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Abstract

Machine learning (ML) has increasingly been of interest in the design of new materials. However, it is
still challenging to exploit an ML model in this field because its performance highly depends on the
representation of materials, its properties, and the amount of data. In this study, for the cases of
prediction of properties of crystalline materials, we explore a systematic comparison of two state-of-
the-art frameworks: Crystal Graph Convolutional Neural Networks (CGCNNs) and the Sure
Independence Screening and Sparsifying Operator (SISSO). The common key advantage of these two
models is the fact that painstakingly handcrafted descriptors from simple material properties are not
required. The main differences between the two models are (1) the use of structure information in the
arbitrary size of compounds (CGCNN) and (2) limited interpretability (CGCNN) but simple and
analytic relations between descriptor-property (SISSO). Using these two ML algorithms we evaluate
the prediction performance on the target properties, which are band gap, formation energy, and
elasticity of crystalline compounds in the database of Materials Project (MP). Moreover, to improve
prediction of the properties of the materials without human bias in the selection of initial atomic
features for the CGCNNs, we use Atom2Vec that provides atom representation obtained in an
unsupervised manner from the materials. We also perform the predictions with the different sizes of
training set to investigate the data-size dependency of the predictive models. According to the amount
of dataset, the use of structural information, and the ability to identify the best descriptor with its
interpretability, these algorithms showed different prediction performances. This result will enable
researchers in materials discovery to gain appropriate choices and insights in various attempts to
improve the prediction performance of crystalline materials’ properties.

1. Introduction

Accumulation of materials data and development of various machine learning (ML) algorithms are accelerating
research on the prediction of material properties for the design of new materials. However, it is still challenging
to predict the properties of crystalline compounds that have an arbitrary size with complex structure. To tackle
this issue, the structures of crystalline compounds were limited to garnets and perovskites for the use of deep
neural networks (Ye et al 2018), or fixed-length feature vectors (or descriptors) for atoms in the compounds
using compositional properties are necessarily constructed for ML models (Zhou et al 2018). Finding
appropriate descriptors that could enhance model performance is the key step in these frameworks, but it
requires high-level domain knowledge and/or occasionally suffers from human bias.

Recently, Xie and Grossman have developed a deep learning (DL) framework that provides universal
descriptors for crystalline compounds with the arbitrary size, called crystal graph convolutional neural network

©2021 The Author(s). Published by IOP Publishing Ltd
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Figure 1. Structure of the crystal graph convolutional neural networks.

(CGCNN) (Xie and Grossman 2018). In this framework, crystal structures transform into crystal graphs with
nodes representing atoms and edges representing connections between atoms.

Although such graph-based models are generally less sensitive to the choice of atomic descriptors, one may
not rule out the possibility of better performance by better selection of atom descriptors without any human
bias. For finding unbiased atom descriptors and improving prediction accuracies of target material properties,
one can consider the Atom2Vec workflow (Zhou et al 2018) which learns the basic properties of atoms by
themselves in an unsupervised way and show effectiveness over simple empirical descriptors.

Despite growing interest in the ML methods mentioned above, the amount of data that can be directed used
for the prediction is usually not enough since most of the related studies of material properties have quite a
narrow scope. Therefore, only a very little portion of the published data has matched with the given specific
scope. Recently, a new approach, called Sure Independent Screening Sparsifying Operator (SISSO) (Ouyang et al
2018), showed stable prediction performances in a relatively small dataset by identifying the intrinsic
relationship which is immutable between a target property and physical quantities. The relationship among
physical quantities can be expressed in a mathematical equation that is composed of several descriptors. It
provides a model that can be used to predict unknown properties of materials of interest like ML has performed
for the same reason, but analytic function can be obtained by SISSO, while a role among input features is
completely hidden in a generated ML model.

Aswe mentioned above, such ML models achieved a remarkable improvement in the prediction of material
properties. However, for material engineers who want to apply ML to their research but are not familiar with it,
exploiting the ML models is still challenging because its performance highly depends on the amount of data to be
prepared/preprocessed for predictive models, and representation of atoms in compounds for their features, and
appropriate targets, which are the important material properties in its design.

In this study, we investigate the difference in model performance according to the choice of atomic
features—selected by empirical knowledge or by the unsupervised way (Atom2vec)—as initial input values to
the CGCNN model. Assuming that the amount of data for learning a model is limited, we also examine whether
SISSO could show promising prediction performance. Both models predict the properties of crystalline
compounds in the database of Materials Project (MP) and investigate which model is suitable depending on the
circumstance.

2.Methods

2.1.CGCNN
CGCNN is a deep learning framework for predicting material properties of crystal structures represented by
crystal graphs with nodes and edges corresponding to atomic information and bonding interaction between
atoms, respectively. Figure 1 shows the structure of the CGCNN framework. Let v; and u; j, be a node feature
vector for an atom in ith node and a bonding feature vector for kth edge connecting two atoms in node 7 and j.
As in the original CGCNN work (Xie and Grossman 2018), the nine properties are encoded in the atom
feature in the CGCNN model: group number, periodic number, electronegativity, covalent radius, valence
electrons, first ionization energy, electron affinity, block, and atomic volume. Then, the atom feature vector v; is
updated by passing through a convolutionallayer on top of the crystal graph, as following:

t+1) __ t t t t
Vit =V 30 0@ WE ) © (2 W + B, M
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Figure 2. Schematic learning algorithm for Atom2vec. An atom-environment matrix is generated from materials database. Then,
using singular-value decomposition (SVD), we can obtain row vectors in the subspace of the d largest singular values which
determines the dimension of encoded feature vectors for atoms: F = [f,,..., fy] = UD where U is N x d matrix corresponding to
the d largest singular values from an orthogonal matrix, and D is d X d matrix from a diagonal matrix.

where zg);)k = vff) @ v?) @ uy;,j), is a feature vector concatenated all vectors of the focal node v;, its connecting
node v; and their kth bond uy; j, allowing the periodicity of the unit cell. The nonlinear convolution functions &
and g carry out convolution with weight matrix and bias, W), W, b and b{"’, respectively. Note that &
function is a sigmoid function to make learning deeper networks.

After updating, to get a global vector representation of the crystal vy, the normalized summation of every
node features is used as a pooling layer, as follow:

v, = %Zivi- )

Finally, the global vector representation of the crystal goes through a fully connected layer to obtain the material
property ().

2.2. Atom2Vec

Atom2Vecintroduced in (Zhou et al 2018) is unsupervised learning of atoms from a database and provides
atomic descriptors that capture well the similarities and properties of atoms in a vector space and show their
enhanced effectiveness over simple empirical descriptors in ML problems for materials discovery. Atom2Vec
lets machines learn atom representation from only the existence of compounds (or environments) in a materials
database. To represent how atoms are bond together to form their environments, atom-environment pairs are
generated from the chemical composition of a compound: Each atom is selected as a target, and the counts of all
remaining atoms are represented as a corresponding environment to the target one, and of itself. For example,
Bi2Te3 generates two atom-environments pairs: “Bi”-“(2) Te3”, and “Te”-“(3) Bi2”. Then, from a materials
database, we build atom-environment matrix X whose (i, j) entry represents the number of pairs where the ith
atom and the jth environment appear together. The authors in (Zhou et al 2018) proposed two types of learning
algorithms for Atom2Vec, one is model-free and the other model-based machines. Nevertheless, to exclude any
probability model to describe connections between atom and environment, we here only consider a model-free
machine. In the model-free machines, the normalization of the atom-environment matrix is applied to its

row vector to overcome imbalanced atom distribution in the environment. Then, using singular-value
decomposition (SVD) (Sapper and Hinderliter 2013), we can obtain row vectors in the subspace of the d largest
singular values which determines the dimension of encoded feature vectors for atoms and is fixed as d = 20 in
this work (figure 2).

A CGCNN framework requires knowledge-based features of atoms, for instance, group number, period
number, electronegativity, etc. These features convert to the atom representation by one-hot encoding. Even
though the properties are simple and enable to use of atom coordinate without complex transformation, the
initial atom representation might have high feature dimensions or highly-collated features. Besides, feature
selection plays a role in the enhancement of prediction performance, but it could be varied relying on
researchers’ selection of atom properties by insights or domain knowledge. Here we use Atom2Vec to provide
atom representation learning from the various structures of crystalline materials and feed the initial atom
representation into CGCNNs for comparison with the empirical atomic features.
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2.3.SISSO

SISSO is an algorithm that can be used to discover the intrinsic relationship which is immutable between a target
property and physical quantities based on the compressed-sensing method (Ouyang et al 2018). Since its
performance is not dependent on the size of an input dataset, it has been known to provide stable results even
though the training set is relatively small.

In this paper, SISSO has been employed to obtain the mathematical equations composed of atomic features
and to predict unknown materials’ properties. We have used thirty-six kinds of physical quantities of each atom
as the input features; atomic radius, atomic volume, atomic weight, and so on (see all in figure S1 in SI (available
online at stacks.iop.org/MRX/8/026302 /mmedia)). To find the relationship between such atomic features and
material properties, SISSO investigates their combinations which means combining more than one atomic
features by the given mathematical operator set which is defined as

H(m) = {+) _)X)+1exp) IOg ’l_l) \/)A(_l) > A2 ) A3}[¢_1) ¢_2])

where ¢, and ¢, are objects in ® and, the superscript (m) denotes that physically meaningful operations are only
allowed. While @, is the set of raw atomic features excluding any operation process, @, is the set of collections of
the equations composed of ¢,, ¢, and the single operator from the operator set. The feature space is recursively
defined with an increment of 1 as follows:

n
d, = UH(M) (¢ @51, V by, ¢, € Py
i=1
All feature space of &, forn = 1, 2, 3, have tested to find the best descriptors (d,,p) to predict the target
property through combinatorial optimization which means the given features are handled to minimize the
errors between the target values and the predictive values in an iterative way; once the best descriptor is chosen
from the allowed set of features, SISSO goes to detect another descriptor that can be used to make the best
equation describing target property by the linear combination of two descriptors and coefficients multiplied for
each.

n
P=> (dw cp) =dip-ap+ dp - ap+ -+ +dup - Cup
i=1
The first descriptor is called as a 1D descriptor (d;p), and the second one is a 2D descriptor (d,p). This
multidimensional equation can be extended to more than 3D to find the more exact equation. Finally, the best
performance model is chosen and used for the prediction of the test set. In this process, selecting the most
effective atomic features is very critical, following the considerable effort of careful feature engineering.

2.4. Dataset

The Material Projects (MP) database, including a variety of computed properties such as crystal structure,
electronic band structure, and energy, was used for training and validation of the CGCNN models: inorganic
crystalline compounds (Jain et al 2018). The MP database (pymatgen = 2019.3.27) has 124,515 inorganic
compounds with 89 elements and 227 space groups, and almost 9 out of 10 compounds are binary, ternary, and
quarternary.

We focused on predicting four basic properties of crystalline materials: formation energy (Ef), band gap
(Eg), bulk modulus (Kygp), and shear modulus (Gyry). Before training the predictive models for the target
properties, we prescreened the data obtained from poorly converged calculation and multivalent cathode
projects in MP. Note that only binary and ternary compounds were considered in this study because the feature
space in SISSO rapidly grows with the elements in a compound: The total number of binary and ternary
compounds was 000 for formation energy, 000 for band gap, and 000 for bulk and shear moduli (figure 2). To
investigate the data-size dependency of the predictive models, a thousand of crystalline materials was randomly
set apart from the whole dataset. Each model was trained with 80% of the data and then tested with 20% of
the data.

Note that Atom2Vec can learn the representation of atoms from a massive database, and the learned vectors
can be used as general descriptors in ML problems with a different database in materials science. This fact
enables us to independently learn atom representations from the whole MP database and to use the learned
vectors in the CGCNN model.

3. Results and discussion

3.1. CGCNN with the initial atom embeddings
We compared atom vectors from Atom2Vec with the atom representation from the empirical and random
features and investigated which atom vector is more effective in use for supervised learning tasks of formation

4
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Figure 3. Statistics of the MP. Formation energy per atom, band gap, and elasticity distributions are displayed in the left, middle, and
right panel, respectively.

Table 1. MAEs through the CGCNN algorithm.

MAEsmall MAEwhole
Property Unit
Binary Ternary Binary Ternary
Atom2vec  Empirical ~Atom2vec  Empirical ~Atom2vec  Empirical ~Atom2vec  Empirical
Band gap eV 0.5374 0.5168 0.7448 0.7253 0.2561 0.2663 0.3439 0.3446
Formation eV/atom 0.2435 0.2418 0.2440 0.1779 0.0925 0.0842 0.0565 0.0492
energy

Bulk moduli log(GPa) 0.2224 0.2351 0.2768 0.2779 0.1783 0.1900 0.1800 0.1872
Shear moduli log(GPa) 0.3112 0.3206 0.2812 0.2842 0.2555 0.2697 0.2122 0.2212

Table 2. R* scores through the CGCNN algorithm.

R?mall R‘zvhole
Property Unit
Binary Ternary Binary Ternary
Atom2vec  Empirical ~Atom2vec  Empirical ~Atom2vec  Empirical ~Atom2vec  Empirical
Band gap eV 0.3541 0.3766 0.4231 0.4896 0.8313 0.8208 0.8613 0.8616
Formation eV/atom 0.8585 0.8524 0.8877 0.9460 0.9710 0.9728 0.9929 0.9947
energy

Bulk moduli log(GPa) 0.8419 0.8118 0.7368 0.7580 0.8719 0.8552 0.8696 0.8647
Shear moduli log(GPa) 0.7978 0.7820 0.7587 0.7470 0.8420 0.8300 0.8557 0.8466

energy, band gap, and elasticity predictions. For comparison, we fixed the architecture of the CGCNN models in
all the dataset: three convolution layers with atom representation of length sixty-four, one fully-connected layer
with one hundred twenty-eight hidden units after the pool layers. For training, Adam optimizer (Kingma and
Ba2015) with alearning rate of 0.001 was used. Then, we fed the three different types of atom representations in
the CGCNN model and examined the prediction performance for the targets, formation energy, band gap, and
elasticity in inorganic compounds.

Model performances in the predictions utilizing the two atom representations are summarized in figure 3,
tables 1 and 2 for mean absolute error (MAE), and R? score, respectively. Overall, the two different atom
representations have similar R? scores in all target properties; the difference of the averaged R? scores in the
atomic featurizations are less than 0.2. The initial atom features generated by empirical featurization led to the
better performance of band gap and formation energy prediction than the initial atom features from Atom2vec
for both the small and whole dataset, except band gap prediction for the whole dataset. In particular, CGCNN
with empirical atom representation to predict formation energy outperformed those with Atom2vec atom
representation for the ternary compounds in the small dataset. Meanwhile, CGCNN with Atom2vec achieved
slightly better performances of elasticity prediction for the binary and ternary compounds in the small and
whole dataset. In particular, R? scores of band gap prediction almost doubled for both the binary and ternary
compounds. Note that the length of the initial atom vector by the unsupervised learning of atom in Atom2vec is
much less than those of the empirical one. Nevertheless, the atom representation from the Atom2vec showed
comparable or better performances to the empirical one, independent of the size of the database, the type of
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Table 3. MAEs through the SISSO algorithm.

) MAEman MAEpole MAEg,in (%)
Property Unit
Binary Ternary Binary Ternary Binary Ternary
Band gap 4% 0.68 0.89 0.51 0.93 +33.3 —4.3
Formation energy eV/atom 0.36 0.39 0.31 0.38 +16.1 +2.6
Bulk moduli log(GPa) 0.44 0.44 0.32 0.37 +25.7 +18.9
Shear moduli log(GPa) 0.41 0.49 0.41 0.40 0.0 +22.5

Table 4. R* scores through the SISSO algorithm.

Property Unit Rszmull R&/hole Rlznss

Binary Ternary Binary Ternary Binary Ternary
Band gap eV 0.16 0.41 0.66 0.44 —0.50 —0.03
Formation energy eV/atom 0.65 0.76 0.80 0.78 —0.15 —0.02
Bulk moduli log(GPa) 0.52 0.54 0.63 0.62 —0.11 —0.08
Shear moduli log(GPa) 0.56 0.48 0.62 0.58 —0.05 —0.10

compound, and the task. This result is line with which Zhou et al also showed that the effectiveness of Atom2vec
in use for a supervised learning task for formation energy prediction of elpasolite crystals ABC,Dg.

The best descriptors to predict target properties extracted from SISSO output and are presented with the
evaluated correlation to the target values in Table S1 (in Supplementary). All the correlation values of the
formation energies are systematically higher than the others, thus more reliable. From those results, it is
remarkable that only the atomic feature of arr (Atomic radius by Rahm et al) is related all every descriptor for the
formation energies in the table, and we propose it could be regarded as the most important feature for the given
property. This relationship between atomic radius and formation energy was found by numerous comparisons
among the presented atomic features and mathematical combinations of them.

3.2. Atom representation in SISSO
We have employed the SISSO algorithm to predict the properties listed above by using the same dataset as that of
ML. (atomic features from Mendeleev, Rung = 2, 3D descriptors) (Supplementary Info.: about input atomic
features, and details of running SISSO, version: SISSO 1.0) The MAE outcomes from SISSO results are
systematically larger than that of ML due to two reasons. It seems to be mostly related to the lack of structural
information of the materials in the input features. Another reason is the MAEs have not been fully minimized
since high accuracy setting has not been considered. Therefore, the direct comparison of the performances
between SISSO and ML methods presented below (table 3) could not be fair.

On the other hand, we could discuss the comparison of two different results by only SISSO: the difference
due to the change of the dataset size. For the comparison, we introduced MAE®™ that means the increment of
the MAEs in percentage when changing the input dataset to the small one from the whole one, and it is given by

) MAEsmall _ MAEwhale
MAESin(%) = i x 100.

In the comparison, ML prediction results show that MAE is changed dramatically depending on the size of
the dataset. On the contrary, SISSO results systematically maintain the similar accuracies while the size of the
dataset is reduced; especially the MAE of Ef of binary and Gygy of ternary is increased slightly, even though
quite a smaller data subset has been used. In the case of E, of ternary, the MAE is decreased at the smaller dataset,
surprisingly. The similar trend found in the R scores presented in table 4: R, of ternary compounds shows that
the model performance between small and whole dataset is not too large. However, in the case of the binary
compounds in the small dataset, R scores are seriously increased and its behavior is similar to those of the ML
results. It seems that the intrinsic relationship between atomic features and target values has been lost in the test
set of binary compounds, while the importance of the crystal geometry on the ML methods are strongly
dependent on the change of the dataset size.

Next, we consider only ten atomic features, while a total of thirty-six atomic features is available from the
results of the additional feature engineering process described in SI. Its prediction results are presented in
tables 3 and 4 for MAEs and R *scores, respectively. To investigate such larger feature space, additional steps have
been performed for the formation energy of the binary compounds of the small dataset by using such 36 atomic

6
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Figure 5. R” scores through CGCNN and SISSO (36 atomic features) compared with various ML algorithms

features as presented in figure 4. It allows more combinations of input features and then the possibility of high-
end performance of SISSO in the prediction of the target properties has been checked. Finally, the obtained R*
score with 37 features for the formation energy is 0.846, which is comparable to that of the state-of-the-art

approach based on crystal graphs as a structural representation such as CGCNN when the data set of the
restricted size (small one) was used. The advantage of the SISSO combined with the Mendeleev Python library is

its high availability that does not require any pre-defined structural information for the target compounds. This
allows us to skip the long time process of DFT calculations. As a result, it could be used as an alternative of
CGCNN methods when the given dataset has deficient information about atomic topologies and has only
compositional information of the target compounds.

As we have especially focused on two types of Al-based predictive tools of CGCNN and SISSO which have
recently developed in this area, their performances were presented as the top 3 results in comparison with that of

7
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various ML algorithms in figure 5. The default hyperparameter setting of the SciKit Learn Python module has
been used for all the ML algorithms.

4, Conclusions

In this study, we introduced the two state-of-art ML frameworks, CGCNN and SISSO, to predict crystalline
materials’ properties such as band gap, formation energy, and bulk and shear moduli. CGCNN outperformed
SISSO regardless of the size and type of the dataset, and its prediction tasks as other DL approaches have been
done for the case in the field of materials science, recently (Gilmer et al 2017, Sutton et al 2018). CGCNN is also
able to have the interpretability of an embedding vector in a specified structure such as perovskites. However,
CGCNN needs some domain knowledge to avoid the human bias of atomic characteristics for vector
embedding. Meanwhile, SISSO showed consistent results in prediction performance even in the small dataset.
Also, SISSO could provide the best descriptor out of a large space of mathematical combinations of simple
atomic features, and identify the relationship between atomic descriptors and property in terms of an analytical
equation (Ouyang et al 2018).

To avoid human bias on feature selection for the initial atomic descriptor, we adopted Atom2vec. The atom
representation from Atom2vec showed comparable or better performances to the empirical one, regardless of
the size of the database, the type of compound, and the task. This showed the effectiveness in use for the
supervised learning task of materials properties over empirical atomic features. Therefore, Atom2vec for the
initial atom embedding in graph-based neural networks would be a better choice for researchers who want to
apply it to the general task for materials discovery than the empirical one.

Although ML for materials design and discovery has been improving, it is still challenging to develop a model
with high-throughput computation and precise prediction for most properties of crystalline compounds;
researchers looking to introduce an ML method for this field are forced to spend a lot of time and effort in
finding the appropriate model and descriptors according to the given dataset and the target properties. We
assumed the various situations that these researchers might experience, such as limitation of the amount of
training data, representation of atomic features, and the availability of structural information, and compared the
performance of the state-of-art machine learning models for the target properties. We expect that this result will
enable researchers in materials discovery to gain appropriate choices and insights in various attempts to improve
the prediction performance of crystalline materials’ properties.
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