) ≤ 2ψ2

wall

√
β (1 + β).

(iii) The following identity holds
∫ 0

−∞ w ?
(
1R+

F ′(w ? φ)
)
(x) dx =

∫∞
0
w ?

(
1R+

F ′(w ? φ)
)
(x) dx.

(iv) The Lagrange multiplier is positive σ > 0. For x→ 1−, one has the equivalent −φ
′′(x)

σ w(x) −→ 1.
(v) The function φ is not identically equal to 0 on the interval [1; +∞).

3.1.2. Local monotonicity of w ? φ near the wall
The property of local monotonicity near the wall guarantees that, at least in the vicinity of the wall, the

function w ? φ takes values below ψwall. This property is important because the physical modeling of Section
2.5 give a priori zero information for values above ψwall. In other words, the local monotonicity property states
that the solution takes only physical values (in the vicinity of the wall). At infinity, the solution converges to
zero with oscillation, as explained in the next two sections, but the oscillations are asymptotically in bounds
with the admissible domain (for the physical model in Section 2.6, the fact that ψ+ > 0 also helps).

Proposition 3.3. At x = 0+ the gyroaverage of φ satisfy d
dx (w ? φ)(0

+) < 0.

Proof. One considers the following test function:

χ := γφ+ φ′(x), (48)
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where the coefficient γ is chosen such that

γ w ? φ(0) + w ? (φ′)(0) = 0. (49)

One must take care that χ 6∈ Ḣ1 because the right hand side in (45) is not square integrable (indeed σ > 0
and σ ∈ Lp(R) for 1 ≤ p < 2). Nevertheless one performs the calculation using a preliminary regularization
argument (not detailed). Thus,

0 =

∫ ∞
0

φ′(x)χ′(x) dx+

∫ ∞
0

F ′
(
w ? φ(x)

)
w ? χ(x) dx.

= γ

∫ ∞
0

|φ′(x)|2dx+

∫ ∞
0

φ′(x)φ′′(x)dx

+ γ

∫ ∞
0

F ′
(
w ? φ(x)

)
w ? φ(x) dx+

∫ ∞
0

F ′(w ? φ(x))w ? φ′(x) dx

(50)

where for the second equality one uses (48). Using now the definition of γ given at (49), Equation (50) becomes

0 = −w ? φ
′(0)

ψwall

(∫ ∞
0

∣∣φ′(x)|2dx+

∫ ∞
0

F ′
(
w ? φ(x)

)
w ? φ(x) dx

)
+

∫ ∞
0

φ′(x)φ′′(x) dx+

∫ ∞
0

F ′
(
w ? φ(x)

)
w ? φ′(x) dx.

Then one is led to

0 = −w ? φ
′(0)

ψwall

(∫ ∞
0

∣∣φ′(x)|2dx+

∫ ∞
0

F ′
(
w ? φ(x)

)
w ? φ(x) dx

)
+
|φ′(0)|2

2
+ F

(
ψwall

)
Observing now that assumption (43) implies F ′(s)s ≥ 0 for all s ∈ R and also F (s) ≥ 0 with (40), one concludes
with the above equality that w ? φ′(0) > 0. �

3.1.3. Oscillatory nature of the solution for large α
The analysis of the solution near the wall is rather complicated but we expect it to be concave decreasing -

at least on a neighborhood of the wall. The difficulty comes from the presence of the Lagrange multiplier σ in
Equation (45), which is active only for x < 1 since the support of w is [−1, 1]. Concerning the behavior of the
solution when the distance to the wall is larger than 1, we are able to extract the following property when α is
large. We remind that, by Proposition 3.2-(v), there exists x0 ∈ [1; +∞) such that φ(x0) 6= 0.

Proposition 3.4 (Oscillatory nature of the solution). Assume that α defined at (44) satisfies α ≥ 5π2. Take
x0 ∈ [1; +∞) such that φ(x0) 6= 0. Then there exists x1 ∈ [x0; x0 + 6] such that φ(x0)φ(x1) < 0.

Remark 3.5. From this proposition, we conclude that the solution φ oscillates infinitely many times around
the value φ = 0. Indeed, by using this proposition recursively we get an increasing sequence (xn)n∈N such that
for all index n we have φ(xn)φ(xn+1) < 0. Proposition 3.2-(v) is important to initialize this recursive argument.
We also emphasize on the fact that this Proposition gives an upper bound on the wave length of the oscillations.
Indeed, it is required that x1 is lower than x0 + 6.

This phenomenon generates new open questions. What is the limit value of α? Is it possible to characterize
the amplitude and wave length of the oscillations? Some answers are possible with the method of exact solutions
of next Section 3.1.4.

Proof. • Step 1: Let x0 ∈ [1; +∞) such that φ(x0) 6= 0. Without loss of generality, we make the assumption
that φ(x0) > 0 because the following reasoning works the same in the case φ(x0) < 0, by simply changing all
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the signs. Suppose for the sake of contradiction that

∀ x ∈ [x0; x0 + 6], φ(x0) ≥ 0, (51)

We now construct a particular admissible direction h ∈ V0 (with V0 defined at (39)). We ask the function
h ∈ V0 ∩ C1(R) to be non-negative, bounded, with support supp h = [x0 + 2; x0 + 4] and such that h′′ ∈ L∞.
There exists an infinite choice of such functions. One has

supp w ? h = [x0 + 1; x0 + 5], and supp w ? w ? h = [x0; x0 + 6]. (52)

One now studies the variations of the functional J in the direction h. One gets by a direct computation

lim
s→0

J (φ+ s h)− J (φ)
s

=

∫ x0+4

x0+2

φ′(x)h′(x) dx+

∫ x0+5

x0+1

F ′(w ? φ)(x) (w ? h)(x) dx. (53)

Since the function φ is supposed to be non-negative on [x0; x0+6], then w?φ is non-negative on [x0+1; x0+5].
One also has h is non-negative. The property (43) combined with (52) yields∫ x0+5

x0+1
F ′(w ? φ)(x) (w ? h)(x) dx ≥ α

∫ x0+5

x0+1
(w ? φ)(x) (w ? h)(x) dx

= α
∫
R(w ? φ)(x) (w ? h)(x) dx

= α
∫
R φ(x)

(
w ? w ? h

)
(x) dx

= α
∫ x0+6

x0
φ(x)

(
w ? w ? h

)
(x) dx.

(54)

On the other hand, an integration by part gives∫ x0+4

x0+2

φ′(x)h′(x) dx = −
∫ x0+4

x0+2

φ(x)h′′(x) dx.

Therefore (53) implies

lim
s→0

J (φ+ s h)− J (φ)
s

≥
∫ x0+6

x0

φ(x)
[
α
(
w ? w ? h

)
(x)− h′′(x)

]
dx. (55)

• Step 2: Given the function h, one defines the quantity

µ := sup
x∈]x0; x0+6[

h′′(x)

w ? w ? h(x)
= sup
x∈[x0+2; x0+4]

h′′(x)

w ? w ? h(x)
(56)

because w?w?h is positive on ]x0; x0+6[ as stated in (52), whereas h′′ has its support contained in the support
of h which is [x0 + 2;x0 + 4]. These two facts imply that the quantity µ is finite. On the other hand, one has
0 = h′(x0+4)−h′(x0+2) =

∫ x0+4

x0+2
h′′(x) dx. Since h′′ is not identically 0 on the support of h, then the equation

above gives that
meas

{
x ∈ [x0 + 2;x0 + 4] : h′′(x) > 0

}
is positive.

One concludes that µ > 0. One now uses the definition of µ to study the right-hand side of Equation (55). One
has h′′(x) ≤ µ

(
w ? w ? h

)
(x) for all x ∈ [x0; x0 + 6]. Therefore,∫ x0

x0−6
φ(x)

[
α
(
w ? w ? h

)
(x)− h′′(x)

]
dx ≥

(
α− µ

) ∫ x0

x0−6
φ(x)

(
w ? w ? h

)
(x) dx, (57)
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where again φ ≥ 0 on [x0; x0 + 6]. One now considers α very large so that α > µ and obtains
(
α − µ

)(
w ?

(w ? h)
)
(x) > 0 for all x ∈ [x0; x0 + 6]. Moreover, as a consequence of (51) the function φ is non-negative on

[x0; x0 + 6] but it is not identically 0 since φ(x0) > 0. Thus, the right-hand side of (57) is positive. Plugging
this back into (55) gives

lim
s→0

J (φ+ s h)− J (φ)
s

> 0,

which eventually contradicts the minimality of the function φ. It already proves the claim for α large enough.
It remains to show the lower bound on α.

• Step 3: Here, we prove that α > 5π2. The idea here is to consider a particular function h for the formula (55)
and to provide an estimate on its associated coefficient µ.
• Firstly one defines a function ψ : R → R+ (this notation has nothing to do with the previous function ψ in
the modeling section) as follows

∀x ∈ R, ψ(x) =


0 if x ≤ 0,
x2/2 if 0 ≤ x ≤ 1/2,
−(x− 1)2/2 + 1/4 if 1/2 ≤ x ≤ 3/2,
(x− 2)2/2 if 3/2 ≤ x ≤ 2,
0 if 2 ≤ x.

(58)

By definition, one has that ψ ∈W 2,∞(R) is supported on [0; 2], is non-negative and is such that

ψ′′(x) = 1(0; 1
2 )
(x)− 1( 1

2 ;
3
2 )
(x) + 1( 3

2 ; 2)
(x) almost everywhere. (59)

Since w is lower bounded by 1
π on the interval [−1, 1], one has

w ? w ? ψ(x) =

∫ x+1

x−1

∫ y+1

y−1
w(x− y)w(y − z)ψ(z) dydz ≥ 1

π2

∫ x+1

x−1

∫ y+1

y−1
ψ(z) dydz

because |x− y| ≤ 1 and |y − z| ≤ 1. One is now going to compute explicitly this last integral. One writes it as

1

π2

∫∫
Dx

ψ(z) dz dy (60)

where Dx :=
{
(y, z) ∈ R2 : x−1 ≤ y ≤ x+1 and y−1 ≤ z ≤ y+1

}
. Subdivide the set Dx into the 6 following

subsets

Dx,1 := Dx ∩ {(y, z) ∈ R2 : z ≤ 0}, Dx,2 := Dx ∩ {(y, z) ∈ R2 : 0 ≤ z ≤ x},
Dx,3 := Dx ∩ {(y, z) ∈ R2 : x ≤ z ≤ 1/2}, Dx,4 := Dx ∩ {(y, z) ∈ R2 : 1/2 ≤ z ≤ 3/2},
Dx,5 := Dx ∩ {(y, z) ∈ R2 : 3/2 ≤ z ≤ 2}, Dx,6 := Dx ∩ {(y, z) ∈ R2 : 2 ≤ z}.

(61)

One computes
∫∫
Dx

ψ(z)dz dy by splitting the computation on these 6 sub-domains and using directly (58).
First, one has ∫∫

Dx,1

ψ(z) dz dy =

∫∫
Dx,6

ψ(z) dz dy = 0

One gets the 4 remaining terms by a direct computation using the Fubini theorem, that is in order∫∫
Dx,2

ψ(z)dz dy =

∫ x

0

∫ z+1

x−1
ψ(z) dy dz =

∫ x

0

∫ z+1

x−1

z2

2
dy dz =

x3

3
− x4

24
,
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Figure 5. An illustration of the set Dx ⊆ R2, subdivided into Dx,1 · · ·Dx,6 represented by the
different shades of grey. This subdivision intervenes in the computation of the integral (60).

∫∫
Dx,3

ψ(z)dz dy =

∫ 1/2

x

∫ x+1

z−1
ψ(z) dy dz =

∫ 1/2

x

∫ x+1

z−1

z2

2
dy dz = −x

4

24
− x3

3
+

x

48
+
( 1

24
− 1

128

)
,

∫∫
Dx,4

ψ(z)dz dy =

∫ 3/2

1/2

∫ x+1

z−1
ψ(z) dy dz =

∫ 3/2

1/2

∫ x+1

z−1

[1
4
− (z − 1)2

2

]
dy dz =

5

24
(x+ 1)

and ∫∫
Dx,5

ψ(z)dz dy =

∫ 2

3/2

∫ x+1

z−1
ψ(z) dy dz =

∫ 2

3/2

∫ x+1

z−1

(z − 2)2

2
dy dz =

x

48
− 1

128
.

Thus one concludes that
∫∫
Dx

ψ(z) dz dy = −x
4

12+
x
4+

15
64 . An analysis of the function x ∈ [0, 1/2] 7→ −x4/12+x/4

shows that it is non-negative and thus
∫∫
Dx

ψ(z) dz dy ≥ 15
64 >

1
5 . Plugging this back into (60) gives

∀ x ∈
[
0;

1

2

]
, (w ? w ? ψ)(x) >

1

5π2
(62)

Invoking now the fact that ψ is symmetrical with respect to x = 1, one can do the very same reasoning with
x ∈ [3/2; 2]. Therefore

∀ x ∈
[3
2
; 2
]
, (w ? w ? ψ)(x) >

1

5π2
(63)
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Gathering now the estimates (62) and (63), one concludes

∀ x ∈ R, (w ? w ? ψ)(x) >
1

5π2
ψ′′(x), (64)

where ψ′′ was computed at (59).
• Finally one defines h(x) := ψ(x − x0 − 2). It is straight-forward to check that h is in V0, non-negative,
supported on [x0+2;x0+4] and satisfy h′′ ∈ L∞(R). As a consequence of (64), the coefficient µ defined at (56)
associated to this function h0 is smaller than 5π2. It shows that α ≥ 5π2. �

3.1.4. Linearization of the equation far from the wall
Far from the wall, the equation (45) linearized at infinity around the asymptotic value φ = 0 yields the linear

problem. Actually the linear problem is just a particular case of the general situation, since it is sufficient to
take α = β in (44). It appears that the linear problem helps to explain the oscillating behavior of the solution
by means of the construction of exact solutions.

The homogeneous linear equation that we consider is written as

− u′′(y) + γw ? w ? u(y) = 0, y > 0. (65)

By compatibility with (44), the coefficient γ is positive with β ≥ γ ≥ α > 0. If the convolution operator would
be atomic (a Dirac mass), then the linearized equation would be the classical Laplace equation −u′′ + γu = 0
with classical particular real solutions ur(y) = exp(±√γy). But the situation is now very different due to the
convolution operator.

Let us look for a general complex exponential solution ur(y) = exp(−ry) with r ∈ C. One has by a direct
calculation that w ? ur(y) = C(r)ur(y) with C(r) = w ? ur(0). Plugging in (65), one obtains the compatibility
relation r2 = γC(r)2, that is r = ±√γ C(r).

Lemma 3.6. One has C(r) = I0(r) where I0 is the first modified Bessel function.

Proof. One starts from C(r) = 1
π

∫ 1

−1 exp(rx)
1√

1−x2
dx. By derivation and integration by parts, one gets C ′(r) =

1
π

∫ 1

−1 exp(rx)
x√

1−x2
dx = r

π

∫ 1

−1 exp(rx)
√
1− x2dx. Another derivation yields C ′′(r) = 1

π

∫ 1

−1 exp(rx)
x2

√
1−x2

dx.

One can also write C(r) − C ′′(r) = 1
π

∫ 1

−1 exp(rx)
1−x2
√
1−x2

dx = 1
π

∫ 1

−1 exp(rx)
√
1− x2dx so one obtains the

differential equation

C(r)− C ′′(r) = 1

r
C ′(r)⇐⇒ r2C ′′(r) + rC ′(r)− r2C(r) = 0.

This is the modified Bessel equation, see [35, formula 10.25.1 page 248]. Therefore C = aI0+bK0 where a, b ∈ R.
Since C(0) = 1 and C ′(0) = 0, one gets a = 1 and b = 0 and the proof is ended. �

The first modified Bessel function I0 is even, so it is sufficient to study the equation

z = tI0(z), t =
√
γ > 0. (66)

The functions ur(y) = exp(−ry) solution to (65) that we study correspond to r = ±z.
For real x ∈ R, the graph of the function x 7→ I0(x) is strictly convex and lower bounded by a quadratic,

that is I0(x) ≥ 1 + cx2 with c = 1
2I
′′
0 (0) > 0. Therefore there exists t∗ > 0 such that the graph of x 7→ t∗I0(x)

is tangent to the graph x 7→ x. It is characterized by the transcendental equations{
x∗ = t∗I0(x∗),
1 = t∗I

′
0(x∗).

Lemma 3.7. For 0 < t < t∗, there exists two real solutions 0 < x−(t) < x∗ < x+(t) of the equation x = tI0(x).
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Figure 6. Intersection of x 7→ x with x 7→ tI0(x) for three different values of t. The corre-
spondence is: f is for t > t∗, g is for t = t∗ and h is for t < t∗.

Proof. The proof is by intersection of graphs, as in the Figure 6. �

Now we study the equation (66) for t > t∗, and for possible complex solutions z ∈ C.

Lemma 3.8. One can rewrite the equation (66) under the form

z − x∗ = ±
√
t∗ − t
t∗

H(z − x∗) (67)

where H is an analytic series (with a certain radius of convergence) with real coefficients.

Proof. One rewrites the equation (66) as

z − x∗ = t∗ (I0(z)− I0(x∗)) + (t− t∗)I0(z),

then
(
t∗
I0(z)−I0(x∗)

z−x∗ − 1
)
(z− x∗) = (t∗− t)I0(z), then

(
t∗
I0(z)−I0(x∗)

z−x∗ − t∗I ′0(x∗)
)
(z− x∗) = (t∗− t)I0(z), then

(z − x∗)2 =
t∗ − t
t∗
× I0(z)

I0(z)−I0(x∗)−I′0(x∗)(z−x∗)
(z−x∗)2

. (68)

By continuity, the function G(z) = I0(z)
I0(z)−I0(x∗)−I′0(x∗)(z−x∗)

(z−x∗)2

admit a finite value at z = x∗, namely G(x∗) =

2 I0(x∗)I′′0 (x∗)
> 0. The function I0 is an analytic series in the whole complex plane with real coefficients so G(z) is

also an analytic series in the whole complex plane with real coefficients. Therefore one can take the square root
of G

H(z) =
√
G(z) = h0

√
1 +

G(z)−G(x∗)
h20

where h0 =
√
G(x∗) > 0.

This is an analytic series H(z) =
∑
n≥0 hn(z − x∗)

n in function of z − x∗ with real coefficients and with a
certain radius of convergence (because of the square root). Therefore taking the square root of (68) yields the
claim. �
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It is now evident to study the solution of the equation (66), at least for |t− t∗| small enough.

First case 0 < t < t∗: The square root
√
t∗ − t ∈ R takes real values. Then the equation can be solved

with a fixed point method for z ∈ R. In this case one recovers the two real solutions of Lemma 3.7.
Second case t∗ < t: The square root

√
t∗ − t ∈ R takes imaginary values. Then it is better to write the

equation as

z − x∗ = ±i

√
|t∗ − t|
t∗

H(z − x∗).

A fixed point method yields two solutions in the vicinity of x∗, but in the complex plane, that is
z = a+ ib with a, b ∈ R and b 6= 0.

In summary of this discussion is that the solutions of (66) are either real or complex.
• If t > t∗, one can rewrite complex solutions of the linearized equation (65) as real solutions under the form

u(y) = exp(−ay) cos(by), where z = a+ ib solves (67) with a > 0, b 6= 0, and y > 0.

This solution is clearly oscillating.
• If t < t∗, it is also possible to construct solutions that change sign under the form

u(y) = a exp(−x−(t)y) + b exp(−x+(t)y), b > −a > 0, y > 0.

• If t = t∗, it is also possible to construct solutions that change sign under the form

u(y) = at exp(−x∗y) + b exp(−x∗y), b,−a > 0, y > 0.

• Since w ? u = C(r)u and w ? w ? u = C(r)2u, then the changes of sign hold also for the convolved functions
w ? u and w ? w ? u. So the convolution operator has no smoothing effect for these functions.

The construction of this Section and the result of Proposition 3.4 exemplify the fact that the behavior of the
mathematical solutions is deeply affected by the convolution operator. To our understanding, it seems that this
phenomenon has not been studied in the mathematical literature [18,21,23,28].

3.1.5. A physical interpretation of the oscillatory solutions
The two methods explained in Sections 3.1.3 and 3.1.4 exhibit oscillatory solutions for α > 0 large enough,

which means for a function F with a magnitude large enough. Going back to the physical equations (5-7) and
to the physical scaling (8) of the Debye length λ, a natural physical interpretation is that the physical Debye
length is small enough in relative units. We arrive at the conclusion that the gyroaveraging procedure has the
ability to generate oscillatory mathematical solutions for the range of parameters considered in physical papers
such as [10]. We also note that oscillatory potentials have already been observed in numerical simulations [15],
where they are associated to the so-called magnetic pre-sheath.

4. Numerical study

The objective hereafter is, on the one hand to explain that it is possible to discretize the minimization/extre-
malization problem with standard numerical methods, and the other hand to show that the oscillatory/non
oscillatory behavior of the solutions predicted in the theoretical section is observed. In this section we use the
sign convention of the physical modeling Section 2: we work in the negative half line x < 0, with negative wall
potentials ψwall < 0.
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4.1. Description of the numerical method

The numerical method is made of two steps.
• The first step consists in assembling the density potentials Ni and Ne and computing the reference density
nref > 0 and the Dirichlet boundary condition on the wall potential ψwall < 0 by solving (24-25). We will consider
a function f∞i that is piecewise continuous, so that standard quadrature formulas for velocity integrals can be
used to assemble the potentialNi. The other potential poses no additional difficulty. Next, nref > 0 and ψwall < 0

are computed by means of a Newton-Raphson method applied to the function W : 0 < u 7→ H(u) −
√
2n∞i√
πηJ∞i

.

Provided √πηJ∞i <
√
2n∞i , we know that this fonction has a unique zero, W(−ψwall) = 0.

• The second step consists in solving the minimization problem (36), (37) and (38) by means of a gradient
method based on a finite element approximation. Since the solution φ to the minimization problem (36), (37)
and (38) belongs to H1(R−), it has a zero limit at −∞, that is lim−∞ φ = 0. As a consequence, for the numerical
method we take L > 0 large enough such that for x < −L, then |φ(x)| < εmachine where εmachine corresponds to
the relative machine error. Given Nx ∈ N, we subdivide the computational domain [−L, 0] in Nx + 1 intervals
Ik = [xk, xk+1] of uniform size h = L

Nx+1 , We then consider the finite element space Wh
0 ⊂W0 made of globally

continuous and piecewise affine functions which are constant outside the domain [−L, 0]. That is, we set

Wh
0 = {vh ∈ C0(R) : vh|Ik ∈ P1(Ik) ∀k = 0, .., Nx and vh(x) = 0 for x ≤ −L, vh(x) = vh(0) for x > 0}.

As for the Dirichlet boundary condition at the wall, we use a standard penalty method [22]. We consider ε > 0
small enough and the following penalized minimization problem on Wh

0 : find φh ∈Wh
0 such that

φεh = arg
vh∈Wh

0

minLε(vh) (69)

where the Lagrangian Lε is defined for all vh ∈Wh
0 by

Lε(vh) = J (vh) +
1

2ε
(we ? vh(0)− ψwall)

2.

For any ε > 0 the minimization problem (69) has a unique solution φεh sinceWh
0 is a finite dimensional subspace

of W0 and Lε is coercive and strictly convex. It is standard that φεh → φh in H1(R−) as ε→ 0+ (see Theorem
7.1 of [22]) where φh is the unique minimizer of J on Wh

0 such that we ? φh(0) = ψwall. To compute φεh, we use
a standard gradient method which consists in computing recursively the sequence (φε,nh )n∈N ⊂W0,h given by{

φε,0h ∈Wh
0

φε,n+1
h = φε,nh − ρ∇Lε(φ

ε,n
h ) ∀n ∈ N,

where ρ > 0 is a given parameter. By the Riesz representation theorem, the gradient ∇Lε(φε,nh ) ∈ Wh
0 is the

unique solution of the variational problem

(∇Lε(φε,nh ), vh)H1(R−) = dLε(φ
ε,n
h )(vh) ∀vh ∈Wh

0 ,

where (·, ·)H1(R−) is the usual inner product on H1(R−) and dLε(φε,nh ) is the Fréchet derivative of Lε at φε,nh ,

dLε(φ
ε,n
h ) : vh 7→ dJ (φε,nh )(vh) +

1

ε
(we ? φ

ε,n
h (0)− ψwall)(we ? vh(0)).

To apply gyroaverage operator (3) we use a Gauss-Chebyshev quadrature which is well suited for the numerical
treatment of the convolution with the singular kernel w given by Equation (4).
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4.2. Oscillatory solutions

We desire to exhibit the oscillatory nature of the solution φ to the minimization problem (36), (37) and (38).
The values of the parameters are : ri = re = 1, λ = 1, θ = π

4 , η = 1/3000, L = 20. We consider the ion
boundary condition

f∞i (v) =
nrefi√
2πvth

(v − vc)2e
− (v−vd)

2

2v2
th 1v>vc(v), (70)

with vth = 0.5, vc = 1.0, vd = 3/2. Provided the condition α > 5π2 is satisfied, our theory predicts that at least
oscillatory solutions exist. In our case, a rough estimation α ≈

∫ +∞
0

f∞i (v)dv −
∫ +∞
0

f∞i (v)
v2 dv shows that α is

proportional to nrefi . Therefore choosing nrefi large enough is a simple way to enforce α > 5π2. In the numerical
illustrations reported in Figures 7, 8 and 9, we set nrefi = 100. For the finite element approximation we choose
Nx = 1000. For the gradient algorithm we choose ε = 5.10−2, ρ = 10−4. The gradient algorithm is stopped
when the L∞ norm of the gradient of Lε is smaller than δ = 10−15. We plot in figures 7,8 and 9 the computed
electrostatic potential, its gyroaverage, and the ionic and electronic densities.
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Figure 7. Plot of the electrostatic potential and gyroaveraged electrostatic potential

4.3. Transition from oscillatory solutions to non oscillatory solutions

Here we recompute the problem of the previous section, except that nrefi in (70) is set to 3 different values

nrefi = 100, 40 and 10.

We plot the 3 profiles of the electric potential φ (in linear scale and log scale) in Figure 10. The oscillations for
nrefi = 100 are mitigated with a larger wavelength for nrefi = 40, and eventually vanish for nrefi = 10. We believe
that this behavior is in accordance with the results of the theoretical section.

Appendix A. Properties of the gyroaverage operator

We state the main mathematical properties of the gyroaverage operator, which is the convolution with the
kernel w defined by (4).
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Figure 8. Plot in logscale of the electrostatic potential and gyroaveraged electrostatic poten-
tial. The drop at x ≈ −15 is due to machine precision, because the boundary condition was
numerically set to φ = 0 on the left boundary to emulate the condition at infinity.
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Lemma A.1 (properties of the gyroaverage operator). One has:
(i) The function w belong to ∈ Lp(R) for all p ∈ [1, 2[.
(ii) For all q, r ∈ [1,+∞] and p ∈ [1, 2[ such that 1

p + 1
q = 1 + 1

r , one has ‖w ? f‖Lr ≤ ‖w‖Lp ‖f‖Lq . In
particular, by taking p = 1, one gets ‖w ? f‖Lq ≤ ‖w‖L1 ‖f‖Lq = ‖f‖Lq .

(iii) Define q and r as above. If f ∈ Lqloc(R), then w ? f ∈ Lrloc(R).
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Figure 10. Plot of the electric potential, linear-scale on top and log-scale on bottom, for 3
different values of the reference ionic density at infinity. One observes that the oscillations for
high value of nrefi vanish for low value of nrefi .

(iv) Let p ∈ [1,+∞[ and let s ∈ R. Suppose that f ∈ Ẇ s,p(R). Then w ? f ∈ Ẇ s+ 1
2 ,p.

Proof. Proof of point (i): The function w is even. Then, it is enough to study its integrability near x = 1.
Let x ≥ 0, one has 0 ≤ π w(x) = 1√

1−x2
≤ 1√

1−x = |1 − x|−1/2. This last function belongs to Lp([0, 1[) for all
p ∈ [1, 2[.
Proof of point (ii): This is the Young inequality for the convolution [29].
Proof of point (iii): Let K := [a, b] be a measurable compact interval of R and let f ∈ Lqloc(R). The support
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of the function w ? (f.1K) is contained in [a − 1, a + 1] and coincide with w ? f on the set [a + 1, b − 1] as a
consequence of supp(w) = [−1, 1]. By applying the result given by the previous point to the two functions w
and f.1K , one gets that w ? f ∈ Lr([a+ 1, b− 1]). This implies that w ? f ∈ Lrloc(R).
Proof of point (iv): As a consequence of the standard theory on fractional Sobolev spaces [16], it is enough to
prove that the Fourier transform of w satisfies |ŵ(ξ)| ≤ C

1+|ξ|1/2 for all ξ ∈ R. Using the parity of the function
w and a change of variable, one gets

|ŵ(ξ)| =
∣∣∣ ∫ 1

−1

eiξx√
1− x2

dx
∣∣∣ = 2

∣∣∣ ∫ 1

0

eiξx√
(1− x)(1 + x)

dx
∣∣∣ ≤ 2

∣∣∣ ∫ 1

0

eiξx√
x
dx
∣∣∣ = 2

|ξ|1/2
∣∣∣ ∫ ξ

0

eiy
√
y
dy
∣∣∣.

Since
∣∣∣ ∫ ξ0 eiy√

ydy
∣∣∣ ≤ min(c, |ξ|1/2) holds for some constant c > 0, one gets |ŵ(ξ)| ≤ C

1+|ξ|1/2 for all ξ ∈ R. The
rate of decrease of W at infinity yields the gain of regularity of the claim. �

Appendix B. Basic properties of the minimizer

B.1. Proof of Proposition 3.1

We prove here the existence and uniqueness of the minimization problem (36), (37) and (38) and derive the
equation satisfied by the solution.

B.1.1. Existence and uniqueness
First, one checks that the functional J is well-defined on the vector space

W0 :=
{
ψ ∈ Ḣ1(R) ∩ L2(R+) : ψ(x) = ψ(0) for x < 0

}
, (71)

where the homogeneous Sobolev space Ḣ1 is the set of functions that admit a weak derivative in L2. Up to the
redefinition of the physical space for the x variable, this space is identical to the one in (34). One has that

∀ ψ ∈W0,

∫ ∞
0

|ψ′(x)|2 dx < +∞.

On the other hand, as a consequence of (44),

∀ ψ ∈W0,

∫ ∞
0

F
(
w ? ψ

)
(x) dx ≤ β

2

∫ ∞
0

∣∣w ? ψ(x)∣∣2 dx ≤ β

2

∫ ∞
−1
|ψ(x)|2dx < +∞,

where for the second inequality one uses Proposition 3.2-(ii) in appendix A. It is straightforward that the
functional J defined at (37) is strictly convex on W0 as a consequence of the strict convexity of the function F
given by Hypothesis (41). Recall that The affine space V (38) inside which the minimization problem is defined
is an affine subspace of W0.

To obtain existence and uniqueness of this constrained minimization problem, it remains to prove that the
functional J is coercive on H1(R+). Note that one has separately

J (φ) ≥ 1

2

∫ ∞
0

∣∣∣∣ ddxφ(x)
∣∣∣∣2 dx and J (φ) ≥ α

2

∫ ∞
0

|w ? φ(x)|2 dx (72)

so one needs to obtain a good lower bound on the second term. One has w ? φ(x) = φ(x) +R(x) where

R(x) =

∫ 1

−1
w(y)(φ(x− y)− φ(x))dy =

∫ 1

y=−1

∫ x−y

z=x

w(y)φ′(z)dzdy.
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One has directly (Fubini Theorem then Cauchy-Schwarz inequality)

|R(x)| ≤
∫ 1

y=−1

∫ x+1

z=x−1
w(y)|φ′(z)|dzdy =

∫ x+1

z=x−1
|φ′(z)|dz ≤

√
2

(∫ x+1

z=x−1
|φ′(z)|2dz

) 1
2

.

One has the basic inequality |w ? φ(x)|2 = |φ(x) +R(x)|2 ≥ 1
2 |φ(x)|

2 − |R(x)|2. Therefore one can write

∫ ∞
0

|w ? φ(x)|2 dx ≥ 1

2

∫ ∞
0

|φ(x)|2 dx− 2

∫ ∞
x=0

∫ x+1

z=x−1
|φ′(z)|2dzdx

that is ∫ ∞
0

|w ? φ(x)|2 dx ≥ 1

2

∫ ∞
0

|φ(x)|2 dx− 4

∫ ∞
0

∣∣∣∣ ddxφ(x)
∣∣∣∣2 dx. (73)

Plugging (73) in (72), one gets

(6α+ 1)J (φ) ≥ 3α
∫∞
0

∣∣ d
dxφ(x)

∣∣2 dx+ α
4

∫∞
0
|φ(x)|2 dx− 2α

∫∞
0

∣∣ d
dxφ(x)

∣∣2 dx
≥ α

4

∫∞
0
|φ(x)|2 dx+ α

∫∞
0

∣∣ d
dxφ(x)

∣∣2 dx.
This is the coercivity estimate, so the proof of the existence is ended. The functional being strictly convex, the
minimum is unique.

B.1.2. Obtaining the equations in strong form
Such a formulation for extremal solutions with linear constraints is very classical. As already used in the

modeling section, the shortest path to the result is achieved with the Lagrangian

L(φ, σ) := J (φ)− σ
(
w ? φ(0)− ψwall

)
and by calculating variations with respect to all h ∈ W0, where W0 is defined at (71). For all admissible test
functions h ∈W0, one obtains∫ ∞

0

φ′(x)h′(x) dx+

∫ ∞
0

F ′
(
w ? φ(x)

) (
w ? h(x)

)
dx− σw ? h(0) = 0. (74)

Since φ ∈ V implies φ′′ = 0 on R∗+, one can write
∫∞
0
φ′(x)h′(x) dx = φ′(0−)h(0)−

∫ +∞
−∞ φ′′(x)h(x) dx. Moreover,

using the Fubini theorem,∫ ∞
0

F ′
(
w ? φ(x)

) (
w ? h(x)

)
dx =

∫ ∞
−∞

1R+
(x)F ′

(
w ? φ(x)

) (
w ? h(x)

)
dx

=

∫ +∞

−∞
w ?

(
1R+

F ′
(
w ? φ

))
(x)h(x) dx

=

∫ ∞
0

w ?
(
1R+

F ′
(
w ? φ

))
(x)h(x) dx+ h(0)

∫ 0

−∞
w ?

(
1R+

F ′
(
w ? φ

))
(x) dx,

where for the last equality one uses the fact that h is constant on R−. Finally, using the properties of w,∫∞
−∞ w(x)h(x) dx =

∫∞
0
w(x)h(x) dx + 1

2h(0). Therefore, computing the variations of the Lagrangian L along
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h at the value (φ, σ) solution eventually gives the following equation.∫ ∞
0

[
− φ′′(x) + w ?

(
1R+ F

′(w ? φ))(x)− σw(x)]h(x) dx
+
[
φ′(0+) +

∫ 0

−∞
w ?

(
1R+

F ′
(
w ? φ

))
(x) dx− σ

2

]
h(0) = 0.

Taking arbitrary h ∈ W0 with h(0) = 0 yields to Equation (45). Equation (46) is the remaining coefficient in
front of h(0). �

B.2. Proofs for Proposition 3.2

B.2.1. Proof of Proposition 3.2-(i)
Using the variational principle (74) with the test function h = φ, one ends up with∫ ∞

0

|φ′(x)|2dx+

∫ ∞
0

F ′
(
w ? φ(x)

) (
w ? φ(x)

)
dx = σ

∫ 1

−1
w(x)φ(x) dx (75)

One now uses assumption (43) to write for all x ∈ R+,

min
{
αw ? φ(x) ; β w ? φ(x)

}
≤ F ′

(
w ? φ(x)

)
≤ max

{
αw ? φ(x) ; β w ? φ(x)

}
.

The combination of these two facts with α ≤ β gives

α

∫ ∞
0

|w ? φ(x)|2dx ≤
∫ ∞
0

|φ′(x)|2dx− σ
∫ 1

−1
w(x)φ(x)dx ≤ β

∫ ∞
0

|w ? φ(x)|2dx.

�

B.2.2. Proof of Proposition 3.2-(ii)
Take ν > 0. One defines

φν(x) :=

{
ν e−

√
β(x+1) if x > 0,

ν e−
√
β otherwise.

A direct computation gives
1

2

∫ ∞
0

∣∣φ′ν(x)∣∣2dx =
ν2
√
β

4
e−2
√
β . (76)

On the other hand, using (44) one has∫ ∞
0

F
(
w ? φν(x)

)
dx ≤ β

2

∫ ∞
0

∣∣w ? φν(x)∣∣2 dx (77)

Since the function x 7→ φν(x) is non-increasing and since
∫
w = 1, one has that 0 ≤ w ? φν(x) ≤ φν(x− 1).

Therefore (77) implies
∫∞
0
F
(
w ? φν(x)

)
dx ≤ β

2

∫∞
0

∣∣φν(x− 1)
∣∣2 dx. One infers by a direct computation that∫ ∞

0

F
(
w ? φν(x)

)
dx ≤ ν2

√
β

4
e−2
√
β(1 + 2β). (78)

Gathering (76) and (78) gives

J (φν) ≤
ν2
√
β

2
e2
√
β(1 + β) (79)
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One sets the value of ν such that w ? φν(0) = ψwall so that φν ∈ V . This means

ψwall = ν

∫ 0

−1
w(x)e−

√
βdx+ ν

∫ 1

0

w(x)e−
√
β(x+1)dx

Thus,

ν =
ψwall∫ 0

−1 w(x)e
−
√
βdx+

∫ 1

0
w(x)e−

√
β(x+1)dx

≤ 2

e−
√
β + e−2

√
β

where for the last inequality one used e−
√
β(x+1) ≥ e−2

√
β when x ∈ [0; 1]. Therefore (79) gives J (φν) ≤

2 2
√
β(1 + β) e−2

√
β

(e−
√
β+e−2

√
β)2

. Since one has e−2
√
β ≤ (e−

√
β + e−2

√
β)2, one concludes J (φ) ≤ J (φν) ≤

2ψ2
wall

√
β (1 + β). �

B.2.3. Proof of Proposition 3.2-(iii)
One starts by integrating equation (45) and get∫ ∞

0

−φ′′(x) dx+

∫ ∞
0

w ?
(
1R+

F ′(w ? φ)
)
(x) dx = σ

∫ ∞
0

w(x) dx.

Therefore, φ′(0+) +
∫∞
0
w ?

(
1R+

F ′(w ? φ)
)
(x) dx = σ

2 . One plugs this equation in (46) and get

∫ ∞
0

w ?
(
1R+

F ′(w ? φ)
)
(x) dx =

∫ 0

−∞
w ?

(
1R+

F ′(w ? φ)
)
(x) dx.

�

B.2.4. Proof of Proposition 3.2-(iv)
From (75), one has ∫ ∞

0

|φ′(x)|2dx+

∫ ∞
0

F ′
(
w ? φ(x)

) (
w ? φ(x)

)
dx = σψwall.

The left hand side is positive and ψwall is also positive. So σ is positive.
As a consequence of Equation (45) and since w → +∞ at +1 , it is enough to prove that

x 7−→ w ?
(
1R+

F ′(w ? φ)
)
(x) ∈ L∞([0, 1]). (80)

For x ∈ [0, 1], one has by triangular inequality
∣∣∣w ? (1R+F

′(w ? φ)
)
(x)
∣∣∣ ≤ ∫ 2

−1 w(x− y)
∣∣F ′(w ? φ)(y)∣∣ dy. One

uses Hypothesis (43) and gets

∣∣∣w ? (1R+
F ′(w ? φ)

)
(x)
∣∣∣ ≤ β

∫ 2

−1
w(x− y)

∣∣w ? φ(y)∣∣ dy
≤ β

∫ 2

−1

∫ 3

−2
w(x− y)w(y − z) |φ(z)| dz dy

≤ β
∫ 3

−2
|φ(z)| (w ? w)(x+ z) dz,

(81)
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where one uses the Fubini Theorem for the last inequality. Using now the Cauchy-Schwarz inequality and then
using Property (ii) of Lemma A.1 in appendix with parameters p = q = 4/3 and r = 2, one gets∣∣∣w ? (1R+

F ′(w ? φ)
)
(x)
∣∣∣ ≤ ∥∥φ1[−2,3]‖L2 ‖w ? w‖L2 ≤

∥∥φ1[−2,3]‖L2 ‖w‖2L4/3 .

Then one has proved (80) and this complete the proof. �

B.2.5. Proof of Proposition 3.2-(v)
As a consequence of Proposition 3.2-(v), the function φ cannot change sign infinitely many times as x → 1

with x < 1. In other words, there exists ε with 0 < ε < 1 such that

∀ x ∈]1− ε, 1[, φ(x) 6= 0. (82)

Suppose now by the absurd that φ(x) = 0 for all x > 1. One is going to prove that in this case φ′′(3− ε) 6= 0,
which yields a contradiction. For that purpose, one computes

w ?
(
1R+

F ′(w ? φ)
)
(3− ε) =

∫ 4−ε

2−ε
w(3− ε− y)F ′

(∫ y+1

y−1
w(y − z)φ(z) dz

)
dy

Using the fact that φ(x) = 0 for all x > 1 with F ′(0) = 0, consequence of (43), the equality above becomes

w ?
(
1R+F

′(w ? φ)
)
(3− ε) =

∫ 2

2−ε
w(3− ε− y)F ′

(∫ 1

y−1
w(y − z)φ(z) dz

)
dy (83)

Nevertheless, as stated by (82), the function φ does not change sign on ] − 1;−1 + ε[. Suppose for instance
and without loss of generality that φ(x) > 0 for all x ∈]1 − ε; 1[. Then

∫ 1

y−1 w(y − z)φ(z) dz > 0 for all

y ∈]2− ε; 2[. Since F ′ > 0 on R∗+ as stated by (43) and since w is positive on its support, one gets
∫ 2

2−ε w(3−

ε − y)F ′
(∫ 1

y−1 w(y − z)φ(z) dz

)
dy > 0. Plugging this back into (83) and using Equation (45) leads to

φ′′(3− ε) > 0. Since ε < 1, this is in contradiction with φ(x) = 0 for all x > 1. �
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