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Abstract
Machine learning (ML)has increasingly been of interest in the design of newmaterials. However, it is
still challenging to exploit anMLmodel in thisfield because its performance highly depends on the
representation ofmaterials, its properties, and the amount of data. In this study, for the cases of
prediction of properties of crystallinematerials, we explore a systematic comparison of two state-of-
the-art frameworks: Crystal GraphConvolutional NeuralNetworks (CGCNNs) and the Sure
Independence Screening and SparsifyingOperator (SISSO). The common key advantage of these two
models is the fact that painstakingly handcrafted descriptors from simplematerial properties are not
required. Themain differences between the twomodels are (1) the use of structure information in the
arbitrary size of compounds (CGCNN) and (2) limited interpretability (CGCNN) but simple and
analytic relations between descriptor-property (SISSO). Using these twoML algorithmswe evaluate
the prediction performance on the target properties, which are band gap, formation energy, and
elasticity of crystalline compounds in the database ofMaterials Project (MP).Moreover, to improve
prediction of the properties of thematerials without human bias in the selection of initial atomic
features for the CGCNNs, we use Atom2Vec that provides atom representation obtained in an
unsupervisedmanner from thematerials.We also perform the predictions with the different sizes of
training set to investigate the data-size dependency of the predictivemodels. According to the amount
of dataset, the use of structural information, and the ability to identify the best descriptor with its
interpretability, these algorithms showed different prediction performances. This result will enable
researchers inmaterials discovery to gain appropriate choices and insights in various attempts to
improve the prediction performance of crystallinematerials’ properties.

1. Introduction

Accumulation ofmaterials data and development of variousmachine learning (ML) algorithms are accelerating
research on the prediction ofmaterial properties for the design of newmaterials. However, it is still challenging
to predict the properties of crystalline compounds that have an arbitrary sizewith complex structure. To tackle
this issue, the structures of crystalline compoundswere limited to garnets and perovskites for the use of deep
neural networks (Ye et al 2018), orfixed-length feature vectors (or descriptors) for atoms in the compounds
using compositional properties are necessarily constructed forMLmodels (Zhou et al 2018). Finding
appropriate descriptors that could enhancemodel performance is the key step in these frameworks, but it
requires high-level domain knowledge and/or occasionally suffers fromhuman bias.

Recently, Xie andGrossman have developed a deep learning (DL) framework that provides universal
descriptors for crystalline compounds with the arbitrary size, called crystal graph convolutional neural network
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(CGCNN) (Xie andGrossman 2018). In this framework, crystal structures transform into crystal graphswith
nodes representing atoms and edges representing connections between atoms.

Although such graph-basedmodels are generally less sensitive to the choice of atomic descriptors, onemay
not rule out the possibility of better performance by better selection of atomdescriptors without any human
bias. Forfinding unbiased atomdescriptors and improving prediction accuracies of targetmaterial properties,
one can consider theAtom2Vecworkflow (Zhou et al 2018)which learns the basic properties of atoms by
themselves in an unsupervisedway and show effectiveness over simple empirical descriptors.

Despite growing interest in theMLmethodsmentioned above, the amount of data that can be directed used
for the prediction is usually not enough sincemost of the related studies ofmaterial properties have quite a
narrow scope. Therefore, only a very little portion of the published data hasmatchedwith the given specific
scope. Recently, a new approach, called Sure Independent Screening SparsifyingOperator (SISSO) (Ouyang et al
2018), showed stable prediction performances in a relatively small dataset by identifying the intrinsic
relationshipwhich is immutable between a target property and physical quantities. The relationship among
physical quantities can be expressed in amathematical equation that is composed of several descriptors. It
provides amodel that can be used to predict unknown properties ofmaterials of interest likeMLhas performed
for the same reason, but analytic function can be obtained by SISSO,while a role among input features is
completely hidden in a generatedMLmodel.

Aswementioned above, suchMLmodels achieved a remarkable improvement in the prediction ofmaterial
properties. However, formaterial engineers whowant to applyML to their research but are not familiar with it,
exploiting theMLmodels is still challenging because its performance highly depends on the amount of data to be
prepared/preprocessed for predictivemodels, and representation of atoms in compounds for their features, and
appropriate targets, which are the importantmaterial properties in its design.

In this study, we investigate the difference inmodel performance according to the choice of atomic
features—selected by empirical knowledge or by the unsupervisedway (Atom2vec)—as initial input values to
theCGCNNmodel. Assuming that the amount of data for learning amodel is limited, we also examinewhether
SISSO could showpromising prediction performance. Bothmodels predict the properties of crystalline
compounds in the database ofMaterials Project (MP) and investigate whichmodel is suitable depending on the
circumstance.

2.Methods

2.1. CGCNN
CGCNN is a deep learning framework for predictingmaterial properties of crystal structures represented by
crystal graphswith nodes and edges corresponding to atomic information and bonding interaction between
atoms, respectively. Figure 1 shows the structure of theCGCNN framework. Let vi and u i j, k( ) be a node feature
vector for an atom in ith node and a bonding feature vector for kth edge connecting two atoms in node i and j.

As in the original CGCNNwork (Xie andGrossman 2018), the nine properties are encoded in the atom
feature in theCGCNNmodel: group number, periodic number, electronegativity, covalent radius, valence
electrons, first ionization energy, electron affinity, block, and atomic volume. Then, the atom feature vector vi is
updated by passing through a convolutional layer on top of the crystal graph, as following:
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Figure 1. Structure of the crystal graph convolutional neural networks.
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After updating, to get a global vector representation of the crystal v ,G the normalized summation of every

node features is used as a pooling layer, as follow:
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Finally, the global vector representation of the crystal goes through a fully connected layer to obtain thematerial
property (ŷ ).

2.2. Atom2Vec
Atom2Vec introduced in (Zhou et al 2018) is unsupervised learning of atoms from a database and provides
atomic descriptors that capturewell the similarities and properties of atoms in a vector space and show their
enhanced effectiveness over simple empirical descriptors inMLproblems formaterials discovery. Atom2Vec
letsmachines learn atom representation fromonly the existence of compounds (or environments) in amaterials
database. To represent how atoms are bond together to form their environments, atom-environment pairs are
generated from the chemical composition of a compound: Each atom is selected as a target, and the counts of all
remaining atoms are represented as a corresponding environment to the target one, and of itself. For example,
Bi Te2 3 generates two atom-environments pairs: Bi Te“ ” “ 2 3”,‐ ( ) and Te Bi“ ” “ 3 2”.‐ ( ) Then, from amaterials
database, we build atom-environmentmatrix X whose i j,( ) entry represents the number of pairs where the ith
atomand the jth environment appear together. The authors in (Zhou et al 2018) proposed two types of learning
algorithms for Atom2Vec, one ismodel-free and the othermodel-basedmachines. Nevertheless, to exclude any
probabilitymodel to describe connections between atomand environment, we here only consider amodel-free
machine. In themodel-freemachines, the normalization of the atom-environmentmatrix is applied to its
row vector to overcome imbalanced atomdistribution in the environment. Then, using singular-value
decomposition (SVD) (Sapper andHinderliter 2013), we can obtain row vectors in the subspace of the d largest
singular values which determines the dimension of encoded feature vectors for atoms and isfixed as =d 20 in
this work (figure 2).

ACGCNN framework requires knowledge-based features of atoms, for instance, group number, period
number, electronegativity, etc. These features convert to the atom representation by one-hot encoding. Even
though the properties are simple and enable to use of atom coordinate without complex transformation, the
initial atom representationmight have high feature dimensions or highly-collated features. Besides, feature
selection plays a role in the enhancement of prediction performance, but it could be varied relying on
researchers’ selection of atomproperties by insights or domain knowledge.Here we use Atom2Vec to provide
atom representation learning from the various structures of crystallinematerials and feed the initial atom
representation intoCGCNNs for comparisonwith the empirical atomic features.

Figure 2. Schematic learning algorithm for Atom2vec. An atom-environmentmatrix is generated frommaterials database. Then,
using singular-value decomposition (SVD), we can obtain row vectors in the subspace of the d largest singular values which
determines the dimension of encoded feature vectors for atoms: = ¼ =f f UDF , , N1[ ] ¯ ¯ where Ū is ´N d matrix corresponding to
the d largest singular values from an orthogonalmatrix, and D̄ is ´d d matrix from a diagonalmatrix.
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2.3. SISSO
SISSO is an algorithm that can be used to discover the intrinsic relationshipwhich is immutable between a target
property and physical quantities based on the compressed-sensingmethod (Ouyang et al 2018). Since its
performance is not dependent on the size of an input dataset, it has been known to provide stable results even
though the training set is relatively small.

In this paper, SISSOhas been employed to obtain themathematical equations composed of atomic features
and to predict unknownmaterials’ properties.We have used thirty-six kinds of physical quantities of each atom
as the input features; atomic radius, atomic volume, atomicweight, and so on (see all infigure S1 in SI (available
online at stacks.iop.org/MRX/8/026302/mmedia)). Tofind the relationship between such atomic features and
material properties, SISSO investigates their combinationswhichmeans combiningmore than one atomic
features by the givenmathematical operator set which is defined as

f fº + - ´ ¸ -  -H , , , ,exp, log , , , 1 , 2 , 3 _1, _2 ,m { ∣ ∣ ˆ( ) ˆ ˆ }[ ]( )

where f1 and f2 are objects inΦ and, the superscript (m) denotes that physicallymeaningful operations are only
allowed.WhileΦ0 is the set of raw atomic features excluding any operation process,Φ1 is the set of collections of
the equations composed of f ,1 f2 and the single operator from the operator set. The feature space is recursively
definedwith an increment of n as follows:

È f f f fF º " Î F
=

-H , , ,n
i

n
m

i
1

1 2 1 2 1ˆ [ ]( )

All feature space ofΦn for n=1, 2, 3, have tested tofind the best descriptors (dnD) to predict the target
property through combinatorial optimizationwhichmeans the given features are handled tominimize the
errors between the target values and the predictive values in an iterative way; once the best descriptor is chosen
from the allowed set of features, SISSO goes to detect another descriptor that can be used tomake the best
equation describing target property by the linear combination of two descriptors and coefficientsmultiplied for
each.

åº º + + +
=

d c d c d c d cP
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nD nD D D D D nD nD
1
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Thefirst descriptor is called as a 1Ddescriptor (d1D), and the second one is a 2Ddescriptor (d2D). This
multidimensional equation can be extended tomore than 3D tofind themore exact equation. Finally, the best
performancemodel is chosen and used for the prediction of the test set. In this process, selecting themost
effective atomic features is very critical, following the considerable effort of careful feature engineering.

2.4.Dataset
TheMaterial Projects (MP) database, including a variety of computed properties such as crystal structure,
electronic band structure, and energy, was used for training and validation of theCGCNNmodels: inorganic
crystalline compounds (Jain et al 2018). TheMPdatabase (pymatgen=2019.3.27) has 124,515 inorganic
compoundswith 89 elements and 227 space groups, and almost 9 out of 10 compounds are binary, ternary, and
quarternary.

We focused on predicting four basic properties of crystallinematerials: formation energy (Ef ), band gap
(Eg ), bulkmodulus (KVRH), and shearmodulus (GVRH). Before training the predictivemodels for the target
properties, we prescreened the data obtained frompoorly converged calculation andmultivalent cathode
projects inMP.Note that only binary and ternary compoundswere considered in this study because the feature
space in SISSO rapidly growswith the elements in a compound: The total number of binary and ternary
compoundswas 000 for formation energy, 000 for band gap, and 000 for bulk and shearmoduli (figure 2). To
investigate the data-size dependency of the predictivemodels, a thousand of crystallinematerials was randomly
set apart from thewhole dataset. Eachmodel was trainedwith 80%of the data and then testedwith 20%of
the data.

Note that Atom2Vec can learn the representation of atoms fromamassive database, and the learned vectors
can be used as general descriptors inMLproblemswith a different database inmaterials science. This fact
enables us to independently learn atom representations from thewholeMPdatabase and to use the learned
vectors in theCGCNNmodel.

3. Results and discussion

3.1. CGCNNwith the initial atom embeddings
Wecompared atomvectors fromAtom2Vecwith the atom representation from the empirical and random
features and investigatedwhich atomvector ismore effective in use for supervised learning tasks of formation
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energy, band gap, and elasticity predictions. For comparison, wefixed the architecture of theCGCNNmodels in
all the dataset: three convolution layers with atom representation of length sixty-four, one fully-connected layer
with one hundred twenty-eight hidden units after the pool layers. For training, Adamoptimizer (Kingma and
Ba 2015)with a learning rate of 0.001was used. Then, we fed the three different types of atom representations in
theCGCNNmodel and examined the prediction performance for the targets, formation energy, band gap, and
elasticity in inorganic compounds.

Model performances in the predictions utilizing the two atom representations are summarized infigure 3,
tables 1 and 2 formean absolute error (MAE), and R2 score, respectively. Overall, the two different atom
representations have similar R2 scores in all target properties; the difference of the averaged R2 scores in the
atomic featurizations are less than 0.2. The initial atom features generated by empirical featurization led to the
better performance of band gap and formation energy prediction than the initial atom features fromAtom2vec
for both the small andwhole dataset, except band gap prediction for thewhole dataset. In particular, CGCNN
with empirical atom representation to predict formation energy outperformed thosewithAtom2vec atom
representation for the ternary compounds in the small dataset.Meanwhile, CGCNNwith Atom2vec achieved
slightly better performances of elasticity prediction for the binary and ternary compounds in the small and
whole dataset. In particular, R2 scores of band gap prediction almost doubled for both the binary and ternary
compounds. Note that the length of the initial atomvector by the unsupervised learning of atom inAtom2vec is
much less than those of the empirical one.Nevertheless, the atom representation from theAtom2vec showed
comparable or better performances to the empirical one, independent of the size of the database, the type of

Figure 3. Statistics of theMP. Formation energy per atom, band gap, and elasticity distributions are displayed in the left,middle, and
right panel, respectively.

Table 1.MAEs through theCGCNNalgorithm.

Property Unit
MAEsmall MAEwhole

Binary Ternary Binary Ternary

Atom2vec Empirical Atom2vec Empirical Atom2vec Empirical Atom2vec Empirical

Band gap eV 0.5374 0.5168 0.7448 0.7253 0.2561 0.2663 0.3439 0.3446

Formation

energy

eV/atom 0.2435 0.2418 0.2440 0.1779 0.0925 0.0842 0.0565 0.0492

Bulkmoduli log(GPa) 0.2224 0.2351 0.2768 0.2779 0.1783 0.1900 0.1800 0.1872

Shearmoduli log(GPa) 0.3112 0.3206 0.2812 0.2842 0.2555 0.2697 0.2122 0.2212

Table 2.R2 scores through theCGCNNalgorithm.

Property Unit
R2
small R2

whole

Binary Ternary Binary Ternary

Atom2vec Empirical Atom2vec Empirical Atom2vec Empirical Atom2vec Empirical

Band gap eV 0.3541 0.3766 0.4231 0.4896 0.8313 0.8208 0.8613 0.8616

Formation

energy

eV/atom 0.8585 0.8524 0.8877 0.9460 0.9710 0.9728 0.9929 0.9947

Bulkmoduli log(GPa) 0.8419 0.8118 0.7368 0.7580 0.8719 0.8552 0.8696 0.8647

Shearmoduli log(GPa) 0.7978 0.7820 0.7587 0.7470 0.8420 0.8300 0.8557 0.8466
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compound, and the task. This result is linewithwhich Zhou et al also showed that the effectiveness of Atom2vec
in use for a supervised learning task for formation energy prediction of elpasolite crystals ABC2D6.

The best descriptors to predict target properties extracted fromSISSOoutput and are presentedwith the
evaluated correlation to the target values in Table S1 (in Supplementary). All the correlation values of the
formation energies are systematically higher than the others, thusmore reliable. From those results, it is
remarkable that only the atomic feature of arr (Atomic radius by Rahm et al) is related all every descriptor for the
formation energies in the table, andwe propose it could be regarded as themost important feature for the given
property. This relationship between atomic radius and formation energy was found by numerous comparisons
among the presented atomic features andmathematical combinations of them.

3.2. Atom representation in SISSO
Wehave employed the SISSO algorithm to predict the properties listed above by using the same dataset as that of
ML. (atomic features fromMendeleev, Rung=2, 3Ddescriptors) (Supplementary Info.: about input atomic
features, and details of running SISSO, version: SISSO 1.0)TheMAEoutcomes fromSISSO results are
systematically larger than that ofMLdue to two reasons. It seems to bemostly related to the lack of structural
information of thematerials in the input features. Another reason is theMAEs have not been fullyminimized
since high accuracy setting has not been considered. Therefore, the direct comparison of the performances
between SISSO andMLmethods presented below (table 3) could not be fair.

On the other hand, we could discuss the comparison of two different results by only SISSO: the difference
due to the change of the dataset size. For the comparison, we introducedMAEgain thatmeans the increment of
theMAEs in percentage when changing the input dataset to the small one from thewhole one, and it is given by

=
-

´MAE
MAE MAE

MAE
% 100.gain

small whole

whole
( )

In the comparison,MLprediction results show thatMAE is changed dramatically depending on the size of
the dataset. On the contrary, SISSO results systematicallymaintain the similar accuracies while the size of the
dataset is reduced; especially theMAEof Ef of binary and GVRH of ternary is increased slightly, even though
quite a smaller data subset has been used. In the case of Eg of ternary, theMAE is decreased at the smaller dataset,

surprisingly. The similar trend found in theR2 scores presented in table 4: Rloss
2 of ternary compounds shows that

themodel performance between small andwhole dataset is not too large.However, in the case of the binary
compounds in the small dataset,R2 scores are seriously increased and its behavior is similar to those of theML
results. It seems that the intrinsic relationship between atomic features and target values has been lost in the test
set of binary compounds, while the importance of the crystal geometry on theMLmethods are strongly
dependent on the change of the dataset size.

Next, we consider only ten atomic features, while a total of thirty-six atomic features is available from the
results of the additional feature engineering process described in SI. Its prediction results are presented in
tables 3 and 4 forMAEs andR2scores, respectively. To investigate such larger feature space, additional steps have
been performed for the formation energy of the binary compounds of the small dataset by using such 36 atomic

Table 3.MAEs through the SISSO algorithm.

Property Unit
MAEsmall MAEwhole MAEgain (%)

Binary Ternary Binary Ternary Binary Ternary

Band gap eV 0.68 0.89 0.51 0.93 +33.3 −4.3

Formation energy eV/atom 0.36 0.39 0.31 0.38 +16.1 +2.6

Bulkmoduli log(GPa) 0.44 0.44 0.32 0.37 +25.7 +18.9

Shearmoduli log(GPa) 0.41 0.49 0.41 0.40 0.0 +22.5

Table 4.R2 scores through the SISSO algorithm.

Property Unit
Rsmall

2 Rwhole
2 Rloss

2

Binary Ternary Binary Ternary Binary Ternary

Band gap eV 0.16 0.41 0.66 0.44 −0.50 −0.03

Formation energy eV/atom 0.65 0.76 0.80 0.78 −0.15 −0.02

Bulkmoduli log(GPa) 0.52 0.54 0.63 0.62 −0.11 −0.08

Shearmoduli log(GPa) 0.56 0.48 0.62 0.58 −0.05 −0.10
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features as presented infigure 4. It allowsmore combinations of input features and then the possibility of high-
end performance of SISSO in the prediction of the target properties has been checked. Finally, the obtained R2

scorewith 37 features for the formation energy is 0.846, which is comparable to that of the state-of-the-art
approach based on crystal graphs as a structural representation such asCGCNNwhen the data set of the
restricted size (small one)was used. The advantage of the SISSO combinedwith theMendeleevPython library is
its high availability that does not require any pre-defined structural information for the target compounds. This
allows us to skip the long time process ofDFT calculations. As a result, it could be used as an alternative of
CGCNNmethodswhen the given dataset has deficient information about atomic topologies and has only
compositional information of the target compounds.

Aswe have especially focused on two types of AI-based predictive tools of CGCNNand SISSOwhich have
recently developed in this area, their performances were presented as the top 3 results in comparisonwith that of

Figure 4.Mean absolute error of the band gap (A), formation energy per atom (B), and bulk (C) and shearmoduli (D) for the different
size (small orwhole) and compound (binary or ternary) of the dataset. Atom features from the empirical combination (red bar) and
Atom2vec (blue bar)were used to feed into theCGCNNs.

Figure 5.R2 scores throughCGCNNand SISSO (36 atomic features) comparedwith variousML algorithms.
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variousML algorithms infigure 5. The default hyperparameter setting of the SciKit Learn Pythonmodule has
been used for all theML algorithms.

4. Conclusions

In this study, we introduced the two state-of-artML frameworks, CGCNNand SISSO, to predict crystalline
materials’ properties such as band gap, formation energy, and bulk and shearmoduli. CGCNNoutperformed
SISSO regardless of the size and type of the dataset, and its prediction tasks as otherDL approaches have been
done for the case in the field ofmaterials science, recently (Gilmer et al 2017, Sutton et al 2018). CGCNN is also
able to have the interpretability of an embedding vector in a specified structure such as perovskites. However,
CGCNNneeds some domain knowledge to avoid the human bias of atomic characteristics for vector
embedding.Meanwhile, SISSO showed consistent results in prediction performance even in the small dataset.
Also, SISSO could provide the best descriptor out of a large space ofmathematical combinations of simple
atomic features, and identify the relationship between atomic descriptors and property in terms of an analytical
equation (Ouyang et al 2018).

To avoid human bias on feature selection for the initial atomic descriptor, we adopted Atom2vec. The atom
representation fromAtom2vec showed comparable or better performances to the empirical one, regardless of
the size of the database, the type of compound, and the task. This showed the effectiveness in use for the
supervised learning task ofmaterials properties over empirical atomic features. Therefore, Atom2vec for the
initial atom embedding in graph-based neural networks would be a better choice for researchers whowant to
apply it to the general task formaterials discovery than the empirical one.

AlthoughML formaterials design and discovery has been improving, it is still challenging to develop amodel
with high-throughput computation and precise prediction formost properties of crystalline compounds;
researchers looking to introduce anMLmethod for this field are forced to spend a lot of time and effort in
finding the appropriatemodel and descriptors according to the given dataset and the target properties.We
assumed the various situations that these researchersmight experience, such as limitation of the amount of
training data, representation of atomic features, and the availability of structural information, and compared the
performance of the state-of-artmachine learningmodels for the target properties.We expect that this result will
enable researchers inmaterials discovery to gain appropriate choices and insights in various attempts to improve
the prediction performance of crystallinematerials’ properties.
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