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Abstract: The ATP-binding cassette (ABC) transporters expressed at the canalicular membrane of
hepatocytes mediate the secretion of several compounds into the bile canaliculi and therefore play a
key role in bile secretion. Among these transporters, ABCB11 secretes bile acids, ABCB4 translocates
phosphatidylcholine and ABCG5/G8 is responsible for cholesterol secretion, while ABCB1 and
ABCC2 transport a variety of drugs and other compounds. The dysfunction of these transporters
leads to severe, rare, evolutionary biliary diseases. The development of new therapies for patients
with these diseases requires a deep understanding of the biology of these transporters. In this review,
we report the current knowledge regarding the regulation of canalicular ABC transporters’ folding,
trafficking, membrane stability and function, and we highlight the role of molecular partners in these
regulating mechanisms.

Keywords: bile secretion; ABCB1; ABCB4; ABCB11; ABCC2; ABCG5/G8; molecular partners

1. Introduction

One of the liver’s main functions is bile production and secretion. In addition to
its digestive function, bile plays an important role in detoxification. Bile secretion is me-
diated by several ATP-binding cassette (ABC) transporters, which are expressed at the
canalicular membrane of hepatocytes. The main canalicular ABC transporters are the bile
salt export pump (BSEP, ABCB11), which transports bile acids (BAs), ABCB4 also known
as multidrug resistance protein 3 (MDR3) translocating phosphatidylcholine (PC) and
ABCG5/G8 excreting cholesterol [1]. BA, PC and cholesterol form mixed micelles in the
aqueous environment of bile. In addition to these compounds, bile contains a wide variety
of drugs and organic anions, which are secreted by ABCB1, also known as multidrug resis-
tance protein 1 (MDR-1, or P-glycoprotein) and ABCC2 (multidrug resistance-associated
protein 2, MRP2), respectively [2,3]. ABC transporters share a common basic architecture
and similar ATP-driven functions. They are organized in two repeats, each containing
a membrane-spanning domain (MSD) with six transmembrane (TM) helices and a cyto-
plasmic nucleotide-binding domain (NBD), those two moieties being connected by an
intracellular linker. The MSDs ensure substrate recognition and translocation, whereas
NBDs, which are highly conserved among all ABC transporters, provide the energy for
this process [3]. In contrast to other canalicular ABC transporters, ABCG5 and ABCG8
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are half transporters that require heterodimerization to ensure their function, and ABCC2
has a third MSD at its N-terminus [4]. The key role of canalicular ABC transporters in bile
secretion is highlighted by their implication in a wide range of diseases such as cholestasis
(ABCB4, ABCB11), sitosterolemia (ABCG5/G8), Dubin–Johnson syndrome (ABCC2) and
cancer (ABCB1) (Figure 1) [3]. To develop new therapies for patients with diseases related
to deficient canalicular ABC transporters, it is crucial to better understand the molecular
mechanisms regulating the traffic and function of these transporters. Several studies have
reported that the biosynthesis, trafficking and activity of ABC transporters are regulated by
numerous molecular partners, most of which have been identified by two-hybrid screens
using liver banks [3]. Targeting these interactors represents a potential therapeutic option
for patients. This review focuses on molecular regulators of canalicular ABC transporters
involved in bile formation.
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Once in the ER lumen, nascent ABC transporters are N-glycosylated. Glycans are 
added to their extracellular asparagine residues [9] and play a critical role in protein 
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Figure 1. ATP-binding cassette (ABC) transporters at the canalicular membrane of hepatocytes. The bile canaliculus is
formed by the canalicular membrane of hepatocytes. The main canalicular ABC transporters are indicated according
to the nature of their substrates: in yellow for hydrophobic substrates and in blue for drugs. Note that ATP8B1 is
not an ABC transporter but a P-type ATPase. However, its function is tightly related to the other canalicular ABC
transporters. The substrates of these transporters are shown in black, and their flows are indicated by black arrows. The
main diseases associated with functional defects of these transporters are indicated in red. PFIC: progressive familial
intrahepatic cholestasis.

2. Folding and Glycosylation of Canalicular ABC Transporters

Protein folding is a highly regulated process that is mediated by numerous factors,
including folding proteins and molecular chaperones [5]. Some of these proteins have been
shown as interactors of canalicular ABC transporters, controlling their biosynthesis and
folding. As most transmembrane proteins, ABC transporter biosynthesis starts with their
cotranslational translocation and insertion into the endoplasmic reticulum (ER) membrane
through the Sec61 translocon complex [6]. Numerous accessory factors were described to
facilitate the translocation process, including the translocating chain-associated membrane
protein (TRAM) and the translocon-associated protein (TRAP) [7]. Interestingly, TRAM
and three subunits of the TRAP complex (SSR1, SSR3 and SSR4) were found to interact and
coprecipitate specifically with ABCB11 [8].

Once in the ER lumen, nascent ABC transporters are N-glycosylated. Glycans are
added to their extracellular asparagine residues [9] and play a critical role in protein folding,
stability and interaction with some chaperones [10]. Two main chaperone families exist in
the ER: the heat shock protein (HSP) family, which promotes the folding of a wide variety
of proteins, and the lectin chaperones, which recognize and fold specifically glycosylated
proteins [11]. Calnexin (CNX) and its soluble homolog calreticulin are lectin chaperones
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that were shown to bind both ABCG5 and ABCG8 and stimulate their folding and assembly.
Okiyoneda and colleagues showed that the silencing of either CNX or calreticulin decreases
the expression of ABCG5/G8 [12]. It has also been reported that CNX and the heat shock
cognate 71 kDa protein (Hsc70) interact with ABCB1 [13,14].

In addition to their folding function, chaperones are central players in the quality
control process. They evaluate the folding state of proteins and regulate their ER retention
or ER exit [15]. They allow only properly folded proteins to exit the ER, and contrariwise,
they retain abnormally folded proteins longer before their targeting to the ER-associated
degradation (ERAD) pathway. Some variations in canalicular ABC transporter-encoding
genes were described to affect the folding of these transporters, thereby leading to their
retention in the ER. Indeed, a prolonged association between misfolded ABCB1 variants
and CNX has been observed [13]. Interestingly, we and others have demonstrated that
several small molecules known as pharmacological and chemical chaperones can facilitate
the folding and exit of defective ABCB4 and ABCB11 variants from the ER [16–18]. Another
key component of the quality control system is the B-lymphocyte receptor-associated
protein (BAP), which was shown to control the folding state and sorting of many proteins
in the ER [19,20]. The BAP29 and BAP31 isoforms were described to interact with the
N-terminal domain of ABCB1 and ABCB11, respectively [8,21]. More interestingly, it has
been shown that some mutations in the BAP31 gene are associated with liver dysfunction
and cholestasis [22].

Using an immunoprecipitation assay combined with mass spectrometry analysis
and yeast two-hybrid screens, Przybylla and colleagues identified several novel potential
ER-resident partners for ABCB11, including the receptor expression-enhancing proteins
(REEPs) involved in ER shaping, the immediate early response 3 interacting protein 1
(IER3IP1), the transmembrane proteins 205 (TMEM205) and 14A (TMEM14A) and the bile
Acyl-CoA synthetase (BAC) [8]. However, their role in the regulation of the folding and/or
the trafficking of ABCB11 has not been studied yet.

3. From the Endoplasmic Reticulum to the Plasma Membrane

Correctly folded canalicular ABC transporters leave the ER to reach the Golgi ap-
paratus, where they undergo further post-translational modifications. However, little is
known about the molecular players regulating their trafficking from the ER to the Golgi.
Involvement of the coat protein complex II (COP II) machinery in ABCC7/cystic fibrosis
transmembrane conductance regulator (CFTR) and ABCA1 exit from the ER has been
documented [23,24]. Given the homology between these proteins, the same pathway may
be involved in the sorting and traffic of canalicular ABC transporters. Once in the Golgi
apparatus, canalicular ABC transporters undergo more complex glycosylation [25,26]; then,
they are sorted and packaged into secretory vesicles and further delivered to the canalicular
membrane [25,26].

Unlike other apical proteins in liver cells, canalicular ABC transporters do not undergo
transcytosis after their sorting from the trans-Golgi network (TGN), but they are directly
targeted to the canalicular membrane or subapical compartments (SACs) [27,28]. The
labeling of newly synthesized ABC transporters has shown that ABCB1 is directly delivered
to the canalicular membrane, whereas ABCB11 is targeted to the SAC before reaching the
canalicular membrane [29]. Kipp and coworkers also described the involvement of many
intracellular components, such as cyclic adenosine monophosphate (cAMP), taurocholate
and Ca2+ in the vesicular trafficking of canalicular ABC transporters. Indeed, they showed
that the administration of these components into the perfused liver or directly in cells
increases the amount of ABC transporters present at the canalicular membrane as well as
bile secretion [28].

In addition to these components, many interacting proteins, including specific GT-
Pases, kinases, molecular motors and other factors, have been shown to associate with
canalicular ABC transporters and promote their exocytosis and/or endocytosis. Indeed,
CFTR-associated ligand (CAL), a Golgi-associated protein, has been found to interact with



Int. J. Mol. Sci. 2021, 22, 2113 4 of 17

ABCC2 and regulate its plasma membrane targeting [30]. Some members of the Ras-related
in brain (RAB) GTPase family have also been identified as ABCB1-interacting proteins. The
overexpression of RAB4, RAB5 or their constitutively active forms increases the presence
of ABCB1 at the cell surface [31,32]. Moreover, the motor protein myosin II regulatory light
chain (MLC2) was reported as a prominent regulator of canalicular ABC transporters. Us-
ing a yeast two-hybrid screen of a rat liver cDNA library, MLC2 was found to interact with
the linker domains of ABCB1, ABCB4 and ABCB11 [33]. Based on immunofluorescence
and biochemical experiments, Chan and colleagues showed that the inhibition of MLC2 or
the expression of its dominant negative form leads to a decrease in ABCB11 levels at the
apical membrane [33].

Furthermore, other studies have revealed that many kinases are important for the
exocytosis of ABC transporters. These include the p38 mitogen-activated protein kinase
(MAPK) [34,35], protein kinase A (PKA [36], protein kinase C (PKC) [37], proto-oncogene
serine/threonine-protein kinase (Pim-1) [38] and phosphoinositide 3-kinase (PI3K) [39].
Misra and coworkers showed that the administration of wortmannin, a specific inhibitor
of PI3K, resulted in a decrease in the amounts of ABCB11 and ABCC2 present at the
canalicular membrane [39,40]. Another kinase, the liver kinase B1 (LKB1), was shown as a
key regulator of ABCB11 trafficking. In LKB1 knockout (KO) mice, an altered distribution
of ABCB11, as well as an impaired bile formation, was observed [41,42]. Ursodeoxycholic
acid (UDCA), used as a treatment for patients with cholestasis, was also shown to stimulate
the targeting of ABCC2 and ABCB11 transporters to the plasma membrane [43,44].

4. Membrane Stability of Canalicular ABC Transporters

Membrane protein turnover through uninterrupted synthesis and degradation is es-
sential to provide a functional set of proteins and ensure cell function. Tight regulation of
protein stability at the plasma membrane is fundamental for cell homeostasis and relies
on environmental signals and/or post-translational modifications such as phosphoryla-
tion/dephosphorylation and ubiquitination/deubiquitination cycles. Indeed, on the one
hand, the accumulation of some proteins at the plasma membrane can be deleterious for
cells and result, for instance, in a multidrug resistance (MDR) phenotype, a true obstacle
in cancer treatment, caused by the development of chemoresistance [45]. On the other
hand, defects in the expression level or stability of ABC transporters can also contribute
to the development of human diseases, including cystic fibrosis [46], neuropathies [47] or
cholestasis [48]. The regulation of the stability/turnover of proteins such as canalicular
ABC transporters remains poorly understood, mostly due to technical limitations. ABC
transporter stability is yet essential to regulate the spatiotemporal availability of a given
protein at the bile canaliculi (e.g., between meals, the need for bile is reduced, and the
amount of ABC transporters at the plasma membrane must be regulated accordingly). On
the contrary, a decrease in the stability of numerous transporters at the plasma membrane,
such as ABCB1, ABCC1 (MRP1) or ABCG2 (BCRP), would be necessary to improve the
efficiency of cancer treatments facing ABC transporter-mediated MDR.

Several kinases are involved in the regulation of ABC transporter stability. The
atypical Pim-1 kinase coimmunoprecipitates with and phosphorylates ABCB1. Pim-1
downregulation by siRNA diminishes ABCB1 maturation and favors its degradation
through the ubiquitin–proteasome system, indicating that Pim-1 may stabilize ABCB1 at
the plasma membrane [38]. A yeast two-hybrid screen using the linker domain of ABCB4
allowed the identification of receptor for activated C-kinase 1 (RACK1) as an interacting
partner of this transporter. Moreover, RACK1 has been reported to activate two isoforms
of PKC and be involved in the regulation of membrane stability for many proteins, thus
playing a determinant role in fundamental cellular activities [49]. Following RACK1
knockdown, ABCB4 is no longer localized at the plasma membrane but mainly relocalized
in cytosolic compartments [50].

PDZ (postsynaptic density protein (PSD95), Drosophila disc large tumor suppres-
sor (Dlg1) and zonula occludens-1 protein (ZO-1))-domain-containing proteins are well
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known for their function in protein stabilization at membranes. They act as scaffolds
by linking transmembrane proteins to the cytoskeleton and thus regulate their subcellu-
lar localization and stability at the plasma membrane [51]. The PDZ-domain-containing
protein ezrin–radixin–moesin (ERM)-binding phosphoprotein 50 (EBP50), also known as
sodium–hydrogen exchanger regulatory factor-1 (NHERF1), interacts with both ABCC2
and ABCB4 through their C-terminal PDZ-binding motif [52,53]. In the absence of EBP50,
ABCB4 and ABCC2 are both targeted to the plasma membrane, but their presence is drasti-
cally reduced, therefore demonstrating that EBP50 plays a crucial role in the regulation of
membrane stability for both ABCC2 and ABCB4 [52,53]. PDZK1 (NHERF3), another PDZ
domain-containing protein, interacts with ABCC2 and increases its plasma membrane sta-
bility. Indeed, the expression of a dominant negative form of PDZK1 leads to a decrease in
ABCC2 membrane expression and its accumulation in intracellular compartments [54,55].

Radixin is part of the ERM protein family, which is involved in actin cytoskeleton
remodeling, e.g., to organize submembranous cortical actin or microvillosities [56]. Radixin
KO mice develop a phenotype comparable to Dubin–Johnson syndrome. Indeed, these
mice show a severe reduction in ABCC2 protein expression at bile the canaliculi without
any change at the mRNA level. Importantly, this effect is specific to ABCC2 as no effect was
observed for other canalicular ABC transporters such as ABCB1, ABCB11 or ABCB4 [57].
Moreover, a direct interaction between ABCC2 and radixin has been confirmed by GST-
pulldown [57].

5. Endocytosis and Membrane Recycling of Canalicular ABC Transporters

Small GTPases, protein kinases, class V myosins and adaptor proteins have been
identified as molecular players in the regulation of canalicular ABC transporter endo-
cytosis and recycling [3]. The existence of ABCB11 intracytoplasmic reservoirs is well
known [28,29], but the nature of those compartments long remained uncharacterized until
a YFP-tagged ABCB11 was detected in the SAC, a RAB11-positive compartment. Indeed,
RAB11 and myosin VB (MYO5B) are established regulators of the recycling of several
proteins from the SAC to the plasma membrane [58]. ABCB11 continuously cycles between
the canalicular membrane of hepatocytes and the SAC [59]. This constant exchange allows
tight regulation of ABCB11 availability at the bile canaliculi. The perturbation of actin
cytoskeleton or microtubules inhibits this traffic [59]. These results were corroborated as
ABCB11 apical targeting is considerably slowed down in WIF-B9 cells expressing RAB11-
or MYO5B-dominant negative constructs [60]. In the presence of a mutated or truncated
MYO5B, ABCC2 displays an intracellular localization in RAB8- and RAB11-positive com-
partments, suggesting defects in canalicular transporter recycling [61]. Recently, mutations
in the MYO5B gene, identified in patients, have been associated with a progressive familial
intrahepatic cholestasis (PFIC)-like phenotype, further proposed as PFIC6 [61,62].

The ERM protein family has also been involved in the endocytic process of several
ABC transporters. Coimmunoprecipitation performed with human liver lysates high-
lighted the interaction between ABCC2 and ezrin, and additional experiments showed that
ezrin phosphorylation on its Thr567 regulates this interaction, thus further controlling the
amounts of ABCC2 present at the plasma membrane [63].

Several isoforms of PKC, as well as PKA, PI3K, Pim-1 or Fyn kinases, play a role in the reg-
ulation of ABCB1, ABCC2 and ABCB11 membrane targeting or endocytosis [33,39,41,42,64–66].
Cantore and colleagues have reported that the Src family kinase Fyn induces ABCC2
and ABCB11 retrieval from the canalicular membrane by increasing cortactin phospho-
rylation [66]. Schonhoff and colleagues observed that taurolithocholate-activated PKCε
phosphorylates and activates myristoylated alanine-rich C-kinase substrate (MARCKS),
a membrane-bound F-actin crosslinking protein [67]. MARCKS is a crucial regulator of
molecular interactions and cytoskeletal reorganization. In a nonphosphorylated state,
MARCKS is associated with the cytosolic leaflet of the plasma membrane and can serve
as a stabilizer for transmembrane proteins, whereas after phosphorylation, MARCKS is
released in the cytosol, where it can interact with other proteins [68].. MARCKS has been
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shown to regulate the endocytosis of ABCC2 and ABCB1 [67,69]. Indeed, in colon carci-
noma cells, MARCKS expression has been associated with the reduced export function of
ABCB1 [69].

The hematopoietic cell-specific Lyn substrate 1 associated protein X-1 (HAX-1) is a
small protein abundantly expressed in the liver, regulating cortical actin organization. This
protein has been identified as an interactor of the linker domain of ABCB1, ABCB4 and
ABCB11 [70]. Through this interaction, HAX-1 has been proposed to stabilize ABCB11
at the plasma membrane [70]. However, the role of HAX-1 in other canalicular ABC
transporter endocytosis has not been further investigated.

A tyrosine motif has been identified in the ABCB11 cytoplasmic tail [71] along with
one of its partners, the clathrin adaptor protein complex 2 (AP2) [72]. AP2 is localized
at the plasma membrane and binds tyrosine-based internalization motifs of proteins, in-
cluding ABCB11, thus allowing its internalization from the canalicular membrane through
clathrin-dependent endocytosis [72]. The ubiquitination of ABCB11 and ABCC2 has also
been shown to be essential for clathrin-mediated endocytosis and degradation of these
transporters [73].

Hormones and intracellular signaling molecules also play a role in canalicular ABC
transporter internalization. In a model of estradiol-induced cholestasis, authors showed
that following treatment with estradiol-17β-d-glucuronide (E217G), ABCB11 and ABCC2
are relocalized from canalicular membranes to intracytoplasmic compartments. The same
group demonstrated later that ABCB11 and ABCC2 endocytosis is mediated by PKC,
which is activated by E217G, and that PKC inhibitors prevent the internalization of both
transporters after treatment with estradiol [74,75]. In the same model, Zuchetti and col-
leagues established that glucagon and an adrenaline analog mediate cAMP activation,
thus preventing ABCB11 and ABCC2 membrane retrieval [76]. Moreover, they showed
that this E217G-induced endocytosis is AP2- and clathrin-dependent [77]. It has also been
suggested that lipopolysaccharides act as signals for ABCC2 and ABCB11 endocytosis as
their canalicular expression is reduced, with no mRNA decrease in an in vitro cholestatic
model [78].

6. Regulation of the Transport Activity of Canalicular ABC Transporters

At the canalicular membrane, ABCB1, ABCB4, ABCB11, ABCC2 and ABCG5 have
been proposed to mostly reside within glycosphingolipids-, cholesterol- and caveolin-1
(Cav-1)-enriched raft microdomains [27,79–81]. These domains could provide a favorable
environment for the regulation of the activity of canalicular ABC transporters. Indeed, the
shift of ABCB1 and ABCB11 from cholesterol-enriched microdomains to low-cholesterol do-
mains lowered their transport activity [82–85]. Moreover, accumulating evidence indicates
that phospholipids and cholesterol are required for the proper function of ABCB1, ABCB4,
ABCB11 and ABCC2 [86–93]. In purified membrane vesicles, delipidation due to detergent
action inactivates ABCB1, whereas phospholipid addition fully restores the ATPase activity
of the transporter [94,95]. Phosphoinositides, lipid products from PI3K-mediated activities,
are required for ABCB11 and ABCC2 activation because their addition reverses the negative
effect of PI3K inhibitors on the activity of these transporters [40,96].

The importance of membrane cholesterol content has been highlighted in Atp8b1-
deficient mice [92]. Indeed, in these mice, the normal phospholipid asymmetry of the
canalicular membrane is lost, thereby enhancing sensitivity to cholesterol extraction by
hydrophobic BA and subsequent loss of ABCB11 and ABCC2 activity [92]. How exactly
membrane cholesterol influences the transport activity of these transporters is not known,
but this may involve allosteric modulations and/or indirect means such as changes in
membrane fluidity. Several studies have proposed that cholesterol directly interacts with
the ABCB1 substrate binding site and thereby facilitates the recognition of small drugs
(<500 Da) [89,97,98]. Cyclodextrin treatment or Cav-1 overexpression leads to cholesterol
depletion from the plasma membrane, which inhibits ABCB1 transport activity by in-
creasing membrane fluidity and loosening lipid packing density [99]. However, Moreno
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and colleagues showed that Cav-1 overexpression in mice increases both bile flow and
the biliary secretion of phospholipids, BA and cholesterol, suggesting a positive role of
Cav-1 in ABCB11 transport activity [100]. Considering the role of Cav-1 in intracellular
cholesterol trafficking [101,102], some of the Cav-1 effects may be indirect and mediated
through cholesterol homeostasis. Alternatively, Cav-1 may also directly bind ABCB1 and
inhibit its transport activity [99,103–105]. It has been reported that the binding capacity of
Cav-1 to ABCB1 is negatively modulated by Src kinase-mediated Cav-1 phosphorylation, a
process facilitated by RACK1, which interacts with both Src and ABCB1 [105–107].

Several studies suggest a role for phosphorylation in the regulation of canalicular
ABC transporters. Phosphorylation sites in the linker domain of ABCB1 have been well
documented at Ser661, Ser667, Ser671, Ser675, and Ser683 [108–112]. Likewise, six po-
tential phosphorylation sites have been found in the linker region of ABCC2 at Ser904,
Ser912, Ser916, Ser917, Ser922 and Ser926 [113] and in the N-terminal domain of ABCB4
at Thr34, Thr44 and Ser49 [114]. An analysis of ABCB11 amino acid sequence also pre-
dicted multiple potential serine/threonine phosphorylation sites [115]. Overwhelming
evidence indicates that PKC is a major player in ABC transporter phosphorylation and
activity regulation. Phosphorylation within the linker domain of ABCB1 is specific for
PKCα in purified vesicles from Sf9 cells [116]. The coexpression of PKCα and ABCB1
increases the ATPase activity of the transporter in insect and ovarian cells [116,117], while
PKC inhibitor treatment did not alter ATPase activity in MCF-7 cells [118]. It has been
shown that PKCα also mediates ABCB11 phosphorylation [115], as well as ABCC2 phos-
phorylation, resulting in stimulation of the intrinsic transport activity of ABCC2 [113].
PKC-dependent phosphorylation has also been shown to regulate ABCB4-mediated PC
secretion [114]. The variation-induced impairment of ABCB4 N-terminal phosphorylation
may also be related to a decrease in ABCB4-mediated PC secretion [114]. The substitu-
tion of all conserved serines in the linker domain of ABCC2 by non-phosphorylatable
alanines significantly reduces the basal transport activity of ABCC2, while substitution
into aspartates (mimicking constitutive phosphorylation of the residues) increases it [113].
Conversely, the role of ABCB1 phosphorylation in the regulation of its transport activity is
less obvious because the substitution of potentially phosphorylatable residues by aspartates
or non-phosphorylatable residues has no effect [119,120].

7. Ubiquitination and Degradation of Canalicular ABC Transporters

To target proteins for degradation, cells mostly use the endolysosomal pathway vs.
proteasomal degradation, related to the monoubiquitination or polyubiquitination of their
substrates, respectively [121,122].

The lysosomal pathway is the main way by which cells turn over plasma mem-
brane proteins. Indeed, ABCB1 colocalizes with lysosomal-associated membrane protein 1
(LAMP1) in human colorectal cancer HTC15 cells [123]. In addition, the half-life of ABCB1
and ABCC2 is extended in cells treated with lysosomal inhibitors alone but not proteasomal
inhibitors alone, suggesting the involvement of the lysosomal pathway in the degradation
of these transporters [123,124]. However, ABCB11 expression is unaffected by treatment
with lysosomal inhibitors, indicating that this transporter may use another degradation
pathway [125,126]. Indeed, it has been shown that the inhibition of proteasomal degrada-
tion stabilizes wild-type (WT) and mutated ABCB11 in MDCK and HEK cells, suggesting
that ABCB11 degradation involves the proteasome [125,127].

Several E3 ubiquitin ligases (E3 Ubl) may be involved in canalicular ABC transporter
degradation. Ring finger protein 2 (RNF2) has E3 Ubl activity and may mediate the ubiquiti-
nation of ABCB1 [128]. E3 Ubl FBXO21 is involved in the proteasome-mediated degradation
of ABCB1 [129]. Additionally, the E2-conjugating enzyme UBE2R1 (also named CDC34 or
UBC3) and the E3 complex Skp1–Cullin–FBOX15 (SCFFbx15) are both implicated in ABCB1
ubiquitination [130]. Coprecipitation assays revealed that FBX015/Fbx15 (a member of the
SCFFbx15 E3 complex) and UBE2R1 both interact with ABCB1, and their knockdown is



Int. J. Mol. Sci. 2021, 22, 2113 8 of 17

associated with a decrease in ubiquitination and subsequent degradation of ABCB1. By
contrast, FBX015 expression enhances ABCB1 ubiquitination and degradation [130].

ABCB1 ubiquitination may be modulated by the MAPK pathway [131,132]. Indeed,
the inhibition of MEK or the downregulation of its downstream effectors, such as ERK and
p90 ribosomal S6 kinases (RSKs), lower ABCB1 protein expression in HTC15 cells [131,133].
Pulse-chase labeling experiments revealed that MEK inhibitor-mediated downregulation
of ABCB1 is caused by the increase of its degradation [131]. The same team has shown that
RSK1 induces self-ubiquitination of UBE2R1, followed by its proteasomal degradation in
a phosphorylation-dependent manner, thus resulting in the protection of ABCB1 against
degradation [132].

Some variations in ABC transporter genes are responsible for the production of an
unstable protein which is retained in the ER and subsequently degraded in the cytosol by
the ERAD system [134]. Some misfolded ABCB11 variants appear to be more ubiquitinated
than the WT transporter [126]. The RING finger proteins Rma1, TEB4 and HRD1 are all
E3 Ubl involved in the ubiquitination of ABCB11-WT and its variants but with a folding
sensitivity as the knockdown of each E3 Ubl stabilizes different ABCB11 variants [126].
HRD1 targets proteins with defects in the ER lumen side, while TEB4 and Rma1 target
proteins with defects in their moieties facing the cytosol. Likewise, E3 Ubl seems to exhibit
sensitivity towards ABC transporters. GP78, rather than TEB4 and HDR1, plays an impor-
tant role in the ubiquitination of ABCC2, as shown in patients with obstructive cholestasis
and in rifampicin-treated HepG2 cells [63,135]. Proteins can escape ubiquitination through
small ubiquitin-like modifier (SUMO) modification as both processes compete on the same
residues. Using a protein–protein interaction assay, a number of SUMO-related proteins
(including SUMO-1 and ubiquitin carrier protein 9/Ubc9) were pulled down using the
linker region of the rat ABCC2 [136]. Moreover, the knockdown of SUMO-related enzymes
in hepatoma cells reduces ABCC2 protein expression but not its mRNA expression or
canalicular localization [136]. Proteins can escape degradation subsequent to their ubiq-
uitination by reversing ubiquitination thanks to deubiquitinating enzymes (DUBs). As
an example, the DUB ubiquitin-specific protease 19 (USP19), through TEB4 stabilization,
negatively regulates the expression of a defective ABCB11 variant [137].

Manipulation of the ER quality control system might be combined with chemical
or pharmacological chaperones to stabilize variants and restore the cell surface expres-
sion of ABC transporters. Indeed, cell surface biotinylation assays revealed that the most
frequent ABCB11 variants found in patients with PFIC2, E297G and D482G are highly
ubiquitinated [138], and this induces their internalization [73]. Additionally, the half-life
of ABCC2 is extended in cells overexpressing a dominant negative form of ubiquitin due
to the inhibition of ABCC2 degradation [73,124]. Therefore, by reducing susceptibility to
ubiquitination, the chemical chaperone 4-phenylbutyrate (4-PB) extends the half-life of
both ABCB11 and ABCC2 expressed at the cell surface [124,138,139]. However, since 4-PB
has no effect on ABCB1 [139], the 4-PB mechanism of action would involve interaction
with specific E3 Ubl or adaptor protein(s) for both ABCB11 and ABCC2. For instance, 4-PB
downregulates Hsc70 (Hsp73) which plays a role in the lysosomal degradation of intracel-
lular proteins and was shown to be required for the ubiquitin-dependent degradation of
several proteins ([140]. and references therein).

8. Conclusions

Over the last decade, proteomic studies have become an important means for un-
derstanding the biology and pathophysiology of many proteins. The characterization
and identification of key players prompted the understanding of the molecular basis of
pathologies and helped the development of improved therapeutic approaches for patients.
We described here the molecular partners that interact either directly or indirectly with
the five canalicular ABC transporters (ABCB11, ABCB4, ABCG5/G8, ABCB1 and ABCC2)
and regulate their folding, trafficking, stability and function (Table 1). Nowadays, an
important amount of information regarding the genetics of ABC transporters is gathered.
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We expect that proteomic approaches merged with genomic studies will be a powerful tool
in the development of personalized treatment for patients with biliary diseases related to
canalicular ABC transporter defects.

Table 1. Molecular partners of canalicular ABC transporters.

Proteins 1 Interacting ABC
Transporters

Subcellular
Localization Functions References

AP2 ABCB11 Plasma membrane Clathrin-dependent endocytosis [71–73,77]

BACs ABCB11 ER Conjugation of bile acids [8]

BAP29 ABCB1 ER Controls protein sorting from the ER [21]

BAP31 ABCB11 ER Controls protein sorting from the ER [8]

CAL ABCC2 Golgi Golgi sorting [30]

Calnexin ABCG5/G8
ABCB1 ER Assists glycoprotein folding [12,13,16]

Calreticulin ABCG5/G8 ER Assists glycoprotein folding [12]

Cav-1

ABCB1
ABCB4
ABCB11
ABCC2

ABCG5/G8

Plasma membrane Scaffold protein [99,100,103–105,107]

CD44 ABCB1 Plasma membrane Inhibitor of FBX021 [129]

EBP50 ABCB4
ABCC2 Plasma membrane Scaffold protein [52,53]

Ezrin ABCC2
Plasma membrane

Associated with the
cytoskeleton

Endocytosis [63]

FBXO21 ABCB1 Cytosol E3 ubiquitin ligase [129]

Fyn ABCC2
ABCB11 Plasma membrane Endocytosis [66]

GP78 ABCC2 ER SUMO-related proteins [63,135]

HAX-1
ABCB1
ABCB4

ABCB11

Cytosol
Associated with cortical

actin
Clathrin-dependent endocytosis [70]

Hsc70 ABCB1 ER Chaperone
Assists protein folding [14,16]

IER3IP1 ABCB11 ER Implicated in apoptosis and protein
transport from the ER to the Golgi [8]

LKB1 ABCB11 Cytoplasm Intracellular traffic [41,42]

MARCKS ABCC2
ABCB1

Cytosol
Plasma membrane Endocytosis [67]

Myosin Vb ABCB11
Cytosol

Recycling endosomes
Plasma membrane

Recycling to the plasma membrane [60]

MLC2
ABCB1
ABCB4

ABCB11
Cytosol Motor protein [33]

PDZK1 ABCC2 Cytosol Promotes membrane stability [54,55]

Pim-1 ABCB1 Cytosol Promotes membrane stability [38]
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Table 1. Cont.

Proteins 1 Interacting ABC
Transporters

Subcellular
Localization Functions References

PI3K
ABCB4
ABCB11
ABCC2

Plasma membrane
Cytosol Protein kinase [39]

PKA and PKC
ABCB1

ABCB11
ABCC2

Plasma membrane Protein kinase [113–118]

RAB4 ABCB1
Endosomes

Plasma membrane
Cytosol

Vesicular trafficking [31]

RAB5 ABCB1
Endosomes

Plasma membrane
Cytosol

Vesicular trafficking [32]

RAB8 ABCC2
Endosomes

Plasma membrane
Cytosol

Vesicular trafficking [61]

RAB11 ABCB11
Endosomes

Plasma membrane
Cytosol

Vesicular trafficking [60]

RACK1 ABCB1
ABCB4 Plasma membrane Scaffold protein [107]

Radixin ABCC2 Cytosol
Plasma membrane Promotes membrane stability [57]

REEP ABCB11 ER ER shaping and remodeling [8]

Rma1, TEB4
and HRD1 ABCB11 ER E3 ubiquitin ligases [126]

RNF2 ABCB1 Cytosol E3 ubiquitin ligase [128]

RSK1 ABCB1 Cytosol Kinase [131,133]

SCFFbx15 ABCB1 Cytosol E3 ubiquitin ligase [130]

Src kinase ABCB1 Plasma membrane Protein kinase [105–107]

TMEM14A ABCB11 ER Implicated in apoptosis [8]

TMEM205 ABCB11 ER Drug resistance [8]

TRAM/TRAP ABCB11 ER Accessory protein in the Sec61 translocon
complex [8]

UBC9 ABCC2 Cytosol SUMO-related protein [136]

UBE2R1 ABCB1 Cytosol E2 ubiquitin-conjugating enzyme [130,132]

USP19 ABCB11 ER Deubiquitinating enzyme [137]
1 See the main text for full names of the proteins.
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4-PB 4-phenylbutyrate
ABC ATP-binding cassette
AP2 Adaptor protein complex 2
BA Bile acids
Cav-1 Caveolin-1
CNX Calnexin
E217G Estradiol-17β-d-glucuronide
E3 Ubl E3 ubiquitin ligase
ER Endoplasmic reticulum
ERM Ezrin–radixin–moesin
ERAD ER-associated degradation
MARCKS Myristoylated alanine-rich C-kinase substrate
MLC2 Myosin regulatory light chain 2
PC Phosphatidylcholine
PDZ Postsynaptic density protein (PSD95), Drosophila disc large tumor suppressor

(Dlg1) and zonula occludens-1 protein (ZO-1)
PFIC Progressive familial intrahepatic cholestasis
PI3K Phosphoinositide 3-kinase
PKA/C Protein kinase A/C
RAB Ras-related in brain
RACK1 Receptor for activated C-kinase 1
SAC Subapical compartment
WT Wild type
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