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RADIOMIC ANALYSIS OF HTR-DCE MR SEQUENCES IMPROVES DIAGNOSTIC 

PERFORMANCE COMPARED TO BI-RADS SCORE ANALYSIS OF BREAST MR 

LESIONS  

 

ABSTRACT 

 

PURPOSE: To assess the diagnostic performance of radiomic analysis using High Temporal 

Resolution (HTR)-Dynamic Contrast Enhancement (DCE) MR sequences compared to BI-

RADS analysis to distinguish benign from malignant breast lesions. 

MATERIALS AND METHODS: We retrospectively analyzed data from consecutive 

women who underwent breast MRI including HTR-DCE MR sequencing for abnormal 

enhancing lesions and who had subsequent pathological analysis at our tertiary center. Semi-

quantitative enhancement parameters and textural features were extracted. Temporal change 

across each phase of textural features in HTR-DCE MR sequences were calculated and called 

“kinetic textural parameters”. Statistical analysis by LASSO-logistic regression and cross 

validation were performed to build a model. The diagnostic performance of the radiomic 

model was compared to the results of  BI-RADS MR score analysis. 

RESULTS: We included 117 women with a mean age of 54 years (28-88). Of the 174 lesions 

analyzed 75 were benign and 99 malignant. Seven semi-quantitative enhancement parameters 

and 57 textural features were extracted. Regression analysis selected 15 significant variables 

in a radiomic model (called “malignant probability score”) which displayed an AUC=0.876 

(sensitivity=0.98, specificity=0.52, accuracy=0.78). The performance of the malignant 

probability score to distinguish benign from malignant breast lesions (AUC=0.876, 95%CI 

0.825-0.925) was significantly better than that of BI-RADS analysis (AUC=0.831, 95%CI 

0.769-0.892). The radiomic model significantly reduced false positives (42%) with the same 

number of missed cancers (n=2) 
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CONCLUSION: A radiomic model including kinetic textural features extracted from an 

HTR-DCE MR sequence improves diagnostic performance over BI-RADS analysis.  

 

KEY WORDS:  
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Neoplasms 
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Artificial intelligence   

 

 

KEY POINTS:  

1- Radiomic analysis using HTR-DCE is of better diagnostic performance AUC=0.876 

than conventional breast MRI reading with BI-RADS AUC=0.831 (p<0.001) 

2- A radiomic malignant probability score under 19.5% gives a negative predictive value 

of 100% while a malignant probability score over 81% gives a positive predictive 

value of 100% 

3- Kinetic textural features extracted from HTR-DCE MRI have a major role to play in 

distinguishing benign from malignant breast lesions.   
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ABBREVIATION AND ACRONYMS 

AUC: Area Under the receiver operating characteristic Curve  

BI-RADS: Breast Imaging Reporting And Data System 

CCC: Concordance Correlation Coefficient  

CEROG : Comité d’Ethique de la Recherche en Obstetrique et Gynecologie 

DCE: Dynamic Contrast Enhancement  

DCIS: Ductal Carcinomas in situ 

DISCO: Differential Subsampling with Cartesian Ordering 

EA: Enhancement Amplitude  

EI: Enhancement Integral  

GLCM: Grey-Level Co-occurrence Matrix 

GLDM: Grey-Level Dependence Matrix 

GLRLM: GLevel Run-Length Matrix 

GLSZM: Grey-Level Size-Zone Matrix 

HTR: High Temporal Resolution  

ICC: Intra-class Correlation Coefficient  

IDC: Invasive Ductal Carcinoma 

Imc1: Informational measure of correlation 1  

LASSO: Least Absolute Shrinkage and Selection Operator 

MR: Magnetic Resonance 

MSI: Maximum Slope of Increase  

PACS: Picture Archiving and Communication System 

RLNN: Run Length Non-uniformity Normalized 

Rmax: Maximum of enhancement  

RmaxTiming: Timing of Maximum of enhancement  

ROC: Receiver Operating Characteristic 

ROI: Region Of Interest  

SPGR: Spoiled Gradient Recalled 

STD: Standard Deviation of signal intensity  

THR: Time of Half Rising  

WIR: Wash-In-Rate 
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INTRODUCTION  

For many years, breast magnetic resonance (MR) imaging was acquired at low 

temporal resolution to allow high spatial resolution reaching 1mm voxel size (1,2). Although 

this conventional protocol has  a high sensitivity (89-100%), it is hampered by a variable 

specificity (35%-64%) mainly depending on the indication (3). With the development of new 

k-space sampling techniques, high temporal resolution (HTR)-dynamic contrast enhancement 

(DCE) MR sequencing has become feasible in breast MR imaging opening up the possibility 

of using early DCE characteristics of breast tumors. In this setting, Mann et al.(4) described a 

correlation between maximum slope of enhancement during the first minute after injection 

with tumor grade and suggested that this criteria optimized differentiation between benign and 

malignant lesions. More recently, Milon et al. demonstrated the value of heterogeneity early 

after gadolinium injection based on the analysis of HTR-DCE MR sequences. Malignant 

lesions were more heterogeneous than benign lesions with a higher standard deviation of 

signal intensity (STD) irrespective of the tested rank of the HTR-DCE sequence (5). 

Some authors have underlined that in various organs radiomic analysis of spatial 

heterogeneity (i.e. textural features) improves tissue characterization (6–8).  Others have 

taken this further and analyzed the change in textural parameters over acquisition time (9). 

Several studies have established the usefulness of radiomic analysis in breast MR imaging for 

diagnosis, prognosis and prediction of the therapeutic response (10–23). Most radiomic 

signatures were built on conventional breast MR imaging protocols (24–26).We developed a 

radiomic model combining spatial heterogeneity analysis using textural features and their 

changes during the first minute after gadolinium chelate injection on an HTR-DCE MR 

sequence. The study we present here retrospectively assessed the diagnostic performance of 

radiomic analysis using HTR-DCE MR sequences compared to BI-RADS analysis to 

distinguish benign from malignant breast lesions. 
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MATERIAL AND METHODS  

 

The study was approved by CEROG, an institutional ethics committee, and was not 

subject to informed consent (CEROG 2018-GYN-0803). 

Patient Population.  

The MR imaging database of Tenon Hospital (APHP, Paris, France) was 

retrospectively queried to identify all women who underwent breast MR imaging between 

18
th

 July 2016 and 31
st
 March 2017 (n=520). Four hundred and three patients were excluded 

for the following reasons: no biopsy performed (negative or benign examination) (n=364), 

breast MR biopsy procedure (n=20); incomplete acquisition protocol (n=11), biopsy-proven 

lesions without enhancement on MRI (n=3), problem related to the Picture Archiving and 

Communication System (PACS) with duplicate examination (n=4), lesions of uncertain nature 

in a woman who underwent MRI for breast cancer follow-up with neoadjuvant chemotherapy 

(n=1) (Figure 1). 

The final population consisted of 117 women (mean age: 54 years, range 28-88) with 

174 lesions. Menopausal women represented 61.5% of the overall population (72/117). Breast 

MR indications were breast cancer staging [73/117 (62.4%)], problem-solving after 

inconclusive mammography and ultrasound assessment [23/117 (19.6%)], high-risk screening 

[(9/117 (7.7%)], surveillance of probably benign lesions (BI-RADS 3) [4/117 (3.4%)], nipple 

discharge assessment [3/117 (2.6%)], screening for primary cancer in women with a 

metastatic axillary lymphadenopathy [2/117 (1.7%)], for neoadjuvant chemotherapy work-up 

[2/117 (1.7 %)], and for prophylactic mastectomy work-up [1/117 (0.9%)]. 

 

MRI acquisition.  

MRI sequences were acquired with patients in the prone position on a 1.5T Optima 

MR450w GEM system using a phased array dedicated breast coil 8-channel (GE, Chicago, 
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Ilinois, USA). The protocol is detailed in Supplementary Material 1. Eleven acquisitions 

with a temporal resolution of 7.7s per acquisition that corresponded to the HTR-DCE 

sequence were added to this standard protocol during the first 1min18s following Gadolinium 

Chelate injection (Dotarem 0.5 mmol/mL; Guerbet, Villepinte, France ; 0.2 mL.kg–1 body 

weight) via a power injector at a rate of 2mL.s-1 followed by 20mL saline flush . This 

sequence, called Differential Subsampling with Cartesian Ordering (DISCO), is a T1 dual-

echo 3D spoiled gradient recalled (SPGR) acquisition sequence with a pseudorandom variable 

density k-space segmentation using an elliptical model where the central k-space regions are 

acquired more frequently than the peripheral region and a view-sharing reconstruction (27).  

 

BI-RADS analysis 

Two radiologists (AB, AM), blinded to the clinical data, indication and pathological 

results, with 6 and 2 years of experience respectively in breast MR imaging, independently 

reviewed the images according to the BI-RADS lexicon (28) on the standard protocol 

(Supplementary Material 2). A receiver operator characteristic (ROC) curve analysis was 

performed to compare the BI-RADS final score versus the radiomic model using De Long et 

al’s method (29). For the diagnostic performance analysis, BI-RADS 3 lesions were 

considered as probably benign (diagnostic study) and BI-RADS 4 and 5 considered as 

suspicious or probably highly suspicious (Supplementary Material 2). In case of 

disagreement, the score allocated by the most experienced reader was retained. 

 

Extraction of radiomic features 

1) Semi-quantitative enhancement features.  

Enhancement curves were extracted from AW server software (GE, Chicago, Ilinois 

USA) after a two-dimensional manual delineation. The following parameters were extracted 
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directly from the curves (Figure 2): Enhancement Integral (EI (%), Maximum Slope of 

Increase [MSI (%/sec)], Maximum of enhancement [Rmax (%)], Timing of Maximum of 

enhancement [RmaxTiming (sec)] and Wash-In-Rate [(WIR (%/sec)]. The curves were then 

fitted using a Hill equation       
 

    
 

 
   

  (also known as sigmoid function) allowing other 

semi-quantitative parameters as previously described (30), where A is the asymptotic 

enhancement amplitude (EA), B is the time of half rising (THR), and C is a power constant 

(31) using Matlab Software version R2016a (The MathWorks Inc., Natick, Massachusetts, 

USA).  

2) Non-kinetic textural features   

Segmentation: Two radiologists (SVP, LD), blinded to medical history and histological 

results, performed a two-dimensional manual delineation on the HTR-DCE sequence using 

the ITK-SNAP software, University of Pennsylvania, USA (version 3.6) (32).The regions of 

interest (ROI) were then propagated to all the timepoints of the sequence. 

Feature extraction: Textural features were extracted using the Pyradiomics open source 

software, Harvard medical school, Boston, Massachusetts, USA (33) according to the 

definitions of the Image Biomarker Standardization Initiative (34) and an absolute 

discretization with fixed bin size model with 25 grey levels (35). For each of the 11 phases of 

the HTR-DCE MR sequence, the ROI provided 104 radiomic features including 16 shape-

based features, 19 first-order statistics and 69 textural features derived respectively from the 

grey-level co-occurrence matrix obtained using 4 angles (GLCM, 23 features), grey-level run-

length matrix (GLRLM, 16 features), grey-level size-zone matrix (GLSZM, 16 features) and 

grey-level dependence matrix (GLDM, 14 features).  

Feature reduction according to observer reproducibility: A first step of feature reduction 

was carried out to select parameters which were less sensitive to variation of manual 

segmentation. All the lesions were segmented 3 times: once by a radiologist (LD) and then 
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twice by another radiologist (SVP) 2 weeks later. By means of the R-3.3.3 (R Foundation, 

Vienna, Austria) (36), we calculated the intra-class correlation coefficient (ICC) on all pair 

combinations of readings, and a concordance correlation coefficient (CCC) on the intra-

observer pair, according to a previously published methodology (35). A feature was selected 

if all three ICC values were 0.8 and the CCC value 0.9 (Figure 3). Fifty-seven texture 

features were considered as reproducible (six morphological features, 15 first-order texture 

features, 36 second-order features) (Table 1) for each phase. Thus, 627 non-kinetic textural 

features were selected from the first segmentation of the radiologist who segmented the 

lesions twice (SVP).  

Feature analysis A Least Absolute Shrinkage and Selection Operator (LASSO) regression 

(37) with a penalization coefficient  ranging from 0.02 to 0.04 was performed separately for 

each phase of the HTR-DCE MR sequence with the 57 textural features previously selected. 

The area under the curve (AUC) of the LASSO resulting from each phase was calculated and 

compared.  

 

3) Textural kinetic analysis  

Feature extraction 

We calculated the mean, minimum, maximum, median, and variance values of the 57 

different textural features over time acquisition. Changes were assessed by the growth rate 

defined by 
                

      
 and volatility defined by                  and their mean, 

maximum and minimum values. Thus, we obtained 11 textural kinetic features for each of the 

57 textural features, i.e., 627 kinetic textural features.  

Feature reduction 
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A five-run LASSO regression with a penalization coefficient  ranging from 0.045 to 0.058 

was performed to preselect the more stable kinetic textural features.  The rule “selected at 

least twice by these five runs of LASSO” was used to select the kinetic textural features. 

 

Reference standard 

Histological 

Biopsies were performed for suspicious lesions (BI-RADS 4-5) or for some BI-RADS 3 

lesions depending on the clinical context. For lesions with a sonographic correlation, biopsies 

were performed under sonography with an automatic 14-gauge core needle [74% of lesions 

(128/174)] or with a vacuum-assisted core needle 7- to 10-gauge [2% (4/174)].  Three lesions 

[1.7% (3/174)] had a fine needle aspiration. For lesions without sonographic correlation, 

biopsies were performed with a vacuum-assisted core needle 7- to 10-gauge either under 

stereotactic guidance in 11% (19/174) or under MR guidance in 10% (18/174). One lesion 

was investigated directly by surgical biopsy guided radiologically, and information on how 

the biopsy was performed was unavailable for one. The maximum interval between breast 

MR imaging and biopsy was 4 months. Reference standard corresponded to histopathological 

findings of percutaneous biopsies for benign lesions (n=68) or of surgery for high-risk lesions 

(n=7) or malignant tumors (n=99) including 16 pure ductal carcinomas in situ (DCIS). Final 

excision histology results are summarized in Supplementary Material 3. 
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RESULTS  

 

BI-RADS and semi-quantitative enhancement curve analysis 

Breast density was evaluated as type A in 8.5% (10/117), type B in 44.4% (52/117), 

type C in 34.2% (40/117) and type D in 10.3% (12/117). Three patients (2.6%, 3/17) had a 

bilateral mastectomy. The lesions had a mean size of 24.8mm (3 to 100mm) and were a mass 

in 68.4% (119/174), a non-mass enhancement in 27% (47/174), a focus in 2.9% (5/174) or an 

atypical cyst in 1.7% (3/174).  

The sensitivity, specificity, positive likelihood ratio, negative likelihood ratio and 

accuracy are detailed in Table 2. The positive predictive values of BI-RADS 3, 4A, 4B, 4C 

and 5 were 13.33% (2/15), 24.24% (8/33), 37.5% (12 /32), 69.04% (29/42) and 92.31% 

(48/52), respectively, with an AUC of 0.831 (95%CI : 0.769-0.892, p<0.001).  

 

Radiomic analysis 

Textural features:  

Eleven LASSO were performed (one for each phase of HTR-DCE MR sequence). 

Second-order textural features (included in GLCM, GLRLM and GLDM) were used by all 11 

LASSO (Supplementary Material 4). The feature “maximum diameter” was selected in 7/11 

LASSO. The first-order textural features “10
th

 percentile of signal intensity” and “uniformity” 

were selected by 2/11 LASSO. ROC AUC for predicting malignancy ranged from 0.76 to 

0.80. according to the phase (Figure 4). Each phase model displayed a lower AUC value 

(0.76 to 0.80) than that of BI-RADS analysis (AUC=0.83) 

Kinetic textural features:  

Ten of the 627 kinetic textural features were selected by the rule “selected at least twice by 

the five LASSO runs” and were included in the final model (Supplementary Material 5).  
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Final model – Building and validation 

Finally, we used a LASSO regression with cross-validation with results expressed as a 

“probability score of malignancy” from 0% to 100%. LASSO was applied on the pre-selected 

kinetic textural features (n=10) and on the semi-quantitative enhancement parameters (n=7) 

with a penalization coefficient  of 0.005 (Figure 3).  

Fifteen parameters were retained in the final model including first-order texture kinetics 

(n=2), second-order texture kinetics (n=8) and semiquantitative parameters (n=5). The 

selected variables and the LASSO coefficient are listed in Table 3. The three variables with 

the highest LASSO coefficient were all second-order textural features: the median value of 

the informational measure of correlation 1 (Imc1) extracted from the GLCM (coefficient 

6.789), the Minimum growth rate of the Dependence Non-Uniformity from the GLDM 

(coefficient 35.16) and the Minimum volatility of the Run Length Non-Uniformity 

Normalized (RLNN) from the GLRLM (coefficient 19.76). The AUCs of each of these 

variables for the diagnosis of malignancy were respectively 0.630 (p=0.003, 95%CI : 0.546-

0.714), 0.714 (p<0.0001, 95%CI: 0.637-0.792), and 0.681 (p<0.0001, 95%CI: 0.597-0.765). 

This final model displayed an AUC=0.876 (95%CI: 0.825-0.925). With a threshold 

fixed at 28.4% (i.e. lesions with a malignant probability score less than 28.4% are classified 

as benign), the model yielded a sensitivity of 98% (97/99), specificity of 52% (39/75), and 

accuracy of 78% (136/174) (Table 2). A model with a threshold probability of malignancy 

calculated under 19.5%, has a negative predictive value of 100% (n=31). Similarly, a model 

with a threshold probability of malignancy calculated above 81%, predicted malignancy in 

100% [i.e. positive predictive value of 100 % (n=48)]. 

Changes in the probability score of malignancy as a function of the diameter of the 

lesion is represented in Figure 5 showing that no correlation exists between these two 

variables. 
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Finally, we tested the quality of the model applying the Radiomics Quality Score (RQS) 

(38) and obtained an intermediate score level of 18/36 (Supplementary Material 6). 

Comparison between radiomic model and BI-RADS analysis 

The performance of the radiomic model to distinguish between benign and malignant 

breast lesions (AUC=0.876, 95%CI: 0.825-0.925) was significantly better than that of the BI-

RADS analysis (AUC=0.831, 95%CI: 0.769-0.892) (Figure 6). Both the radiomic model and 

BI-RADS analysis displayed the same high sensitivity (0.98) with only two false negatives. 

However, two infiltrative cancers (one invasive lobular carcinoma and one mucinous 

carcinoma) were missed with the BI-RADS analysis while only one DCIS and one invasive 

ductal carcinoma (IDC) were missed by the malignancy probability score. Finally, the 

specificity of the radiomic model was much higher than that of BI-RADS analysis (52% 

versus 17%) with a lower number of false positives (36 versus 62) (Figure 6).   
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DISCUSSION  

Our study demonstrates that radiomic analysis based on HTR-DCE has a better 

diagnostic performance AUC=0.876 (IC 0.825-0.925) than conventional breast MR imaging 

reading with BI-RADS AUC=0.831 (95%CI: 0.769-0.892, p<0.001). Moreover, the 

radiomic model, called the “malignant probability score”, reduces the number of false 

positives of breast MR imaging by 42% (36 versus 62). Finally, a malignant probability score 

under 19.5% gives a negative predictive value of 100% (no cancer was missed) and a 

malignant probability score over 81% gives a positive predictive value of 100% (no false 

positive). 

Our study demonstrates the diagnostic value of textural analysis of heterogeneity for 

improving tissue characterization. The application of radiomics in breast cancers is an 

emerging translational research topic as witnessed by an exponential growth in the number of 

studies on diagnosis (detection or characterization) or prognosis (prediction of morbidity, 

mortality or response to therapy). Most radiomic approaches in breast imaging to date have 

focused on interrogating heterogeneity patterns across the entire tumor. Parekh et al. (6) 

demonstrated that breast cancers have a higher entropy on DCE MR than benign lesions or 

glandular tissue. Other authors have investigated the usefulness of radiomics in recognizing 

different molecular types of cancer based on the heterogeneity of textural features such as 

skewness and kurtosis (24), or the expression of Ki67 for which Liang et al. submitted a 

radiomics classification using a LASSO regression with an AUC of 0.740 (39). In our study, 

textural kinetic features clearly improved the diagnostic performance as the phase-by-phase 

radiomic model did not show any superiority compared to the BI-RADS score.  The 

parameters most used by the final model came from complex textural matrices 

indistinguishable to the naked eye, i.e., kinetic textural features resulting from second-order 

matrices: the median value of Imc1 extracted from the GLCM, the minimum growth rate of 
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the dependence non-uniformity from the GLDM, and the minimum volatility of the RLNN 

from the GLRLM.  

 

The originality of our results is that we demonstrate that radiomic analysis applied to 

HTR-DCE MR sequence helps improve breast MR specificity by decreasing false positive 

results by 42%.  HTR-DCE MR sequences are particularly useful in abbreviated protocols 

which are becoming more widespread along with the increase in the number of indications for 

breast MR imaging as a screening tool (40,41). Several authors have demonstrated that the 

first part of the dynamic curve (especially the maximum slope) may help improve 

characterization in a protocol without conventional time-intensity curve analysis (42). 

Classically, maximum slope cannot be extracted from a standard breast MRI protocol where 

the first sequence is acquired more than one minute after gadolinium injection (43). DCE MR 

sequences with high temporal resolution can assess the perfusion abnormalities inherent to 

neo-angiogenesis often induced by cancer cells (44). The tumor vascular network displays 

permeability anomalies (well assessed with a conventional breast protocol), perfusion 

abnormalities (loss of the arteriole-capillary-venule pattern) and morphological abnormalities 

(architectural disorganization, irregular diameter) (45–47). Perfusion abnormalities may be 

assessed with HTR-DCE MR sequences while spatial heterogeneity related to morphological 

abnormalities requires analysis of textural features. The current study, was the first to 

combine these two characteristics by measuring texture variability in the different phases of 

the HTR-DCE MR sequences with a radiomic analysis (kinetic textural parameters) (48).  

In the literature, analysis of heterogeneity over time in breast cancers remains 

underexplored. In 2011, Agner et al. described the value of kinetic textural parameters 

extracted from 41 breast DCE MR which, combined in a model with morphologic descriptors 
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(i.e. smoothness), yielded an AUC of 0.91 with 99% sensitivity, 76% specificity, and 89% 

accuracy (49). Thibault et al. demonstrated the effectiveness of texture analysis on parametric 

maps calculated from DCE-MRI for early prediction of breast cancer response to neoadjuvant 

chemotherapy (50). In a study published by Fan et al (24) using radiomics on tumors and the 

surrounding parenchyma decomposed into subregions by their kinetics of enhancement on a 

conventional DCE-MRI protocol, the tumor subregion related to fast-flow kinetics had the 

strongest predictive power of cancer subtype with an AUC of 0.832. However, these studies 

could only explore the wash-out textural kinetics due to the low temporal resolution of the 

conventional DCE-MRI protocol. Very few studies have applied radiomic analysis on an 

HTR DCE sequence and therefore studied the wash-in textural kinetics of breast cancer.  Two 

studies used features extracted from a parametric map built on an HTR-DCE MR sequence:  

 ilenko i  et al (51) built a model able to diagnose malignant lesions with a ROC AUC of 

0.887 and Zhou et al (52) found AUC for the diagnosis of breast lesion for radiomic 

parameters calculated from Ktrans, Kep, Ve and Vp of 0.95, 0.93, 0.89 and 0.96, respectively. 

However, unlike our study, no comparison with human BI-RADS analysis was performed in 

either of these two studies. The model created in our study used semi-quantitative 

enhancement parameters and kinetic textural features extracted from the first 78 seconds after 

contrast injection. The coefficient given by the LASSO to these features resulting from 

second-order matrices highlights the interest of studying textural kinetics on HTR DCE 

sequences. Separately from the model, three kinetic textural features provide AUCs for 

malignancy diagnosis of 0.714 (minimum growth rate of the dependence non-uniformity from 

the GLDM), 0.681 (minimum volatility of the RLNN from the GLRLM), and 0.630 (median 

value of Imc1 from the GLCM). 

This study validates a robust method with low variability using automatically 

extracted quantitative parameters. Quality assurance was better than in previous studies (53). 
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Moreover, we applied a LASSO regression with cross validation to validate the model 

internally pending external validation. 

Nevertheless, our study has several limitations. First, it was a retrospective preliminary 

clinical study and we did not perform a preliminary phantom study. Second, the very high 

disease prevalence in our study reflects the population consulting in our tertiary center and 

constitutes a selection bias. Our results remain to be confirmed in future research studies, 

especially in a screening population where abbreviated protocols are becoming standard (41). 

Furthermore, all the data were obtained from one center with a single MRI machine, software 

and protocol, and our results need to be externally validated probably using a harmonization 

of radiomic features method such as the ComBat method (54). Fourth, we only performed a 

cross validation of our results due to the relatively small sample size (174 lesions). External 

validation is thus necessary to validate these results in a different population with different 

technical parameters. Finally, we did not compare or combine HTR DCE MR with other 

abbreviated protocols based on DW Imaging. This combination of HTR DCE and DW could 

be interesting and will certainly be explored in further studies (55). 

In conclusion, our study demonstrates the better diagnostic performance of radiomic 

analysis using kinetic textural and enhancement features extracted from HTR-DCE MR 

sequences to distinguish breast lesions compared to BI-RADS analysis. Further studies are 

now needed to evaluate the additional value of the combination of radiomic and human 

analysis.  
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TABLE AND FIGURE LEGENDS 
 

Table 1 : The 57 textural features selected as reproducible regarding manual segmentation 

using ICC and CCC to assess variability. GLCM: Grey Level Co-occurrence Matrix 

GLDM: Grey Level Difference Matrix GLRLM: Grey Level Run Length Matrix 

GLSZM: Grey Level Size Zone Matrix

 

Table 2 : Comparison of diagnostic performance of the malignant probability score (results 

from the final model) with a threshold fixed at 28.4% and the BI-RADS classification on the 

conventional protocol.  

 

Table 3 : The 15 parameters used by the algorithm in the final model “malignant probability 

score” and their coefficient. GLCM: Grey Level Co-occurrence Matrix GLDM: Grey Level 

Difference Matrix GLRLM: Grey Level Run Length Matrix 

 

Figure 1 : Flowchart of patient inclusion and follow-up 

 

Figure 2 : Semiquantitative enhancement parameters calculated on the native curve (a) and 

the cur e fitted by Hill’s equation (b). SI: signal intensity; sec: second EI: Enhancement 

Integral; Rmax: Maximum of enhancement; Rmax timing: timing of Maximum of 

enhancement, EA: Enhancement Amplitude, THR: Time of Half Rising  

 

Figure 3 : Creation and selection steps of the features  

 

Figure 4 : ROC curve of LASSO regression performed for each of the 11 phases of the HTR-

DCE MR sequence. ROC AUC for predicting malignancy ranged from 0.76 to 0.80. 

according to the phase and were lower than  that of BI-RADS analysis (AUC=0.83) 

 

Figure 5 :  Probability of malignancy as a function of lesion diameter for benign (green) or 

malignant (red) lesions 

 

Figure 6 :  a. Examples of breast MRI before and after gadolinium with the probability score 

of malignancy and the histological result. A. 62-year-old women with prior left breast cancer. 

Irregular spiculated mass on the left lower outer quadrant classified BI-RADS 4c. Malignant 

probability score was 5.6% (<28.4%). Histological analysis found a cytosteatonecrosis lesion.  

B. Extension assessment of lobular carcinoma; round circumscribed mass on the left lower 

outer quadrant classified BI-RADS 3. The malignant probability score was 33.6% (>28.4%). 

Histological analysis found a lobular carcinoma. C. 37-year-old women with prior DCIS 

treated by mastectomy and deep inferior epigastric perforator flap (DIEP) reconstruction. An 

irregular mass on the right upper outer quadrant was classified BI-RADS 4a. The malignant 

probability score was 98% (>28.4%). Histological analysis found a DCIS recurrence. 

b. Representation of the probability score of malignancy results from 0 to 100% with the 

threshold of 28.4% which gave the best sensitivity-specificity rate, the result of the three 

examples, the 19.5% threshold which gave a 100% VPN and the 81% threshold which gave a 

100% VPP.  


