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Very Important Paper

What Can Text Mining Tell Us About Lithium-Ion Battery
Researchers’ Habits?
Hassna El-Bousiydy+,[a, b] Teo Lombardo+,[a, c] Emiliano N. Primo+,[a, c] Marc Duquesnoy,[a, c]

Mathieu Morcrette,[a, b, c] Patrik Johansson,[b, d] Patrice Simon,[b, c, e, h] Alexis Grimaud,[b, c, f, g] and
Alejandro A. Franco*[a, b, c, h]

Artificial Intelligence (AI) has the promise of providing a
paradigm shift in battery R&D by significantly accelerating the
discovery and optimization of materials, interfaces, phenomena,
and processes. However, the efficiency of any AI approach
ultimately relies on rapid access to high-quality and interpret-
able large datasets. Scientific publications contain a tremendous
wealth of relevant data and these can possibly, but not

certainly, be used to develop reliable AI algorithms useful for
battery R&D. To address this, we present here a text mining
study wherein we unravel lithium-ion battery researchers’ habits
when reporting results, reason on how these habits link to
issues of lacking reproducibility and discuss the remaining
challenges to be tackled in order to develop a more credible
and impactful AI for battery R&D.

1. Introduction

The development of rechargeable lithium-ion battery (LIB)
technology constitutes one of the most emblematic success
stories of deployment of materials science discoveries, leading
to a societal change via enabling wide practical application of
portable electronics.[1] The recent introduction and plans for
numerous giga-factories to manufacture LIBs will further reduce
their cost, much driven by the demand for electric vehicles. Yet,
more efficient and faster R&D schemes are needed to further
improve batteries performance, durability and safety, as well as
to lower their manufacturing CO2 footprint and increase their
re-usability and recyclability. Even if LIBs have significantly
improved since the first cells successfully commercialized by
Sony[2] based on LiCoO2 (LCO), they are still based on LCO-
derived layered oxides such as LiNixMnyCozO2 (NMC), in spite of
enormous materials research efforts. Since recent years,
Artificial Intelligence (AI) is raising the battery community
expectations to revolutionize the way we search for new
materials, optimize interfaces and operation conditions, as
illustrated by the roadmaps of several international research
initiatives, such as the European Battery 2030+ .[3]

Modern AI encompasses numerous types of computer
algorithms such as supervised, unsupervised and reinforced
machine learning (ML),[4–6] neural networks[7–9] and natural
language processing.[10–12] They have tremendous capabilities of
automatically mining and finding patterns in very large data-
sets (Big Data) revealing difficult-to-access information and
propose solutions to complex problems. These capabilities
have been demonstrated early on in many scientific and
engineering fields,[13–18] and start to have significant impact in
the battery R&D:[19] AI has proven to be useful for battery
materials discovery,[20–23] electrolyte formulation (in combina-
tion with robotics),[24] electrode tomography image
processing,[25] electrode design,[26] state of charge estimation,[27]

aging prediction,[28–31] correlating manufacturing parameters to
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electrode properties,[32] and is being considered for the full cell
production chain.[33,34]

AI’s “understanding” of a problem and prediction accuracy
does not rely on natural science-based models and theories; it
rather by-passes them by finding correlations and interdepen-
dencies between the variables in a dataset through mathemat-
ical operations. Therefore, AI’s capabilities depend on the
veracity and the completeness of the dataset used with respect
to the overall complexity of the system under analysis. The
number of variables that should be considered for accelerating
LIB R&D in practice arises from an unknown but surely complex
numerical expression, involving aspects such as materials
synthesis, electrode manufacturing, electrochemical perform-
ance, recyclability, environmental impact and cost. The exper-
imental approaches and modeling techniques used nowadays
allow to investigate a single or few aspects in multiple scales,
e.g. electrochemical performance or manufacturing procedure,
but none of them enables a holistic view to approach that
expression. Instead, we may think at using the massive amount
of data already available in scientific publications (more than
27,900 LIB publications already exist and this number is
growing rapidly)[35] to generate a holistic view and to unravel
correlations between variables by using AI/ML. However, in
order to collect all the knowledge scattered in scientific
literature, one still needs the capability to accurately recover
data and variables from it. Text mining (TM) algorithms can be
used to extract these data in the most complete and multi-
dimensional possible way. TM algorithms efficiency depends
not only on their ability to recover the data, but also on the
certainty that the data is explicitly and consistently informed in
the literature, i. e. the fact that researchers have reported all the
information needed to construct the AI models.

TM can be defined as the indexing of content or,
alternatively, as the extraction of text/number/ideas looking for
meaning,[36] and typically includes the following steps: (i)
retrieving the publication documents, (ii) converting from PDF/
HTML/XML files into plain text, and (iii) mining the desired data.
(i) is principally hampered by the paywall lock up of peer-
reviewed scientific literature behind the publishers’ copyright
laws, as recently highlighted.[37] In this regard, there has been a
long-standing debate on whether or not to use only the
typically open-source abstracts rather than full-text articles.
Westergaard et al. mined 15 million full-text molecular and cell
biology articles and showed that mining the full-text article
corpus always outperformed the same analysis performed by
using abstracts only, i. e. it allowed increasing the accuracy of
their TM algorithm in terms of information retrieval.[38] Back in
2010, with a considerably smaller dataset, Blake found that
authors report <8% of scientific claims in abstracts.[39] For the
field of LIBs, we have estimated that only ~11% of the
information found in the full texts could be recovered by using
the abstracts only (details in the Methods section). Thus, it is
clear that mining full-text articles is strongly preferred. (ii) is
linked to the widespread digital format today used and it can
be a source of errors, as for instance for the conversion from
PDF to plain text format for different journals’ layout and
special characters. Therefore, TM tools should be improved for

the sake of building datasets as accurate as possible. Finally, (iii)
constitutes a major challenge: AI-based algorithms require well-
curated inputs for their training, but in the scientific literature
most of the data (~80%) is reported as unstructured text.[40]

Therefore the TM algorithms need vocabularies and custom
dictionaries to assist data identification, extraction and integra-
tion.

In general, the task of identifying the structured information
of interest (also called entity) in texts is based on Named Entity
Recognition (NER). The NER method uses existing databases to
identify entities and quantify their occurrence. Substantial
progress has been made in NER and information retrieval
methods for biomedicine,[41,42,51,43–50] while for chemistry the
most known and complete databases available are
ChemDataExtractor[52] and PubChem.[53] However, there are no
libraries specific to battery R&D able to identify information
such as the features of composite electrodes, the electrolyte
used, the cycling conditions, etc. Another TM approach widely
used today is known as word embedding,[11] which associates
to each word in the text a vector and tries to recognize its
semantic/syntax as a function of their surroundings.

Despite the lack of dedicated databases, TM (combined or
not with AI/ML) has already proved its potential for leading to
new discoveries and knowledge in the materials/energy
field.[10,54–59] As a benchmark in the battery community, Huang
et al. constructed a database of battery materials electro-
chemical properties (such as capacity, conductivity or coulom-
bic efficiency) by mining 229,061 academic papers using the
chemistry-aware natural language processing toolkit,
ChemDataExtractor.[60] Furthermore, the potential of extracting
information and trends from literature of the emerging all-
solid-state batteries (ASSBs) field was recently highlighted by
Randau et al., which required the use of approximations and
hypotheses to manually analyze a small dataset of about 30
publications.[61] Needless to say, such in depth analysis would
not be possible for a much more established technology such
as LIB, for which thousands of reports must be individually
screened: under the hypothesis of reading 200 articles per year,
a researcher will need almost 140 years to read all the LIB
scientific publications available today![35]

By using an in-house TM algorithm and analyzing more
than 13,000 LIB/sodium-ion battery (SIB) scientific publications,
we aim in this article to provide a general overview on certain
valuable electrode’s and cell’s features extractable out of
scientific literature in terms of how often they are reported and
about the scattered ways in which they are reported. Consider-
ing the lack of specific datasets enabling the use of approaches
such as the word-embedding method, this work is based on a
keywords search TM algorithm relying on devoted in-house
libraries complex enough to identify several critical information
specific to the battery field. By analyzing this, we would also
like to raise the scientific community attention towards the
issues that need to be tackled to ensure that in the future
accurate and high-quality data coming from scientific literature
can feed AI algorithms, raising awareness on the importance of
reporting systematically certain basic electrode and cell proper-
ties. In addition, we hope that the libraries herein developed
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will be further used and improved by the community, with the
final goal of setting common battery specific databases to ease
information identification and extraction.

2. LIB/SIB Scientific Publication Mining:
Researchers’ Habits

Our in-house text-mining algorithm (provided with this Article)
automatically extracts information from the full text of peer-
reviewed publications, as schematically presented in Figure 1.
This algorithm is based on a combination of keywords linked
with logical operators and devoted libraries complex enough
to capture as much as possible the different ways in which the
screened properties are reported in scientific literature. In stark
contrast, classical search engines embedded in online plat-
forms, such as Web of Science™ or Scopus®, search for
information in the title, abstract, keywords list and references
within an article, and do it in a literal way rather than in
context.

Using a semi-automatic download algorithm, we collected
a representative dataset of LIB and SIB scientific publications
spanning from 1990 to 2019, comprising ca. 13,000 articles
from different journals and editors (Wiley, Springer, Elsevier,
American Chemical Society, IOP Publishing and IEEE Xplore) in
PDF or XML format. For the former, the text is extracted from
both single and double column configurations and the text
contained in tables and figure captions is recovered as well.
Subsequently, the text passes through a conversion and pre-
processing step, in order to transform the PDF format into a
computer-readable text format (TXT) and to remove “noise”
and useless text such as HTML tags, links and advertisements.
The PDF-to-TXT conversion step can introduce errors due to
the different templates used by scientific journals, figures
embedded within the text, presence of headers and footers,
etc. In our case, different Python libraries were tested, choosing
a mixed approach between the pdfminer[80] and tika[81] libraries
and an in-house code, as discussed more in detail in section S7.
The error associated to this step, by manually comparing the
PDF to the converted TXT in a randomly chosen sample of 600
papers, was equal to 4.7%.

Figure 1.Workflow of our in-house developed TM tool.
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Next, a filtering process limits the database to original
experimental studies that actually deal with LIBs and SIBs. Two
different filters, fully described in section S4, were applied to
discard Review articles and to discriminate LIB and SIB studies
from other kind of energy storage technologies, such as
supercapacitors, K-, Mg-, Al-, Ca- and Zn-Ion batteries, Li- or Na-
air/sulfur or redox flow batteries, and also articles dealing with
LIB/SIB separators. This filter also classifies articles as LIB or SIB,
by frequency analysis. A third filter is applied within the
Experimental section to discard articles where no electrode
composition is found, to avoid considering articles focusing
only on materials physical properties, e.g. structural or mag-
netic characterization of battery materials, or computational
studies[82–84] rather than electrochemical performance.

The database was hereby reduced to ca. 6,300 (48%
remaining), ~5,800 LIB and ~500 SIB, articles. Out of the
~6,700 discarded articles, ~7% were Reviews and ~12% dealt
with other energy storage technologies or LIB/SIB separators,
but surprisingly ~81% were filtered due to lacking electrode
composition. The latter comes from: (i) articles without electro-
chemical testing of composite electrodes e.g. modeling studies,
(ii) complete lack of report of the electrode(s) composition(s) or
being placed in the Supplementary Information, (iii) data
actually being reported, but in a way that did not allow to
discriminate it through the search rules defined within the
algorithm, as discussed in more detail in sections S5 and S7.
While (ii) could (partly) be addressed relatively easily by
accessing the Supplementary Information, if the electrode
composition is therein reported, (iii) underlines the complexity
of recovering information reported in a non-standardized way
and to the associated information losses, even when data is
reported. Even if the TM algorithms efficiency is expected to
increase, at present and most likely in the next years part of the
literature’s data will be unreachable, then calling for the need
of standardization actions.

From each LIB/SIB property of interest a specific library is
defined, fully reported in section S9. These libraries should
ideally capture all the different ways a certain information can
be reported in the literature i. e. being sensitive, while avoiding
false hits i. e. being selective. The latter is particularly challeng-
ing when dealing with common words such as ‘thickness’ or
‘diameter’ or similar formats/units being used to report differ-
ent kinds of information such as electrode and electrolyte
composition.

Figure 2 reports the results of our analysis for all the
properties investigated (listed in Figure 1) for LIBs in terms of
how often they are reported in scientific literature. Similar
analysis for SIBs is reported in Figure S1. The electrode, electro-
lyte and separator properties, and the cycling conditions were
screened only in the publications that contained electrode
composition. These searched properties were selected for two
main reasons: (i) they are expected to significantly affect the
electrochemical performance of the cell, and (ii) they are easy-
to-measure and general enough to be relevant for a wide
spectrum of electrochemical energy storage technologies, like
supercapacitors or ASSBs.[62–64] Out of the screened properties,
the electrolyte composition and the cycling conditions (voltage

cut-off/range and current density) can be considered as
typically reported (>80%). Some other battery properties that
are of paramount importance for the performance are often
not reported, such as electrode thickness and porosity as well
as electrolyte volume (� 10%). In addition, the electrode
surface area is not found to be systematically disclosed. Since
these parameters are critical for e.g. high-power applications,
observing such trends is highly problematic for the implemen-
tation of AI-assisted R&D. Even more revealing, the electrode
mass loading was found to be reported in only ~15% and
~27% of the LIB and SIB articles, respectively. Bearing in mind
that this property critically determines the battery performance,
those percentages were expected to be higher. The extraction
of mass loading is however affected by an error arising from
the difficulty of the TM algorithm to easily extract a property
which can be inferred from two other features, here the
electrode’s active material mass and its surface area. Yet, even
considering this, the percentage of articles reporting the mass
loading is significantly lower than expected considering the
crucial role of this electrode feature.

In addition to the electrode and cell properties analyzed
here, other aspects such as the cycling protocol (formation
procedure, waiting time, cycling temperature, use of a constant
potential floating step or not, etc.) and the cell format (coin
cell, prismatic, pouch, etc.) are known to be important for the
battery performance, safety and lifetime. Some aspects, such as
the cycling protocol, are more challenging to extract through
TM approaches, while others, such as the cell configuration and
format, are rather simple to extract. For the latter, we estimate
that >75% of the articles reported the cell format and that the
vast majority of these (~85%) used coin cells. However, the
aim of this article is not to analyze every single aspect that can
influence battery performance, but rather to demonstrate the
lack of systematic reporting even for basic LIBs electrode and
cell properties, calling for action, such as a stronger stand-
ardization.

The error associated to each percentage reported in
Figure 2 was assessed by analyzing manually 1000 randomly
selected articles (100 for each screened property) and compar-
ing the results to the ones obtained through the algorithm. The
error analysis, as discussed in more detail in section S7,
indicates three main sources of error: (i) on the conversion step
from PDF to TXT format, (ii) incompleteness of the library
developed and (iii) data not accessible, because it is reported in
the Supplementary Information, within a reference or in
figures.

The metrics used for evaluating the error associated to our
TM algorithm outputs were precision, recall and F-score.
Precision is the ratio of true positive observations to the total
of true and false positive ones, while recall (or sensitivity) is the
ratio of true positive observations to the entire observations
reporting the screened property, i. e. true positives+ false
negatives (Figure 3). A true/false positive observation is defined
as an article correctly/wrongly classified by the TM algorithm as
reporting a certain property. The same can be said for the true/
false negatives for the case of articles classified as not reporting
a certain property.The F-score is a weighted average of
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precision and recall, giving an overall idea about the accuracy
of the TM output analyzed. Briefly, F-score ranges between 0
and 1, where 0 indicates that the algorithm is not able to
extract any information, while 1 indicates an ideal information
extraction process (no error). Figure 4 displays in a spider graph
the F-score for the 10 searched properties (section S7 in the
Supplementary Information displays all the error evaluation
data). Porosity, surface area, mass loading, electrolyte composi-
tion and separator have F-scores �0.85, limit above which the
data extraction procedure is considered to be accurate. The
lowest F-scores are those of thickness and electrolyte volume.
The latter arises from their low precision (Table S1) and the
main source of this inaccuracy is that both a volume and a
thickness are not exclusively associated to an electrode
property, leading to false positives and then to an over-
estimation. On the other hand, the source of lower F-scores for

Figure 2. LIB text mining algorithm outputs according to the properties used.

Figure 3. Schematic explanation of the precision and recall concepts.
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electrode composition, current density and voltage cut-off/
range is their lower sensitivity (Table S1). For the first property,
the high number of false negatives are due to huge variability
in corpora and lexicons or due to the information reported in a
reference within the article, outside the experimental section or
in the Supplementary Material. The error on the current density
is due to conversion issues on its units or to information
reported in the figures. Lastly, the false negatives found for the
voltage cut-off/range are systematically due to information that
can be inferred from figures, which are inaccessible for the TM
algorithm.

For the case of properties associated to a number, our TM
tool is also able to detect if that value is exact or if it is reported
as a range or approximate value. To discriminate between
these two cases, specific libraries and algorithmic functions
were developed for the cases of electrode porosity, thickness
and mass loading. While the electrode thickness and porosity
are expressed >50% of times as exact values, the mass loading
is often reported as an approximate value or a range of values
(~70%) (bars in Figure 2). Although rarely acknowledged,
disclosing an electrode property as a range of values, some-
times with differences between the extremes exceeding 100%,
makes quite difficult to both reproduce experiments and get
reliable information for AI algorithms. The F-scores for these
results (Table S2 in the Supplementary Information) show that
for the case of porosity there is a low accuracy (yet F-score
>0.8), coming mainly from the false negatives (false ranges),
and a F-score >0.85 for both thickness and mass loading.

One last aspect that should be considered is how electrode
and cell properties are reported in scientific literature, i. e. if
they are reported similarly or in significantly different ways. In
order to quantify the complexity of our mining procedure, the
concept of Shannon Entropy[65] from the information theory
inspired the calculation of the mining scattering (MS). Briefly,
MS [Eq. (S2)] depends on how many different ways researchers
refer to a certain information in the literature and to the
probability (pi) to find each of them in the analyzed articles.

Unlike F-score, which computes the validity of the TM outputs,
the MS measures the information scattering in scientific
literature associated with the algorithm’s libraries. For instance,
if a certain information is expressed in only two possible ways

with the same frequency (p1 ¼ p2 ¼
1=2), the associated MS

would be 0.3, while for three equally probable ways (

p1 ¼ p2 ¼ p3 ¼
1=3), the MS would increase to ~0.48. Therefore,

if researchers report a certain information similarly, its
associated MS value would be low, while high MS values
indicate that the habits of reporting a certain information in
scientific literature is highly scattered, hampering its recovery.
For more details about the implementation and use of the MS
in our study, readers are referred to section S8.

The MS results for the 10 screened properties are reported
in the right spider graph of Figure 4. The current density can be
easily recovered by searching selectively its units (Ag� 1 or
Acm� 2 and its variations) or the C-rate. As these two
possibilities are not equally probable, ~0.31 and ~0.69 when
searching by units and C-rate, respectively, the MS for current
density for LIBs is <0.3. Similarly, the MS associated to the
mass loading is extremely low, as it is always reported in a
similar way and can thus be easily captured. However, if
considering the case when electrode mass and surface are
reported separately, the MS value would then be expected to
increase. Aside from these two parameters, all other properties
are highly complex to recover, as highlighted by their high MS.
Note that the properties which had low F-score values are
amongst the ones that have higher values of MS, implying that
their lower accuracy is not related to an un-developed library,
but rather to the unstructured way in which they are presented
within the articles, which hinders their recovery. Furthermore,
SIB spider graph (Figure S1) displays very similar results,
suggesting that the information retrieval complexity is inde-
pendent on the technology, and rather depend on the
researchers.

Figure 4. F-score and mining scattering from the analysis of the information within the articles according to the 10 properties investigated.
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Although the percentages reported in Figure 2 might
change by developing further improved TM tools, the trends
presented in it are not expected to change. Elementary
electrode properties as the ones mined in this work are far
from being routinely disclosed. Yet, they are basic cell/
electrode features for assessing the applicability of a material.
For instance, the electrode porosity is such an important
property that not only defines the total accessible volume of
the Li-ions, but also its tuning allows to improve the electrode
electronic conductivity.[66,67] Despite that, having 156 (out of
5,781) articles disclosing its value is, at the least, a severe lack
of the “full picture”. Mass loading, which is intimately related
with the electrode thickness, has a negative correlation with
the areal capacity and C-rate-dependence performance.[68]

Having less than 15% of the articles reporting it (and often as
an approximate value) hampers the validity of reporting a rate
capability test. Something similar could be said about the
added electrolyte volume.[69]

3. About Battery Reproducibility Crisis and its
Connection to Data Reporting

Much has been said about the “reproducibility crisis” in current
science[70,71] and several recommendations have been proposed
to tackle this issue. The highly competitive academic system
forces us to publish, more often than not, focusing on final
positive ground-breaking results rather than a consistent and
well-elaborated experimental procedure. In 2016, Nature
carried out a survey amongst its readers trying to shed light on
this so-called crisis.[72] 90% of the researchers acknowledged
this crisis, to a certain extent, and the top reason for this
irreproducible research was (with over 70% of consensus) the
selective reporting of data. Ironically, when possible solutions
for tackling this problem were asked, compulsory disclosure of
experimental conditions and setting standards for reporting
them was not among the 11 proposed improvements. It is
surprising that compulsory data reporting was not considered
as the easiest and cheapest way to overcome this crisis.

Well-curated data is the way to improve the quality of the
battery (and all disciplines) scientific publications. Furthermore,
AI and ML need these data for their development and set up.
As we saw with the handful electrode properties we tried to
mine throughout this article, there is shortage of systematically
collected, standardized and accessible experimental battery
data.

Standardization of the battery data reported is therefore
critically needed. Standardization within science, i. e. the action
to establish norms most people agree with,[73] can only be
successful when implemented in a way not seen as a burden
by the scientific community, but as a tool to further support
and ensure the creativity process, maximizing simultaneously
researchers’ freedom and efficiency. Some steps have been
taken in that direction by the Journal of Power Sources,[64,74] as
they have published a series of guidelines and good practices
for publishing batteries and supercapacitors research articles.

The field of photovoltaics have long been discussing around a
standard report sheet/minimal data to report, and some
journals have already started to demand the filling of a
datasheet condensing experimental conditions, cell properties
and main experimental outputs.[75,76] Furthermore, the stand-
ardized approach starts to be adopted in several initiatives at
the European level as the European Materials Modelling Council
(EMMC),[77] European Materials Characterization Council
(EMCC)[78] or the Photon and Neutron Open Science Cloud
(PaNOSC).[79]

The use of a standardized template to report experimental
data would bring significant advantages to:
* The whole battery community, which would benefit from an
extremely valuable database generated and updated con-
tinuously by the community itself. These datasets (used in
agreement with the specific Journal policies) would have the
potential to boost the research of both academia and
industry. As a result, data comparison and evaluation of
reproducibility will be strongly simplified.

* Journals, editors, reviewers and readers, which would benefit
of a faster and easier reviewing process in terms of
consistency of the reported results and completeness of the
experimental information.

* The AI algorithms, for which it will be easier to exploit the
data.
We strongly believe that the adoption of data templates,

such as the example reported as supplementary material of this
article, will assist in overcoming the broad standardization
challenge. In order to reach a widespread use, journals could
implement such templates to be used at the submission stage.
These templates would allow the creation of databases from
which data could be extracted easily and accurately, and as a
consequence, the wide use of AI approaches will be unlocked.
Finally, specific templates should be developed and applied for
distinctly different energy storage technologies, such as ASSBs
and supercapacitors, and for materials synthesis and manufac-
turing – which is intrinsically more complicated due to the
large variety of techniques and instruments used.

A new era is awaiting us and we are dreamful on the idea
of being more prolific by spending less time deciphering about
the veracity and completeness of reported data. With the
emergence of AI, scientists will not become robots filling out
templates and clicking checkboxes, but the access to reliable
and trustful data will enhance scientific inspiration, cleaver
reasoning, and innovative theoretical approaches, all of which
are key enablers for technological breakthroughs.

Methods
Aiming to increase the TM algorithm accuracy as much as possible,
several strategies to discriminate between different sections of the
articles (as title, abstract, experimental section and keywords) were
developed. The latter allows searching information in specific
regions of the articles, reducing the frequency of false hits. For the
interested readers, a complete discussion on the strategies
developed to identify the different articles’ sections is reported in
section S3, in the Supplementary Information.
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The most critical aspects in our analysis were the development of
accurate filters to discriminate between LIBs, SIBs and other battery
related articles and the development of keywords+ logical oper-
ators based rules allowing a sensitive and selective identification of
the searched properties, as briefly discussed in the main text of this
article. Similar considerations can be said for the libraries devoted
to identify if a certain property is reported as exact or approx-
imate/range of values. These filters and rules can be applied either
to certain section(s) of the articles (as the filter for identifying the
review articles) or to the whole article (as the search of the current
density used). For further information on the strategies developed
along this work to define these filters, libraries and rules, the
interest readers are referred to sections S4, S5 and S6 in the
Supplementary Information.

The concept of precision, recall and F1-score (briefly explained in
the main text) are widely used in the TM field and were used here
as a metric to evaluate the error associated to each TM output. For
more details on the error analysis performed along this work, the
interested readers are referred to section S7.

The concept of MS [Eq. (S2)] was defined and calculated to quantify
the complexity of information retrieval for the searched properties
and by using the libraries developed here (section S9). Briefly, the
concept of MS was identified as suitable to quantify the complexity
of information retrieval because (i) MS value raises when the
different ways of reporting a certain property in scientific articles
increase and (ii) for a constant number of ways in which a certain
property is referred to, MS increase if all (or several) of them are
commonly used in scientific literature, which makes their correct
recovery challenging. However, if only one (or few) of these ways
are commonly used, MS value will be lower, indicating an easier
information retrieval process. For more insight on the MS
mathematical definition the interested readers are referred to
section S8.

Finally, the comparison between information retrieval while using
full text or abstracts only was performed as follows. The abstracts
of the 5,781 LIBs articles classified as reporting the electrode
composition were extracted. Then, the libraries developed for the
searched properties (bottom of Figure 1) were applied to those
abstracts. The number of articles in which one or more properties
were detected in the abstracts were counted and compared to the
ones found by using the full texts (Figure 2). This allows calculating
the percentage of information that could be extracted by using
abstracts compared to the one extractable if using the full text, for
each property analyzed here: mass loading (~5%), porosity (~
13%), thickness (~10%), surface area (~4%), electrolyte composi-
tion (~7%), electrolyte volume (0%), separator (~5%), current
density (~43%) and voltage cut-off (~14%). The value reported in
the main text (~11%) is the arithmetic average of the percentages
detailed above.
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study the Na- and Li-ion battery re-
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reported in scientific literature. Our
results clearly show a systematic lack
of certain key data, calling for stand-
ardization actions.
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