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Abstract

In this paper, we present a maximum likelihood method for estimating the parameters of a
univariate Hawkes process with self-excitation or inhibition. Our work generalizes techniques and
results that were restricted to the self-exciting scenario. The proposed estimator is implemented
for the classical exponential kernel and we show that, in the inhibition context, our procedure
provides more accurate estimations than current alternative approaches.

1 Introduction
The Hawkes model is a point process observed on the real line, which generally corresponds to the
time, where any previously encountered event has a direct influence on the chances of future events
occurring. This past-dependent mathematical model was introduced in [1] and its first application was
to model earthquakes occurrences [2, 3]. Since then, Hawkes processes have been widely used in various
fields, for instance finance [4], social media [5, 6], epidemiology [7], sociology [8] and neuroscience [9].

The main advantage of Hawkes processes is their ability to model different kinds of relationships
between phenomena through an unknown kernel or transfer function. The Hawkes model was originally
introduced as a self-exciting point process where the appearance of an event increases the chances of
another one triggering. Several estimation procedures have been proposed for the kernel function, both
in parametric [2, 10, 11] and nonparametric [9, 12] frameworks.

However, the inhibition setting, where the presence of an event decreases the chance of another
occurring, has drawn less attention in the literature, although it can be of great interest in several fields,
in particular in neuroscience [13]. In this inhibition context, the cluster representation [14] on which
is based the construction of a self-exciting Hawkes process, is no longer valid. While the existence and
the construction of such nonlinear processes can be found in recent works for the univariate [15] and
multivariate [16] cases, statistical estimation of the kernel function has been hardly addressed. A first
approach consists in computing an approximation of the likelihood as if the intensity function could
take negative values, and optimizing it to get a maximum likelihood estimator [17]. Alternatively, the
type of interaction (excitation or inhibition) can be considered as a hidden variable, giving rise to a
very practical estimation method [18].

In this paper, we propose a maximum likelihood procedure that can handle both excitation and
inhibition scenarios for a univariate Hawkes process. Our approach is based on an explicit computation
of the likelihood for any type of monotone kernel functions, which is facilitated by the introduction of
the natural concept of restart points. The latter are the times when the intensity function, that can
be null on some intervals, become strictly positive again. We show that these restart points have a
closed-form expression when the kernel is exponential, which allows us to rewrite and maximize the
likelihood without approximations that are proposed for instance in [17]. Our estimator is implemented
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in Python (the code is freely available online1). We also propose a numerical study which shows the
good performance of our exact estimation procedure compared to approximated approaches, especially
when the intensity function is frequently equal to zero.

To outline the paper, besides a quick introduction to self-regulating Hawkes processes (also referred
to as self-correcting Hawkes processes or Hawkes processes with inhibition), Section 2 introduces the
concepts of underlying intensity function and restart points. General results concerning the compen-
sator and the exact maximum likelihood estimation procedure are described in Section 3. At last, after
a brief discussion about goodness-of-fit in Section 4, Section 5 concludes with a numerical study of the
estimation error.

2 The Hawkes process
Let N be a point process on R∗+, where R∗+ = {x > 0 : x ∈ R}, and (Tk)k≥1 its associated event times
(with convention T0 = 0). For any t ≥ 0, let us note N(t) =

∑
k≥1 1Tk≤t the number of events in [0, t]

(where 1· stands for the indicator function), and λ its conditional intensity function [19]:

λ(t) = lim
h→0

P(N(t+ h)−N(t) > 0)

h
.

A univariate Hawkes process is a point process defined by the conditional intensity function:

λ(t) =

(
λ0 +

∫ t

0

h(t− s) dN(s)

)+

=

λ0 +
∑
Tk≤t

h(t− Tk)

+

, (1)

where x+ = max(0, x) denotes the positive part of any real value x, λ0 ∈ R∗+ is the baseline intensity and
h : R+ → R is the kernel, which is assumed to be a monotone measurable function with limt→∞ h(t) =
0. The kernel function h is the key component of a Hawkes process: it translates the influence (generally
assumed to fade away over time) of a past event over the process. Here, h is allowed to take negative
values, meaning that it can model both self-exciting and self-regulating Hawkes processes.

Working with such Hawkes processes may prove to be difficult as the positive part function is
non-linear. In particular, while computing the compensator function [19]

Λ(t) =

∫ t

0

λ(t) dt, ∀t ≥ 0, (2)

is very easy in the self-exciting case (by linearity of the intensity), it becomes more challenging for the
self-regulating Hawkes process. As it is the keystone to derive the likelihood function (and then to
obtain a parametric estimation method), our first contribution is to provide an exact expression of the
compensator.

For this purpose, let us first introduce the underlying intensity function and the restart time, two
quantities which will allow us to derive the computation of the likelihood of a monotone Hawkes
process, in a framework unifying self-correcting and self-exciting Hawkes processes.

Definition 2.1. Let the underlying intensity function of N be:

λ?(t) = λ0 +

∫ t

0

h(t− s) dN(s).

In addition, let the restart time T ?k be, for any positive integer k:

T ?k = inf {t ≥ Tk | λ(t) > 0},

along with its corresponding cooldown interval τ∗k = T ∗k − Tk.
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Figure 1: Example of the intensity (red curve) and underlying intensity (blue curve) for a self-regulating
Hawkes process, with the associated restart times. We only see the negative values of the blue curve
since they precisely correspond to the values for which the two intensity functions are not equal.

As illustrated in Figure 1, λ? corresponds to the intensity λ as if it were allowed to take negative
values. Moreover, as the kernel is assumed to be monotone, the restart time associated to one occur-
rence can be interpreted as the first moment after this occurrence from which λ and λ? become equal
(in particular, the restart time and the occurrence time coincide if the intensity function is nonnegative
at this time, see Figure 1):

T ?k = inf {t ≥ Ti | ∀t ∈ (T ∗k , Tk+1), λ(t) = λ?(t)}.

3 Maximum likelihood estimation and the exponential model
Assume a parametric model P = {λθ, θ ∈ Θ} for the conditional intensity function λ, where θ contains
unknown quantities such as the baseline λ0 and the kernel h. Then, with convention log(t) = −∞ for
t ≤ 0, the log-likelihood `t of any θ ∈ Θ with respect to the observations T1, . . . , TN(t) in the time
interval [0, t] is [19, Proposition 7.2.III.], [11]:

`t(θ) =

N(t)∑
k=1

log (λθ(T
−
k ))− Λθ(t), (3)

where the compensator Λθ is defined as in Equation (2) and λθ(T−k ) = limt→T−
k
λθ(t).

Equation (3) reveals the importance of being able to compute the compensator Λ (equivalently Λθ)
in order to provide a practical implementation of the maximum likelihood estimator of λ. Thus, a first
contribution of this paper lies in Proposition 3.1, which establishes a decomposition of the compensator
Λ using the underlying intensity function λ? and the restart times T ?1 , . . . , T ?N(t).

Proposition 3.1. For any t > 0, the compensator Λ can be expressed as:

Λ(t) =


λ0t if t < T1

λ0T1 +

N(t)−1∑
k=1

∫ Tk+1

T?k

λ?(u) du+

∫ t

T?
N(t)

λ?(u) du if t ≥ T1,
(4)

with the conventions that the sum is equal to 0 if N(t) = 1 and the last integral is equal to 0 if t < T ∗N(t).
1https://github.com/migmtz/hawkes-inhibition-expon
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Proof. This comes directly from splitting the integral of Λ(t) =
∫ t

0
λ(t) dt on the intervals [Tk, Tk+1)

(k ∈ {0, . . . , N(t) − 1}) and [TN(t), t], and by remarking that, since h is monotone, ∀t ∈ [Tk, Tk+1),
λ(t) = λ?(t)1[T∗

k ,Tk+1)(t).

In order to give an explicit computation of the quantity
∫ Tk+1

T?k
λ?(u) du (equivalently

∫ t
T?
N(t)

λ?(u) du)
which appears in Proposition 3.1, we focus on the classical scenario where we consider an exponential
kernel h(t) = αe−βt, for some α ∈ R and β ∈ R∗+. Let us notice that α can be either positive or
negative, meaning that the process may be either self-exciting or self-regulating.

Then, the underlying intensity function can be written as:

λ?(t) = λ0 +

∫ t

0

αe−β(t−s) dN(s). (5)

The forthcoming proposition steps forward in computing the compensator for an exponential kernel.

Proposition 3.2 (Compensator for exponential kernel). Let t > 0 and k ∈ {1, . . . , N(t)}. The restart
times read:

T ?k = Tk + β−1 log

(
λ0 − λ?(Tk)

λ0

)
1λ?(Tk)<0,

and the compensator is expressed as in Equation (4), with, for any τ ∈ [T ∗k , Tk+1]:∫ τ

T?k

λ?(u) du = λ0(τ − T ?k ) + β−1(λ?(Tk)− λ0)(e−β(T?k−Tk) − e−β(τ−Tk)).

Proof. The proof is in A.

Corollary 3.1 (Log-likelihood for exponential kernel). Let

P =

{
λθ = λ̄0 +

∫ t

0

ᾱe−β̄(t−s) dN(s) : θ = (λ̄0, ᾱ, β̄) ∈ Θ

}
, (6)

be a parametric exponential model for the conditional intensity function λ with Θ = R∗+ × R × R∗+,
along with the candidate compensator Λθ, the underlying intensity function λ?θ and the restart times
T ?θ,1, . . . , T

?
θ,N(t) associated to λθ (see Equation (2) and Definition 2.1).

For any θ = (λ̄0, ᾱ, β̄) ∈ Θ, by denoting

Λθ,k = λ̄0(Tk − T ?θ,k−1) + β̄−1(λ?θ(Tk−1)− λ̄0)(e−β̄(T?θ,k−1−Tk−1) − e−β̄(Tk−Tk−1)),

the log-likelihood reads (with convention log(x) = −∞ for x ≤ 0):

`t(θ) = log λ̄0 − λ̄0T1 +

N(t)∑
k=2

[
log
(
λ̄0 + (λ?θ(Tk−1)− λ̄0)e−β̄(Tk−Tk−1)

)
− Λθ,k

]
−
[
λ̄0(t− T ?θ,N(t)) + β̄−1(λ?θ(TN(t))− λ̄0)

(
e−β̄(T?θ,N(t)−TN(t)) − e−β̄(t−TN(t))

)]
1t>T?

θ,N(t)
. (7)

Proof. By Equation (8) in the proof of Proposition 3.2,

λ?θ(T
−
k ) =

{
λ̄0 if k = 1,

λ̄0 + (λ?θ(Tk−1)− λ̄0)e−β̄(Tk−Tk−1) if k ≥ 2.

Combining this expression with Propositions 3.1 and 3.2 leads to the result.
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Corollary 3.1 exhibits that the log-likelihood for self-regulating Hawkes processes with an expo-
nential kernel can be evaluated in O(N(t)) operations (by computing iteratively the quantities T ?θ,k
and Λθ,k appearing in the summation of Equation (7)), as already known for self-exciting exponential
Hawkes processes [20, Chapter 4.2]. For other monotone kernels without the Markov property, eval-
uating the log-likelihood with the method proposed here requires O(N(t)2) operations, similarly to
existing approaches for self-exciting Hawkes processes.

4 Goodness-of-fit
Even though computing the compensator Λ (equivalently Λθ) was clearly motivated by maximum
likelihood estimation, it turns out that it is of great benefit to assess goodness-of-fit, and in particular
to check the validity of a maximum likelihood estimation. This is possible thanks to the Time Change
Theorem, a result originally stated for inhomogeneous Poisson processes.

Theorem 4.1 ([19, Theorem 7.4.IV]). Assume that Λ is continuous, monotone and Λ(t) −−−→
t→∞

∞
a.s. Then a.s., a sequence of event times (Uk)k≥1 is a realization of N if and only if (Λ(Uk))k≥1 is a
realization of a homogeneous Poisson process with unit intensity.

Let us note that we can find applications of Theorem 4.1 to self-exciting Hawkes processes in the
literature [20, Chapter 5]. Since for self-regulating Hawkes processes Λ is still monotone, this result
can also be applied in our case.

To be more precise, let us consider θ ∈ Θ and the null hypothesis: “(Uk)k≥1 is a realization
of an exponential Hawkes process with parameter θ”. This hypothesis can be tested by applying
a Kolmogorov-Smirnov test between the empirical distribution of (Λθ(Uk+1)− Λθ(Uk))k≥1 and an
exponential distribution with parameter 1. This procedure is illustrated in Table 1, Section 5.

5 Numerical Results
This section is aimed at assessing the maximum likelihood estimation method for self-regulating Hawkes
processes, based on the exact computation of the compensator Λθ in the exponential model (6) (Corol-
lary 3.1). This procedure is compared to the approximated maximum likelihood estimation proposed
in [17], which consists in approximating Λθ by:

ΛLMθ (t) =

∫ t

0

λ?θ(u) du.

This optimization procedure is performed with the L-BFGS-B algorithm from the Scipy package (with
(1, 0, 1) as a starting guess and a bounds argument such that λ0 ≥ 0, α ∈ R, β ≥ 0). In other words,
estimators are:

θ̂ ∈ arg maxθ∈Θ

{
`TNmax (θ) =

Nmax∑
k=1

log (λθ(T
−
k ))− Λθ(TNmax)

}
,

where Nmax = 200 is the total number of jumps and Λθ can be replaced by ΛLMθ to obtain the
approximated likelihood proposed in [17].

The comparison between the exact and the approximated estimation procedure is based on simu-
lated data sets coming from self-correcting Hawkes processes of the form (6) with 6 different values of
θ = (λ̄0, ᾱ, β̄) ∈ Θ (see Table 1) which have been chosen in order to explore different scenarios, in par-
ticular depending on whether the intensity function is frequently null or not. Observations are sets of
time jumps generated with a sampling algorithm (see the algorithm in B and Python implementation
online), which is a particular case of Ogata’s thinning simulation method [21] that can handle Hawkes
processes with either self-excitation or inhibition.

5



10 5

10 3

10 1

101

103

0 0 0 0 0 0

exact
approx

0 10 20

0.48

0.49

0.50
0.0%

0 10 20

0.00

0.25

0.50
0.3256%

0 10 20

0

1
6.1574%

0 10 20

0

2

9.4098%

0 10 20
2

0

2

13.7567%

0 10 20

0

1

34.3975%

Figure 2: Top panel: relative absolute errors of estimations θ̂ = (λ̂0, α̂, β̂). Bottom panel: example of
simulated intensities for each set of values θ = (λ̄0, ᾱ, β̄) with the corresponding average percentage of
time when the intensities are equal to zero.

Figure 2 represents the relative absolute errors of estimations θ̂ = (λ̂0, α̂, β̂) for each of the 6
simulated models. We observe that the exact approach provides more accurate estimations than the
approximated procedure (as illustrated in the boxplots of Figure 2 and by the p-values of the goodness-
of-fit tests in Table 1). As expected, the more time the conditional intensity equals 0 (from left to
right in Figure 2), the greater the differences between the two procedures. Furthermore, the leftmost
boxplot confirms that when the underlying intensity is nonnegative both methods are mostly identical.
Let us note that in this case the estimation of ᾱ is rather wrong (the estimation of β̄ is impacted
consequently) probably because its value is close to 0 compared to the magnitude of λ̄0.

6 Discussion
In this paper we proposed a maximum likelihood approach for Hawkes processes that can handle both
self-exciting and self-regulating scenarios, the first case being already covered in the literature and the
latter being our main contribution. For this purpose, we define the concepts of underlying intensity
function and restart times when working with monotone kernel functions. In particular we obtain
exact expressions of the compensator for the exponential Hawkes process which is the key step of the
estimation procedure. We present numerical results on synthetic data that show the efficiency of our
procedure, with a substantial improvement compared to approximated approaches when the intensity
function is frequently null.

From a theoretical point of view, future work will consist in adapting analytical results to study
the convergence of our estimator in the self-regulating case. Regarding modeling, it would be of great
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Parameters Estimations
λ̄0 ᾱ β̄ λ̂0 α̂ β̂ p-value

Exact 0.5 -0.001 0.4 0.53 0.05 4.25 0.78
Approx 0.54 0.05 4.23 0.78
Exact 0.5 -0.2 0.4 0.52 -0.21 0.42 0.72
Approx 0.52 -0.22 0.44 0.70
Exact 1.05 -0.75 0.8 1.06 -0.76 0.80 0.69
Approx 1.14 -0.88 0.82 0.55
Exact 2.43 -0.98 0.4 2.55 -1.01 0.39 0.73
Approx 2.83 -1.22 0.42 0.51
Exact 2.85 -2.5 1.8 2.86 -2.58 1.84 0.73
Approx 8.44× 103 −8.15× 106 2.66 0.29
Exact 1.6 -0.75 0.1 1.61 -0.75 0.11 0.70
Approx 1.36× 107 −1.15× 1010 0.37 5.12× 10−06

Table 1: Quantitative assessment of the numerical study: sets of true parameters (left), average
estimations over 100 repetitions (middle) and average p-values for the test of Section 4.

interest to consider kernel functions outside the classical exponential scenario. Another important step
is the extension of our concepts and algorithms to the multivariate version of the process, which is
not straightforward since in the multivariate setting the expression of the restart times are no longer
explicit. This last point is essential in order to target real-world datasets since in many applications,
being limited to the univariate case will lead to detect self-excitation. However, a model that accounts
for potential inhibition effects is of great interest when considering interactions between events of
different natures, which will typically be modeled by a multivariate process. This multidimensional
extension is the object of a future work, with a further perspective to use our procedure in neuroscience
applications in order to detect attraction and repulsion effects between neurons.
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A Proof of Proposition 3.2
Let us begin by expressing the underlying intensity function between two event times. First, λ?(t) = λ0

for t ∈ [0, T1). Then, for any k ∈ N, for all t ∈ [Tk, Tk+1), the underlying intensity is differentiable in t
and

(λ?)′(t) = −β(λ?(t)− λ0),

with the left condition: λ?k := λ?(Tk). Solving this differential equation leads to

λ?(t) = λ0 + (λ?k − λ0)e−β(t−Tk). (8)

Now, by definition of the restart time T ?k = inf {t ≥ Tk | λ(t) > 0}, we have that if λ?k ≥ 0, then
T ?k = Tk. Otherwise, as λ? is continuous on the interval [Tk, Tk+1), we obtain T ?k by solving for t:
λ?(t) = 0. Thus, by Equation (8):

λ?(T ?k ) = 0 ⇐⇒ T ?k = Tk + β−1 log

(
λ0 − λ?k
λ0

)
.

Gathering both situations, we obtain the first part of Proposition 3.2: T ?k = Tk+β−1 log
(
λ0−λ?k
λ0

)
1λ?k<0.

Let now k ∈ {1, . . . , N(t)} and τ ∈ [T ?k , Tk+1]. By Equation (8),∫ τ

T?k

λ?(u) du =

∫ τ

T?k

(
λ0 + (λ?k − λ0)e−β(u−Tk)

)
du

= λ0(τ − T ?k ) + β−1(λ?k − λ0)(e−β(T?k−Tk) − e−β(τ−Tk)),

which is the second part of Proposition 3.2.

B Simulation algorithm
Algorithm 1 builds upon Ogata’s thinning simulation method [21, Proposition 1] in order to handle
Hawkes processes with either self-excitation or inhibition.

Algorithm 1: Thinning algorithm for monotone Hawkes process.
Input Parameters λ0, h a monotone function, and a stopping criteria (end-time T or maximal
number of jumps Nmax);
Initialization Initialize λk = λ0, tk = 0 and list of times T = ∅;
while Stopping criteria not fulfilled do

Set λmax = max(λ0, λk);
Generate candidate time tcand = tk − log(U1)

λmax
, U1 ∼ U([0, 1]);

Estimate intensity λk = λ(t) using sequence of times T ;
Sample U2 ∼ U([0, 1]);
if U2 ≤ λk

λmax
then

Add t to sequence of times T ;
end
Set tk = tcand;

end
return the sequence of jumps T .
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