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a b s t r a c t 

The intra-axonal water exchange time ( 𝜏 i ) , a parameter associated with axonal permeability, could be an important biomarker for understanding and treating 

demyelinating pathologies such as Multiple Sclerosis. Diffusion-Weighted MRI (DW-MRI) is sensitive to changes in permeability; however, the parameter has so 

far remained elusive due to the lack of general biophysical models that incorporate it. Machine learning based computational models can potentially be used to 

estimate such parameters. Recently, for the first time, a theoretical framework using a random forest (RF) regressor suggests that this is a promising new approach 

for permeability estimation. In this study, we adopt such an approach and for the first time experimentally investigate it for demyelinating pathologies through direct 

comparison with histology. 

We construct a computational model using Monte Carlo simulations and an RF regressor in order to learn a mapping between features derived from DW-MRI signals 

and ground truth microstructure parameters. We test our model in simulations, and find strong correlations between the predicted and ground truth parameters 

( intra-axonal volume fraction f: R 2 = 0.99, 𝜏 i : R 
2 = 0.84, intrinsic diffusivity d: R 2 = 0.99). We then apply the model in-vivo, on a controlled cuprizone (CPZ) mouse 

model of demyelination, comparing the results from two cohorts of mice, CPZ ( N = 8) and healthy age-matched wild-type (WT, N = 8). We find that the RF model 

estimates sensible microstructure parameters for both groups, matching values found in literature. Furthermore, we perform histology for both groups using electron 

microscopy (EM), measuring the thickness of the myelin sheath as a surrogate for exchange time. Histology results show that our RF model estimates are very strongly 

correlated with the EM measurements ( 𝜌 = 0.98 for f, 𝜌 = 0.82 for 𝜏 i ). Finally, we find a statistically significant decrease in 𝜏 i in all three regions of the corpus 

callosum (splenium/genu/body) of the CPZ cohort ( <𝜏 i > = 310ms/330ms/350ms) compared to the WT group ( <𝜏 i > = 370ms/370ms/380ms). This is in line with our 

expectations that 𝜏 i is lower in regions where the myelin sheath is damaged, as axonal membranes become more permeable. Overall, these results demonstrate, for 

the first time experimentally and in vivo, that a computational model learned from simulations can reliably estimate microstructure parameters, including the axonal 

permeability . 
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. Introduction 

The intra-axonal water exchange time ( 𝜏 i ), a parameter associated
ith axonal permeability, is an important microstructural property of

he tissue, which has been linked with myelination in the central ner-
ous system ( Nilsson et al., 2013a ). Several neurological conditions such
s Multiple Sclerosis (MS) cause a breakdown of the myelin sheath
∗ Corresponding author. 

E-mail address: marco.palombo@ucl.ac.uk (M. Palombo). 
1 These authors contributed equally to this work. 

(  

ttps://doi.org/10.1016/j.neuroimage.2020.117425 

eceived 24 July 2019; Received in revised form 29 September 2020; Accepted 30 S

vailable online 6 October 2020 

053-8119/© 2020 The Author(s). Published by Elsevier Inc. This is an open access a
hrough a process known as demyelination, which may lead to a de-
rease in the exchange time as the intra-axonal water molecules en-
ounter less barriers. Changes in permeability have also been linked
ith pathologies such as Parkinson’s disease ( Volles et al., 2001 ) and

ancer Hu et al. (2006) , leading to a widespread interest in develop-
ng permeability-based biomarkers. Due to its sensitivity to the motion
f water molecules within tissue, modelling of Diffusion-Weighted MRI
DW-MRI) data enables the estimation of 𝜏 i . However, measuring it has
eptember 2020 
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een problematic due to the intractability of the mathematical expres-
ions which accurately incorporate 𝜏 i into analytical models. 

So far, the biophysical models that incorporate permeability rely on
ssumptions that are either too simplistic ( Callaghan, 1997 , Codd and
allaghan, 1999 , Vangelderen et al., 1994 ) or do not hold in human tis-
ue ( Grebenkov et al., 2014 , Kärger et al., 1988 ). The Kärger model
 Kärger et al., 1988 ) is the most widely used analytical model that
ncorporates permeability ( Nilsson et al., 2010 , Stanisz et al., 2005 ,
ätt et al., 2009 ). However, its assumptions (i.e. the individual pools
f water are well mixed and not restricted) do not hold in white mat-
er and the model was shown to fail when applied to highly permeable
issue ( Fieremans et al., 2010 ). A measurement technique for accessing
xchange is the apparent exchange rate (AXR) imaging, however, it re-
uires a specialised imaging protocol ( Lasi č et al., 2011 , Nilsson et al.,
013b ). 

Computational models bypass the need for analytical expressions
nd incorporate permeability by creating a mapping between simula-
ions of the DW-MRI signal and the ground truth microstructure param-
ters. Nilsson et al. (2010) use Monte Carlo simulations with known
round truth parameters including permeability to generate a synthetic
ibrary of DW-MRI signals. Given a previously unseen signal, they es-
imate permeability via a nearest-neighbour algorithm. However, their
pproach requires new libraries to be generated for each acquisition pro-
ocol - which in some cases may represent a problem - and the nearest-
eighbour algorithm in general does not have a good generalisation ca-
acity. 

Recently, Nedjati et al. ( 2017 ) apply for the first time a machine
earning approach using a random forest (RF) trained on a database of
otationally invariant features derived from the DW-MRI signals simu-
ated using synthetic substrates of densely packed cylinders. Rotation-
lly invariant metrics (e.g. MD and FA from DTI) are metrics calculated
rom DW-MRI data that do not depend on the particular orientation of
he underlying tissue with respect to the scanner reference frame, thus
roviding valuable metrics for inter-subject and across-platform anal-
ses. The model proposed by Nedjati et al. ( 2017 ) uses an RF instead
f standard model-fitting approaches based on minimization of (non-
inear) least-squares because it is more computationally efficient; it is
ess prone to local minimum problems; and it naturally encodes even
omplex constraints on parameter combinations through appropriate
hoice of training data, while guaranteeing good generalisation. The
ovel RF model is shown to outperform the Kärger’s model on synthetic
nd in-vivo human data by providing more reproducible and robust es-
imates of 𝜏 i (Nedjati et al., 2017 ). However, their in-vivo approach is
ested only qualitatively on just two MS patients. Furthermore, Nedjati
t al. ( 2017 ) hypothesise that 𝜏 i is linked with demyelination in MS le-
ions, but they do not show whether other underlying processes such as
xonal swelling or orientation dispersion affect the estimates. Here, we
im to address these limitations. 

The aim of this study is to experimentally test a machine learning
ased computational model with permeability using a highly controlled
uprizone-treated, in-vivo mouse model of demyelination (CPZ), and a
irect comparison to histology. We adopt the RF framework introduced
n Nedjati et al ( 2017 ) to estimate tissue microstructure parameters.
rior to our in-vivo experiments, we use simulations representative for
ur mouse data to investigate the sensitivity of the PGSE protocol used
o acquire the in-vivo data to 𝜏 i , and select the most informative b shells
i.e. b values and directions) with respect to this parameter. We addi-
ionally establish a benchmark performance for our model by testing
ts performance on simulations. To test the in-vivo performance of the
odel, we use two cohorts of mice: CPZ and healthy age-matched wild-

ype (WT), with DW-MRI scans and histology data. Our demyelination
odel allows us to investigate the direct correlation between the esti-
ated exchange time and histological measurements of myelin thick-
ess. Furthermore, we investigate the potentially confounding effects of
ispersion and axonal swelling to eliminate any potential bias in our
stimates of the exchange time. Finally, we analyse the correlations be-
ween the estimations of our model and histology data. 

. Methods 

This section first describes the imaging protocol, in-vivo data ac-
uisition, histology analysis and the machine learning model and then
utlines the principal steps of our experimental framework. Firstly, we
nvestigate using synthetic data the sensitivity of our imaging protocol to
hanges in 𝜏 i . Secondly, we optimise our computational model through
 shell selection process and establish a benchmark performance for our
odel in simulations. We first ensure there is a good match between the

ynthetic and in-vivo data and we investigate any bias in our machine
earning predictions of 𝜏 i by looking at the effect of potential confound-
ng factors. Finally, we test the in-vivo performance of our machine
earning model on a cuprizone mouse model of demyelination and we
nalyse the correlations between the predictions and the ex-vivo histo-
ogical measurements available. 

.1. Mouse data 

.1.1. In-vivo data acquisition 
We image two cohorts of 8-week old C57BL/6J female mice, CPZ

 N = 8) and WT ( N = 8), using the same scanner and acquisition proto-
ol as presented below. All animal experiments are performed in ac-
ordance with the European Council Directive (88/609/EEC). Eight
ice were fed 0.2% cuprizone for 6 weeks, which corresponds to a
emyelination without recovery phase, and eight healthy age-matched
ild-type (WT) mice of the same background were fed a normal chow
iet and used as controls. All mice are scanned on a Bruker BioSpec
1.7T scanner using the protocol described in Section 2.1.2 below. The
T data used in this study are available in the public domain and

an be found at https://zenodo.org/record/996889#.WgH5E9vMx24
 Wassermann et al., 2017 ) . The authors do not have permission to share
he data used in this study for the CPZ treated mice. All the code used
or the analysis is available upon request to the corresponding authors.

We post-process the images by correcting for eddy currents using
SL-eddy ( Smith et al., 2004 ). No motion artefacts are observed. We
estrict our analysis to white matter voxels within the corpus callo-
um (CC). To select the CC voxels, we compute maps of linearity ( C L ),
lanarity (C P ) and sphericity (C S ) ( Westin et al., 2002 ) from the diffu-
ion tensor (DT) fit to the shell at b = 1241 s/mm 

2 . We create the CC
aps by selecting the voxels with C L > 0.3, C P < 0.4, C S < 0.5 and fractional

nisotropy (FA) > 0.40 (value chosen to distinguish WM form GM and
SF voxels also in the cuprizone treated mice, where FA values can be

ower than the WT ones). Following this procedure, we obtain masks
f the corpus callosum whose thickness varies slightly across all mice,
andomly and with no statistically significant differences. Specifically,
he mean ± s.d. of the number of voxels comprising the CC mask in
he WT group is 161 ± 13 and in the CPZ group is 175 ± 18. Following a
wo-tail t-test we find this difference statistically insignificant ( p > 0.05).
revious studies, such as Wu et al. (2008) , showed statistically signif-
cant increase in the volume of CC of CPZ intoxicated mice compared
o WT. However, we do not measure a statistically significant increase
nd the further investigation of this observation is out of the scope of
he present study. 

.1.2. Diffusion imaging protocol 
We use the same DW-PGSE protocol for synthetic and in-vivo data,

ptimised to maximise signal reconstruction accuracy under realistic
ime constraints ( Filipiak et al., 2019 ). Our imaging protocol has 25
hells, each with one b = 0 measurement and a different combination
f diffusion gradient strength G and diffusion gradient separation Δ as
ummarised in Table 1 . The resulting protocol has 345 measurements in
otal, diffusion gradient duration 𝛿= 5 ms, |G max | = 500 m Tm 

− 1 and shell

https://zenodo.org/record/996889\043.WgH5E9vMx24
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Fig. 1. Schematic pipeline of the stereological analysis to compute g ratios and axonal diameters in the corpus callosum of the mice. First, Ten equally spaced slices 

are cut within the 1 millimeter from the middle of the corpus callosum in the sagittal section towards the edge of the brain ( A ). Then 4 slices are sampled starting 

from a random number. In this case, the randomly chosen starting number is 1, and the selected slices are #1, #4, #7 and #10 ( B ). Subsequently, these slices are 

used to localise the areas of interest (e.g., genu, body or splenium as shown in C ), and each one of those is sliced ultra-thinly. On a randomly chosen ultra-thin slice 

for each of the ROIs, 30 spots are also randomly chosen over the entire ROI at smaller magnification to assure that images are not intersected ( D shows just 6 of those) before 
acquiring the final EM image at 62K magnification. Each of the 30 random spots are selected for stereological analysis using point grids of 36 regularly spaced crosses, each 
one representing an area of 0.5 𝜇m 

2 ( E shows two of those 30 spots, one for WT and one for CPZ ). These point grids are used for quantification of the WT and CPZ mice. 

Table 1 

DW-PGSE parameters with the corresponding nominal b-values in 

s/mm 

2 . 

𝚫 (ms) 10.8 13.1 15.4 17.7 20 #grad dirs 

G (mT/m) 

150 358 445 533 620 707 16 

200 620 775 930 1086 1241 16 

300 1384 1733 2083 2432 2781 8 

400 2489 3110 3731 4352 4973 11 

500 3892 4862 5833 6803 7773 13 
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-values as shown in Table 1 . Additional protocol details are as follows:
E = 33.6 ms, TR = 2 s, FOV = 16 × 16 mm, matrix size = 160 × 160, num-
er of slices = 5, slice thickness = 0.5 mm. Total acquisition time 53 min.

.1.3. Histology samples 
The WT ( n = 8) and CPZ ( n = 8) animals are sacrificed by deep anaes-

hesia and perfused intracardially with 1% paraformaldehyde and 2.5%
lutaraldehyde in phosphate buffer 0.12 M, pH 7.4 at the end of the 6-
eek CPZ treatment. The extracted brains are then post-fixed overnight
t 4 °C in the same fixative and rinsed in phosphate buffer. Ten 100μm-
hick sagittal sections are cut with a vibratome (Thermo Scientific Mi-
rom HM 650 V Vibration microtome) ( Fig. 1 A ). The very first section
losest to the brain midline is considered as #1 and sections #1, #4,
7, and #10 are selected ( Fig. 1 B ). Sections are post-fixed with 1%
smium tetroxide in water for 1 h at room temperature (RT°), rinsed
 × 5 min with water and contrasted “en bloc ” for 1 h at RT° with 2%
queous uranyl acetate. After rinsing, sections are progressively dehy-
rated with 50%, 70%, 90%, and 100% ethanol solutions for 2 × 5 min
ach. Final dehydration is achieved by immersing the sections twice
n 100% acetone for 10 min. Embedding is performed in epoxy resin
Embed 812, EMS, Euromedex, France) overnight in 50% resin / 50%
cetone at 4 °C followed by 2 × 2 h in pure resin at RT°, and polymer-
zation is achieved at 56 °C for 48 h in a dry oven. Semi-thin sections
0.5 𝜇m-thick) are collected with an ultramicrotome UC7 (Leica, Leica
icrosystèmes SAS, France) and stained with 1% toluidine blue in 1%

orax buffer ( Fig. 1 D ). Ultra-thin sections (70 nm-thick) are contrasted
ith Reynold’s lead citrate (Reynold ES, 1963), and observed with a

ransmission electron microscope (HITACHI 120 kV HT 7700), operat-
ng at 70 kV. Images (2048 × 2048 pixels) are acquired with an AMT41B
amera (pixel size: 7.4 μm x 7.4 μm) ( Fig. 1 E ). 

.1.4. Post-mortem analysis 
From the electron microscopy (EM) samples obtained as outlined in

ection 2.1.3 , we estimate the mean and standard deviation of the g ratio ,
yelin thickness, axonal diameter and the intra-axonal volume fraction

f the WT and CPZ mice. The stereological analysis is performed in iso-
ated regions of the CC (genu, body and splenium), where 4 random sec-
ions with uniform distance are quantified per animal ( Fig. 1 B ), with 30
andomly located images per region and per animal acquired at 62,000
agnification. For volume fraction ( VF ) we proceed according to the
elesse principle Mouton (2002) : volume fractions are calculated by di-
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iding the total number of points hitting the structure ( P(Y) ) by the
otal number of points hitting the reference volume ( P(ref) ), following

he equation: 𝑉 𝐹 ( 𝑌 , 𝑟𝑒𝑓 ) = 

∑𝑚 
𝑖 =1 𝑃 ( 𝑌 ) 𝑖 ∑𝑚 
𝑖 =1 𝑃 ( 𝑟𝑒𝑓 ) 𝑖 

. 

A grid of 36 regularly spaced crosses ( Fig. 1 E ) is generated with Fiji,
n open-source platform for biological image analysis ( Schindelin et al.,
012 ). To identify non-perpendicular axons and remove them from the
nalysis, we take into account the shape of the axons and the micro-
ubules inside them. Perpendicular axons have a minimally elongated
hape and their microtubules are small perfectly circular structures in-
ide them. In contrast, non-perpendicular axons have more elongated
hapes (e.g. more ellipsoid-like) and their microtubules appear like lines,
epending on the angle of the section. Stereological analysis provides
yelin Volume Fractions (MVF), Axon Volume Fractions (AVF), and

he total Axon Volume Fractions (tAVF), which includes both myeli-
ated and unmyelinated axons. Total Axon Count (tAxCount) is man-
ally quantified. The g ratio of myelinated fibers is then calculated as

 ratio = 

√ 

𝐴𝑉 𝐹 

( 𝑀𝑉 𝐹+ 𝐴𝑉 𝐹 ) and the mean axon diameters (DAX) are calcu-

ated as DAX = 2 ×
√ 

( 𝑡𝐴𝑉 𝐹×𝑠𝑢𝑟𝑓𝑎𝑐𝑒 ) 
( 𝜋×𝑡𝐴𝑥𝐶𝑜𝑢𝑛𝑡 ) . 

The outliers induced by the non-perpendicular axons in the images
re not taken into consideration. From the g ratio and the DAX, myelin
hickness is computed as: myelin thickness = 

𝐷𝐴𝑋 

2 𝑔 𝑟𝑎𝑡𝑖𝑜 
( 1 − 𝑔 𝑟𝑎𝑡𝑖𝑜 ) . 

We compare the estimates of the RF with the EM measurements by
omputing the group-wise mean in the CC ROIs of the myelin thickness
nd intra-axonal volume fraction (VF) and looking at the correlation
etween these and the RF estimations for 𝜏 i and f. 

.2. Synthetic data 

A machine learning regressor can be trained on different databases.
n this work, we aim to compare the performance of training directly
n simulated signals versus training on features obtained by modelling
hose signals. Therefore, we construct two training databases: one com-
rised of synthetic DW-MRI signals and the other of rotationally invari-
nt features estimated from those signals. 

Each entry in the database corresponds to a unique digital phan-
om which mimics the in-vivo data and for which the ground truth mi-
rostructure parameters are known. Each synthetic database is used to
rain a machine learning algorithm, here an RF, to build a mapping
etween the signal or features and the corresponding ground truth mi-
rostructure parameters. Please note that in this context we refer to “fea-
ures ” in a machine learning sense: measurable properties or character-
stics of the DW-MRI signal, and some of the features used may depend
n some of the others. 

.2.1. Synthetic signals database 
We use Monte Carlo simulations of the DW-MRI signal to build our

ynthetic training database. The signals are generated using the open
ource Camino ( Cook et al., 2006 ; http://camino.cs.ucl.ac.uk ) simu-
ation framework Hall and Alexander (2009) together with the imag-
ng protocol in Table 1 . Using the Camino toolbox, we generated syn-
hetic signals by first simulating the diffusion of many spins as three-
imensional random walk using Monte Carlo methods for each synthetic
ubstrate composed of randomly packed straight cylinders. Then, from
he simulated spins trajectories, the diffusion-weighted signal was com-
uted using the phase accumulation approach, according to the specific
iffusion-sensitising gradient scheme chosen to match the experimental
cquisition protocol. Thus, each simulated signal corresponds to a digi-
al phantom which mimics the in-vivo mouse brain data introduced in
ection 2.3 . The digital phantoms are represented by synthetic substrates
hat model white matter as a collection of 100,000 non-abutting, parallel
ylinders with gamma-distributed radii, a common choice in the brain
iterature ( Aboitiz et al., 1992 ). The cylinders are randomly packed in
he substrates as described in Hall and Alexander (2009) , with example
ubstrates shown in Fig. 2 . We construct a database of 11,000 unique
issue substrates and their corresponding DW-MRI signals by randomly
ampling from a range of histologically plausible substrate parameters
or white matter tissue ( Aboitiz et al., 1992 , Barazany et al., 2009 ). A
hite matter synthetic substrate is defined through five parameters: the
ean 𝜇R ∈ [0.2,1] 𝜇m and the standard deviation 𝜎R ∈ [min(0.1, 𝜇R /5),

R /2] 𝜇m of the axon radii distribution, the intra-axonal volume frac-
ion f ∈ [0.4, 0.7], the intra-axonal exchange time 𝜏 i ∈ [2, 1000] ms and
he intrinsic diffusivity d ∈ [0.8, 2.2] 𝜇m 

2 ms − 1 . To ensure the conver-
ence and the high precision of the simulated signals, we generate our
ynthetic database using 100,000 spins and 2,000 time steps ( Hall and
lexander, 2009 ). The Monte Carlo simulations use displacements in

ontinuous space, with fixed step size in three dimensions 𝑠 = 

√
6 𝑑𝛿𝑡

instein (1905) , with 𝛿t = 10 𝜇s. The permeability of a substrate is spec-
fied within the Camino simulation framework via the probability pa-
ameter p. This parameter expresses the probability that a spin steps
hrough a membrane encountered during the random walk (instead of
lways being reflected backwards as it is the case for impermeable sub-
trates). The probability p is related to the permeability k through the
xpression: 

 = 

2 
3 
𝑘 

√ 

6 𝛿𝑡 
𝑑 
, 

here d is the intrinsic diffusivity and 𝛿t is the temporal resolution. This
xpression is obtained by combining the Monte Carlo step length equa-

ion 𝑠 = 

√
6 𝑑𝛿𝑡 ( Hall and Alexander, 2009 ) with the transition proba-

ility equation as derived in ( Regan and Kuchel, 2000 , Fieremans and
ee, 2018 ). Here, we measure permeability k via the intra-axonal water
xchange time 𝜏 i , which is inversely related to k through the expression
 = 

𝑅 

2 𝜏𝑖 , where R is the axon radius ( Fieremans et al., 2010 ). 
To maximise the performance of our machine learning regressor, we

im to build a training database that resembles as closely as possible
he in-vivo data. For this, we generate an additional set of synthetic sig-
als to account for the noise present in the in-vivo data. We add Rician
oise with a standard deviation 𝜎 corresponding to an SNR of 40, which
eflects the noise level of the b = 0 images with the longest 𝚫. 

.2.2. Synthetic features database 
In order to make the method generalizable across different scans and

canners, we train the RF regressor using a convenient database of fea-
ures extracted from the DW-MRI signals that are independent of the
pecific orientation of the brain within the scanner (i.e. rotationally in-
ariant features) ( Novikov et al., 2018 , Reisert et al., 2017 ). Towards
his goal, we obtain an equivalent rotationally invariant database by com-
uting for each of the synthetic signals generated in Section 2.2.1 a set of
5 rotationally invariant features (see Table A.1) , as done in Nedjati et al.
 2017 ). We compute the DT and the 4 th order spherical harmonic (SH)
t for each b shell from the synthetic signals using the Camino toolkit
 Cook et al., 2006 ). We then derive 15 rotationally invariant features
or each b shell and build an equivalent rotationally invariant synthetic
atabase. The first five signal-derived features are calculated from the
T fit and are the three eigenvalues 𝜆1, 𝜆2, 𝜆3, the mean diffusivity (MD)
nd the fractional anisotropy (FA). The remaining ten features are de-
ived from the SH fit: the mean, peak, anisotropy, skewness and kurtosis
f the apparent diffusion coefficient together with the peak dispersion
i.e. the standard deviation of the peaks of the SH functions over a set of
venly distributed points in space) and combinations of the first, second
nd fourth order SH (Nedjati et al., 2017 ). Section A.1 in the Appendix
resents in more detail what each of the 15 features represents and how
t is computed. 

.3. Machine learning 

.3.1. Random forest (RF) 
Due to their interpretability, robustness to noise and easiness of

uning ( Criminisi et al., 2011 ), RFs are widely used as regression or
lassification techniques in the medical field ( Alexander et al., 2017 ,

http://camino.cs.ucl.ac.uk
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Fig. 2. Examples of the synthetic tissue used for our Monte Carlo simulations. From two given exemplar Gamma distributions of axon diameter (first row) four 

exemplar digital substrates are generated by packing straight non-overlapping cylinders up to two different intra-axonal volume fractions: 0.4 (second row) and 0.7 

(third row). 
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eremia et al., 2011 , Nedjati-Gilani et al., 2017 ). An RF is an ensemble
echnique, built of a collection of decision trees, called weak learners . An
F regressor makes estimates by averaging the answers of all its decision

rees, which are individually trained through a technique called bagging .
his technique ensures the diversity of the trees by training each tree on
 different random training subset. The randomness and diversity of the
rees ensure their robustness to noise and good generalisation, result-
ng in the RF acting as a strong learner Breiman (2001) . Here, we build
n RF regressor that learns a mapping between the synthetic training
atabase of DW-MRI signals/features and the ground truth microstruc-
ure parameters of the corresponding substrates. The mapping is learnt
hrough a greedy splitting process of the input space (the synthetic sig-
als/features) guided by the associated tissue parameters provided as
abels during training. 

During the learning phase, the training data is passed through the de-
ision tree, starting at the root node towards the terminal nodes. At each
ode, the decision tree searches for a partition of the incoming data such
hat having separate partitions on either side of the node improves the
stimation. If such a partition exists, the node is split and two child nodes
re added on the level below. This procedure is repeated for every child
ode until splitting the data into smaller partitions does not improve the
stimation anymore. If no better partition is found, the node becomes
 terminal node. Mathematically, the training process is guided by the
ptimisation of a cost function, which is used to determine the best split
t each node. The optimisation searches for the feature-threshold pairs
 f i ,t fi) that produce the best split. Here, we use the Classification and
egression Tree (CART) algorithm cost function J , defined as: 

 

(
𝑓 𝑖 , 𝑡 𝑓𝑖 

)
= 

𝑚 𝑙𝑒𝑓 𝑡 

𝑚 

𝑀 𝑆 𝐸 𝑙𝑒𝑓 𝑡 + 

𝑚 𝑟𝑖𝑔ℎ𝑡 

𝑚 

𝑀 𝑆 𝐸 𝑟𝑖𝑔ℎ𝑡 , 

here m left/right is the number of training instances in the left/right sub-
et and ‘MSE’ stands for the ’mean-squared-error’ between the ground-
ruth microstructure parameters (i.e. d, f and 𝜏 i ) known by design and
he predicted ones. 

There are two important parameters that need to be optimised to
mprove the learning performance of an RF: the number of trees and the
aximum tree depth. The number of trees determines the smoothness

f the decision boundary, and the tree depth parameter specifies the
aximum levels that each decision tree can have. Too large a value can

ead to overfitting while too low a value leads to underfitting, depending
n the complexity of the data. Here, we run preliminary experiments
nd optimise these two parameters for our task in order to maximise
he performance of our model. 

.3.2. Training and testing 
We implement an RF regressor using the scikit-learn open source

ython toolkit ( Pedregosa et al., 2011 ). Following preliminary experi-
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ents, we build an RF with 200 trees of maximum depth 20 and bagging,
s the setting that maximises the performance of the model. More gen-
ral implementation details can be found at http://scikit-learn.org/ . We
rain the RF for a multi-parameter regression task: we estimate the intra-
xonal exchange time 𝜏 i together with the intra-axonal volume fraction
 and the intrinsic diffusivity d . Unlike the approach in Nedjati et al.
 2017 ), we do not fit the axon radius index ( Alexander et al., 2010 ) due
o the lack of sensitivity of the signal to this parameter for our imaging
rotocol ( Burcaw et al., 2015 , Drobnjak et al., 2016 ). 

The dimensionality of our synthetic databases is 11,000 by 345 for
he signal database and 11,000 by 375 for the feature database. We set
he size of training set to 11,000 as we did not find any improvements in
erformance above this number. The length of each synthetic training
ample is reduced further during training according to the number of
 shells selected in each training scenario . We train and test the RF on
he synthetic databases using the associated ground truth parameters as
abels for the supervised regression task. When predicting the parameter
aps for the in-vivo data, we train the RF using the noisy databases as

hey are a more accurate representation of the in-vivo data. We split
ur synthetic database into a training set of 9,500 randomly selected
ignal/feature vectors and a test set formed of the remaining previously
nseen 1,500 signal/feature vectors. As shown in Nedjati et al. ( 2017 ),
he RF is not biased by the random selection of the training data as
ong as there is sufficient coverage of the parameter range, which we
lso ensure. To build the training set (to be done only once) it took
pproximately 3 days, using 50 nodes on our high-computing cluster
f CPUs. The training of the machine learning model (to be done only
nce) took ~1 min and the prediction of the model parameters for ~10 4 

xemplar voxels took ~1 min, on a 1.6 GHz dual-core Intel Core i5. Note
hat these times are just indicative, and they depend on the specific
ardware used. 

In this work we explore two possible ways of using machine learn-
ng for microstructure estimation: using a) signals or b) features of the
ignal to create the training database. The “signals training database ”
onsists of standard DW-MRI signal intensities (normalized by the b = 0)
or a range of b values and gradient directions. The “Features training
atabase ” is created by replacing each signal at a given b value in the
signal training database ” with 15 features, e.g. DTI and SH metrics, cal-
ulated using all the gradient directions for that voxel at that b value,
s described in Section 2.2.2 . While the first approach builds a direct
apping between the raw signals and the ground truth microstructure
arameters, the second approach introduces an additional step of model
tting and constructs a mapping between DT and SH features of the raw
ignals and the microstructure parameters of interest. Because we chose
o use rotationally invariant features, the second approach is generaliz-
ble across different scans and scanners. 

.4. Experiments 

.4.1. Sensitivity analysis 
Firstly, we assess here that in the analysed data there is sufficient in-

ormation about the targeted microstructural parameters, in particular

i . To ensure that there is enough information in the data, we investi-
ate the sensitivity of our PGSE protocol to the intra-axonal exchange
ime by looking at the range of 𝜏 i values for which the DW-MRI sig-
al can be distinguished from that of an impermeable substrate. For
his, we consider two synthetic substrates representative of mouse white
atter tissue, with the following properties: the mean axonal diameter

D = 0.4 𝜇m and 𝜇D = 2 𝜇m, mimicking small and large axons in the CC,
he intra-axonal volume fraction f = 0.7 ( Barazany et al., 2009 ), and the
ntrinsic diffusivity = 1.2 𝜇m 

2 ms − 1 ( Wu et al., 2008 ). These substrates
re a good representation of our in-vivo mice data, as shown by the his-
ological measurements of 𝜇D in Section 3.5 , all within the range of the
amma-distributions above. Note that the choice of fixing the diffusivity
o 1.2 𝜇m 

2 /ms is only made for the purpose of the sensitivity analysis to
ssess the suitability of the protocol. For all the other simulations in the
achine learning analysis, the diffusivity is varied in the interval [0.8,
.2] 𝜇m 

2 /ms, as done in Nedjati et al., 2017 , and as shown in Wu et al.,
008 and Barazany et al., 2009 appropriate for rodents’ brain. For ap-
lication on human brain, higher diffusivity of ~2.2 𝜇m 

2 /ms should be
sed for the sensitivity analysis, according to recent estimates of intra-
xonal axial diffusivity in-vivo in the human brain ( Dhital et al. 2019 ). 

Using the Camino toolbox, we generate synthetic signals for each
ubstrate and different values of 𝛿, Δ and G, corresponding to the b shells
n our PGSE protocol. The diffusion gradients are set perpendicular to
he cylinders in the substrate to maximise sensitivity to 𝜏 i . We inves-
igate whether exchange time effects can be detected in the signal by
ooking at the difference in the normalised DW-MRI signal between im-
ermeable ( 𝜏 i =∞) and permeable substrates. Moreover, we analyse the
ffect of noise by looking at a range of different SNRs: SNR =∞, SNR = 40
nd SNR = 20, where SNR = 40 corresponds to the level of noise present
n our in-vivo data. By using synthetic substrates representative of our
n-vivo data and the same imaging protocol, we expect the analysis in
his section to provide an indicative range of exchange time values for
hich there is reasonable sensitivity in our in-vivo data. 

.4.2. Shell selection 
As our imaging protocol uses an explorative range of imaging pa-

ameters, we select the b shells that maximise the performance of our
F model with respect to 𝜏 i . For this, we evaluate the performance of
ur RF model for every possible combination of 4, 9 and 16 shells out of
he 25 in our protocol. We first evaluate combinations of 4 shells using
s a benchmark the 4-shell STEAM protocol (Nedjati et al., 2017 ) opti-
ised Alexander (2008) for a two-compartment model with exchange

nd biophysically plausible tissue parameters. As there are 12650 pos-
ible combinations of 4 shells, we train the RF 12650 times, once on
ach different shell combination. Then, for each training scenario corre-
ponding to a unique combination of shells, we compute the correlation
oefficient R 

2 for f, 𝜏 i and d between the ground truth and the estimated
alues in the test set. Finally, we sort the different shell combinations
ccording to their R 

2 score for 𝜏 i and choose the combination with the
ighest score as the one that maximises the performance of the model. 

Furthermore, we investigate the effect of increasing the number of
hells used for training. For this, we also look at combinations of 9 shells,
s the minimum number of shells required to sample independently ev-
ry unique G and 𝚫 value in our PGSE protocol. Additionally, we look
t combinations of 16 shells as a middle value between the 9-shell and
he full protocol scenario. For this analysis, we use the synthetic feature-
ased dataset described in Section 2.2.2 . Finally, we investigate the effect
f noise on the performance of our model. For this, we look at a range
f different SNRs: SNR =∞, SNR = 40 and SNR = 20. 

.4.3. Synthetic experiments 
To assess the quality of the RF estimates after training is completed,

e compute the Pearson correlation coefficient R 

2 between the ground
ruth values and the RF estimates of the parameters in the previously
nseen test set. To evaluate any potential bias in the estimates, we use
land-Altman plots showing the mean of the estimated and ground truth
alues against their difference. We first analyse the performance of the
odel on the noise-free synthetic databases to establish a benchmark

iven our data and imaging protocol. Next, we apply our machine learn-
ng model to the SNR = 40 database for a more accurate approximation
f the performance we expect, given the noise present in our in-vivo
ata. For each experiment, we analyse both training scenarios outlined
n Section 2.4.2 (signal-based and feature-based) to test whether there
re any differences in performance between the two approaches. 

.4.4. In-vivo imaging experiments 
Before generating in-vivo parameter maps using our trained machine

earning model, we first perform a data quality match to check that the
ataset used to train our machine learning model represents well the
haracteristics of the in-vivo dataset.. In addition to this, we investigate

http://scikit-learn.org/
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Fig. 3. Differences in the DW-MR normalized signal between impermeable ( 𝜏 i =∞) and the equivalent permeable ( 𝜏 i ∈[20, 1000] ms) substrates at different b values, 

for different mean axonal diameter and SNRs and intra-axonal volume fraction f = 0.7. A) results for a substrate with mean axonal diameter 𝜇D = 2 𝜇m, representing 

large axons in the mouse brain. B) results for a substrate with 𝜇D = 0.4 𝜇m, mimicking small axons in the brain. The level of signal detectability is displayed for three 

SNR levels ( ∞, 40 and 20), represented by the black planes, below which any change in signal is undetectable. 
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ny potential bias in our in-vivo estimates of 𝜏 i due to changes in the
rientation dispersion by computing maps of the NODDI orientation dis-
ersion index (ODI) ( Zhang et al., 2012a ) using the NODDI Matlab (The
athWorks, Inc, Natick, MA) Toolbox 1 . Using the Camino toolbox, we

dditionally generate DTI maps at b = 1241 s/mm 

2 of axial diffusivity
AD), fractional anisotropy (FA) and radial diffusivity (RD) as measures
f tissue properties that can be compared with already published works
n cuprizone model ( Boretius et al., 2012 , Song et al., 2005 , Zhang et al.,
012b ). 

Using the RF trained on the noisy database, we generate parameter
aps for the CCs of the 16 mice for three parameters of interest: 𝜏 i , f

nd d . To investigate the difference between the two groups (CPZ and
T), we compute box-and-whisker plots of region-specific comparisons

etween WT (8 mice) and CPZ (8 mice) for the DTI and NODDI metrics
s well as for the RF estimates. Statistical significance is assessed by a
wo-tailed t-test, considering p-values < 0.05. We run these experiments
sing the signals database. The Camino feature extraction of the in-vivo
ata did not produce histologically plausible results for the shells with
ery high gradient strengths (G > 300 mT/m) in our protocol, and we
herefore exclude this training approach from the analysis in this sec-
ion. We discuss the potential explanations and the implications of this
n Section 4.1 . 

. Results 

.1. Sensitivity analysis 

Fig. 3 shows the range of exchange time values for which the DW-MRI
ignal S( 𝜏 i ) can be distinguished from that of an impermeable substrate
( 𝜏 i =∞) in the presence of noise. For this, we calculate the change in sig-
al |S( 𝜏 i =∞)-S( 𝜏 i )| between an impermeable and an equivalent perme-
ble substrate. To illustrate practically achievable sensitivities, we plot
his difference against three noise levels, denoted by the black plane:
NR =∞ (1 st column), SNR = 40 (2 nd column) and SNR = 20 (3 rd column).
ig. 3 A illustrates the results for a substrate mimicking large axons in
he white matter ( 𝜇D = 2 𝜇m), while Fig. 3 B corresponds to a substrate
ith smaller axons ( 𝜇D = 0.4 𝜇m). The second column shows that, for

ubstrates with large axons ( row A ) and an SNR of 40, matching that of
ur in-vivo data, it is possible to distinguish exchange time effects for
alues of 𝜏 i ≤ 400 ms. For substrates with small axons ( row B ), we can
istinguish only permeable substrates with exchange times up to 𝜏i ≤

50 ms. As expected, when the SNR drops to 20, it becomes harder to
istinguish between impermeable and permeable substrates. This trend
1 http://mig.cs.ucl.ac.uk/index.php?n = Tutorial.NODDImatlab . 

m  

t  

u  
an be observed in the 3 rd column, where the range for distinguishable
ermeable substrates narrows from 𝜏 i ϵ [0, 400] ms to 𝜏 i ϵ [0, 200] ms
or large axons and from 𝜏 i ϵ [0, 250] ms to 𝜏 i ϵ [0, 140] ms for small
xons. 

.2. Shell selection 

As our original 25-shell PGSE protocol uses an explorative range of
maging parameters, we choose the shells most sensitive to the exchange
ime (see Section 2.5.2 for further details). In Fig. 4 , each point on the
-axis represents one unique shell combination and the corresponding
-axis value indicates the R 

2 score when the RF is trained on that par-
icular shell combination. For example, the x-axis in Fig. 4 A will have
2650 points, each one corresponding to one of the 12650 unique 4-
hell combinations. As we are interested in the performance of the model
ith respect to 𝜏 i (1 

st column), we rearrange the shell combinations in
ncreasing order according to their R 

2 for 𝜏 i . This results in a mono-
onically increasing curve for 𝜏 i , as seen in the first column. For f (2 nd 

olumn) and d (3 rd column) , we keep the x-axis ordering consistent with
he results for 𝜏 i in the 1 st column. 

The R 

2 scores curves in the 1 st column of Fig. 4 show that only a lim-
ted number of shell combinations have a good correlation coefficient
nd are optimal for estimating 𝜏 i , while the R 

2 scores in the 2 nd and 3 rd 

olumn show that the majority of shell combinations provide good esti-
ates of f and d . For example, in the noise free (blue curves) 4-shell case

n the top row, we notice that the difference in R 

2 score for 𝜏 i between
he best and the worst performing shell combinations is approximately
.5. In contrast, this difference is much narrower for f and d : ≈0.02 for f
nd ≈0.01 for d. We observe the same trends for SNR = 40 (orange) and
NR = 20 (green). 

By comparing the best R 

2 scores on the blue curves in Fig. 4 A and
ig. 4 B , we can see that there is no difference in performance in the noise
ree scenario between using the best combination of 4 or 9 shells. How-
ver, this changes with the addition of noise. For example, for SNR = 40
orange curves) the R 

2 score of the best 9-shell combination is 0.67, 0.07
igher than for the best 4 shells. This trend is similar for SNR = 20 (green
urves), with a difference of 0.1 between 9 and 4 shells. For the 16-shell
cenario, we find no improvement in performance over using 9 shells. 

Fig. 4 also shows the effect of noise on the estimation of each param-
ter. As expected, the addition of noise results in lower R 

2 scores, a trend
hat holds for all parameters and across the 4 and 9-shell case. However,
he estimation of 𝜏 i is the most affected by the presence of noise: the
aximum correlation coefficient drops from 0.82 in the noise free case

o 0.67 for SNR = 40 and even further to 0.52 for SNR = 20. For f (2 nd col-
mn), the effect of noise is considerably smaller: R 

2 drops from 0.99 for

http://mig.cs.ucl.ac.uk/index.php?n=Tutorial.NODDImatlab
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Fig. 4. Performance of the RF model prediction of 𝜏 i, f and d, trained on different combinations of 4 (A) and 9 (B) shells. Each curve shows the R 2 score (y-axis) of 

the RF trained on a different combination of shells (x-axis). The shell combinations are sorted in increasing order according to their R 2 score. We show the results 

for three levels of noise: SNR =∞ (blue curve), SNR = 40 (orange curve) and SNR = 20 (green curve). The R 2 score for 𝜏 i is calculated only for values ≤ 400 ms as this 

is the range over which we are sensitive to this parameter (see Section 3.1 ). 
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NR =∞ to 0.94 for SNR = 20. The estimation of the intrinsic diffusivity d
s very robust to noise: the correlation coefficients remaining very high
0.99) even when training the model on the SNR = 20 dataset. Further-
ore, we find that all the top 100 combinations contain the two highest

-value shells (6,803 and 7,773 smm 

− 2 ) with the two longest Δs. Addi-
ionally, we find that high b-value shells only maximise the performance
f the RF in combination with low b-value shells (775 and 930 smm 

− 2 ).
or SNR = 40 (orange curves), which we use when predicting on the in-
ivo data, we find that the optimal combination of 9 shells sorted by
-value is [620, 775, 930, 1241, 1384, 2489, 4973, 6803, 7773] smm 

− 2 

ith an R 

2 score of 0.67, and the best combination of 4 shells is [775,
30, 6803, 7773] smm 

− 2 with an R 

2 score of 0.60. These results show
hat the optimal b-values for both 4 and 9 shells are a combination of
ow and high values, which sample both short and long 𝚫s. Similar re-
ults were also obtained for the “signals training database ” (not shown).
ince we are looking to optimise our framework for in-vivo estimation
n the mouse data, we run the in-vivo experiments using the best 9-shell
ombination in the SNR = 40 scenario, as the noise level which matches
ur in-vivo data. 

.3. Synthetic experiments 

Fig. 5 shows the RF results obtained using the feature (top row) and
he signal (bottom row) noise free databases. To assess the quality of
ur fit, we display the results using Bland-Altman plots and colour each
ata point according to how close the estimates are to the ground truth
alues. To aid visual interpretation, we cap the percentage error at 50%.
he mean difference between the ground truth and the estimated val-
es is shown by the black line and the 95% upper and lower limits of
greement by the dashed lines. For all three parameters of interest, we
bserve no overall estimation bias as the estimates are spread equally
round the zero-difference black line. However, for 𝜏 i , the parameter
ecovery is not perfect and the Bland-Altman plots show an overesti-
ation bias for small values of 𝜏 and an underestimation bias for large
i 
alues. The R 

2 scores show a strong correlation between the estimates of
ur model and the ground truth parameter values: R 𝜏i 

2 = 0.82/0.84 (fea-
ures/signals database) , R f 

2 = 0.99 (both databases), and R d 
2 = 0.99 (both

atabases). When assessing the model’s performance with respect to the
wo training databases (features/signals), we observe no significant dif-
erence between the two approaches. The R 

2 scores remain unchanged
or f and d and show only a minor difference for 𝜏 i : R 

2 
features = 0.82

 R 

2 
signals = 0.84. The advantages of each approach are discussed fur-

her in Section 4 . The noise-free results in Fig. 5 provide a benchmark
erformance of the model given our data and imaging protocol. 

Fig. 6 shows the equivalent results for SNR = 40. The presence of noise
esults in wider limits of agreement and affects differently the estimation
f each parameter. The mean difference lines for all three parameters
emain at zero, showing no general bias in the estimates. Intra-axonal
olume fraction and diffusivity continue to be very well estimated and
heir correlation coefficients are only very mildly affected by the pres-
nce of noise: R f 

2 = 0.97 and R d 
2 = 0.99, equal for both training databases.

n contrast to this, the presence of noise has a stronger effect on the es-
imation of 𝜏 i , resulting in a lower R 

2 score and a more pronounced
verestimation/underestimation bias for small and large values respec-
ively. Despite this, we find that the RF works well within the sensitiv-
ty range computed in Section 3.1 , with a very good correlation coeffi-
ient between the model’s estimations and ground truth for 𝜏 i ≤ 400 ms
 R 

2 = 0.68). Outside this indicative sensitivity range, the correlation co-
fficient is very weak: R 

2 = 0.07 for 𝜏 i ≥ 400 ms. In line with the noise
ree case, we continue to see no significant difference between the signal
nd the feature approach: R 

2 
features = 0.67 / R 

2 
signals = 0.68. 

.4. In-vivo imaging experiments 

To show that our in vivo data is well represented by our synthetic
raining database, we perform a data quality match ( Fig. 7 ). We plot the
ignal intensity as a function of the angle between the diffusion gradi-
nts and the cylindrical fibres’ axis 𝜃 (in degrees), for different diffusion
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Fig. 5. Bland-Altman plots for the RF estimates of f, 𝜏 i and d using the features (top row) and signals (bottom row) noise-free simulated database. To aid visual 

interpretation, the plots are color-coded with the percentage error capped at ± 50%. 

Fig. 6. Bland-Altman plots for the RF estimates of f, 𝜏 i and d using the features (top row) and signals (bottom row) simulated database with SNR = 40, matching the 

noise level in our in-vivo data. To aid visual interpretation, the plots are color-coded with the percentage error capped at ± 50% 
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radient strengths (G 1-5 = 150–500 mT/m) and for Δ= {10.8, 20.0} ms.
ig. 7 provides a comparison between one of our simulated signals (at
ifferent gradient strengths and diffusion times) and the experimental
ignals measured from a voxel in the centre of the splenium of a WT
ouse. We find a very good match between the simulated and in-vivo
W-MRI signals, demonstrating that our training data set is a good rep-

esentation of the in-vivo mouse dataset. This is a necessary condition
or our supervised learning approach to be valid and ensures that during
he supervised learning we learn a training dataset which is similar to
he test dataset. However, please note that similar DW-MRI signals do
ot necessarily imply similar underpinning microstructure. This very
nown ambiguity ( Jelescu et al, 2016b , Novikov et al, 2019) is one of
he main challenges in microstructure imaging, leading to higher uncer-
ainty in the model parameter estimation. 
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Fig. 7. Comparison between the in-vivo (left) and simulated (right) signal intensity as a function of the angle between diffusion gradients and the cylindrical fibres’ 

axis 𝜃 (in degrees), for different diffusion gradient strengths (G 1-5 = 150-500mT/m) and two Δs: 10.8 ms (blue lines) and 20.0 ms (green lines). The dashed black line 

in the experimental data represents the noise floor level. 

Fig. 8. Representative DW-MRI b = 0 images of: A) a WT mouse scan in our cohort and B) a CPZ mouse scan in our cohort. C) ROIs of the CC overlaid on the zoomed 

in b = 0 image of the WT mouse scan. The three ROIs are genu (G-CC), body (B-CC) and splenium (S-CC). The yellow square indicates the region in which the CC is 

found. 
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Fig. 8 shows examples of DW-MRI b = 0 images for a WT ( Fig. 8 A )
nd for a CPZ ( Fig. 8 B ) mouse. We can observe the appearance of the
C in the CPZ scan is different from the WT, showing the effect of de-
yelination. Fig. 8 C shows the three ROIs of the CC overlaid on the b = 0

mage of the WT scan. We manually define three ROIs on the CC masks
f each mouse scan: splenium (S-CC), body (B-CC) and genu (G-CC) by
ollowing the distribution of the RD values to help localize the central
oxels of these three main regions: the genu and splenium of the corpus
allosum show a lower RD than the body. We then calculate the mean
arameter estimates for NODDI (ODI), DTI (AD, RD, FA) and RF (f, 𝜏 i ,
) in each ROI for every mouse, and study the differences between the
T and the CPZ groups. We present these results in the remainder of

his section. 
Fig. 9 shows CC maps for NODDI and DTI parameters for one ex-

mplar healthy WT mouse (first column) and one exemplar CPZ mouse
second column). A visual inspection of the CC maps reveals no signif-
cant changes in ODI and AD between the two mice, together with a
ignificant increase in RD and decrease in FA. 

We observe the same trends in the DTI and NODDI parameters at
roup level, as shown in Fig. 9 B . We illustrate the difference between
he WT group and the CPZ group through box and whisker plots in
he three ROIs of the CC: genu (G-CC), body (B-CC) and splenium (S-
C). We find the estimates of ODI in the two groups to be between
.15 and 0.29, suggesting very low dispersion, in line with recently re-
orted values in literature ( Wang et al., 2019 ). Furthermore, we find
o statistically significant difference in NODDI ODI between the two
roups in the three regions of the CC, a finding that is also in line with
ang et al. (2019) . The DTI estimates show negligible changes in AD,

 significant increase in RD and a significant decrease in FA. These re-
ults are consistent with already published results ( Boretius et al., 2012 ,
ong et al., 2005 , Zhang et al., 2012b ). 

The in-vivo RF estimates of f, 𝜏 i and d obtained using the raw signal
atabase are presented in Fig. 10 . 

The parametric CC maps shown in Fig. 10 A correspond to the same
T mouse (first column) and CPZ mouse (second column) in Fig. 9 A.

he CC maps show a statistically significant decrease in f (first row) and

i (second row), and no significant change in d (third row) . To provide a
ore quantitative analysis, we plot the box and whisker plots of region-

pecific parameter comparisons between the WT and the CPZ group over
he three CC ROIs ( Fig. 10 B). The trends observed visually in Fig. 10 A
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Fig. 9. A) Parametric maps of the CC in a healthy WT mouse (first column) and a CPZ mouse (second column) obtained from conventional DTI at b = 1241 s/mm 

2 

and from NODDI ODI. B) Box and whisker plots of region-specific comparison between WT (N = 8) and CPZ (N = 8). DTI metrics (AD, RD, FA) are evaluated within 

the genu (G-CC), body (B-CC) and splenium (S-CC) of the CC. Statistical significance is assessed by using a 2-tailed t-test with equal variance and significance level: 
∗ = 0.01, ∗ ∗ = 0.005, ∗ ∗ ∗ = 0.001. ‘n.s.’ stands for non-significant. 

Table 2 

Mean and standard deviation of RF estimates for f, 𝜏 i and d in the three CC ROIs for the WT and CPZ 

group. CPZ regions that are statistically different from WT regions are marked with ∗ for p < 0.01, ∗ ∗ 

for p < 0.005 and ∗ ∗ ∗ for p < 0.001. 

f 𝜏 i d 

WT CPZ WT CPZ WT CPZ 

S-CC 0.443 (0.005) 0.428(0.003) ∗ ∗ ∗ 370 (7) 310 (15) ∗ ∗ ∗ 1.12 (0.07) 1.18 (0.07) 

B-CC 0.430 (0.002) 0.424(0.001) ∗ ∗ ∗ 370 (9) 330 (10) ∗ ∗ ∗ 1.10 (0.05) 1.15 (0.03) 

G-CC 0.440 (0.006) 0.429(0.003) ∗ ∗ 380 (14) 350 (12) ∗ ∗ 1.15 (0.02) 1.11 (0.04) 
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old for the group-wise quantitative comparison (WT versus CPZ): we
bserve statistically significant decreases in f and 𝜏 i and a negligible
nd statistically insignificant increase in d. These trends are consistent
cross all three regions of the CC. The mean and standard deviations of
he RF parameter estimates for each ROI are reported in Table 2 . 

.5. Correlation with post-mortem analysis 

The histological EM measurements in the splenium, body and genu
f the CC over the cohort of WT (blue) and CPZ (black) mice are reported
n the histograms of Fig. 11 . Our histological data shows no axonal size
hanges ( Fig. 11 C ) and no significant axonal loss (data not shown here)
etween the two cohorts. The axonal diameter measurements in Fig. 11 C
o not take into account the commonly accepted shrinkage factor of
0% ( Barazany et al., 2009 , Innocenti et al., 2015 ), after which the dif-
erences between the two groups continue to remain statistically non-
ignificant. We also find a statistically significant decrease in myelin
hickness ( Fig. 11 B ) correlated with an increase in the g ratio ( Fig. 11 A )
nd a decrease in the intra-axonal volume fraction ( Fig. 11 D ). Finally,
e measure a weak but not statistically significant correlation between
xonal diameter and intra-axonal volume fraction from the EM analysis
 ϱ = 0.34 and p = 0.51 > 0.05). 

Next, we study the correlation between these changes and the esti-
ates of the RF model in Fig. 12 . We assess the statistical significance

f the linear correlation between 𝜏 i and myelin thickness from EM with
 two-tailed t-test by looking at the mean and the standard deviation
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Fig. 10. A) Parametric maps with the RF estimates for f, 𝜏 i and d in the CC of a healthy WT mouse (first column) and a CPZ mouse (second column). B) Box and 

whisker plots of region-specific comparison between WT (N = 8) and CPZ (N = 8). RF estimates for f, 𝜏 i and d are computed independently for all voxels within the 

genu (G-CC), body (B-CC) and splenium (S-CC) of the CC. Statistical significance was assessed by using a 2-tailed t-test with equal variance and significance level: 
∗ = 0.01, ∗ ∗ = 0.005, ∗ ∗ ∗ = 0.001. ‘n.s.’ stands for non-significant. The difference in the morphology of the CC between the WT and the CPZ mice is mostly due to different 

masking, subject to different partial volume within the CSF of each mouse. 

Fig. 11. Histology results. The mean and the standard deviation of the EM measurements in the splenium, body and genu of the CC for the cohort of WT (blue) and CPZ 
(black) mice: the g ratio ( A ), myelin thickness ( B ), mean axonal diameter ( C ) and intra-axonal volume fraction ( D ). 



I. Hill, M. Palombo, M. Santin et al. NeuroImage 224 (2021) 117425 

Fig. 12. Statistical significance and correlations between: A) the exchange time from DW-MRI (y-axis) and myelin thickness from EM (x-axis) and B) the intra-axonal 

volume fraction from DW-MRI (y-axis) and EM (x-axis). Each point represents the mean over one region of the CC for the WT (blue squares) and CPZ (black circles) 

group. Error bars indicate the standard deviation over the region. 
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f each CC ROI of the WT (blue squares) and CPZ (black circles) group
 Fig. 12 A) . We find a Pearson linear correlation coefficient ϱ of 0.82
nd a p-value < 0.05 for 𝜏 i , showing a good correlation between the RF
stimates of the exchange time from DW-MRI (y-axis) and histological
easurements of myelin thickness (x-axis) . 

Similarly, we investigate the statistical significance of the linear
orrelation between intra-axonal volume fraction f as estimated from
W-MRI (y-axis) and from EM (x-axis) ( Fig. 12 B) . We find a Pear-

on correlation coefficient ϱ of 0.98 and a p -value < 0.001, showing a
trong correlation between the RF estimates and the histological mea-
urements of the intra-axonal volume fraction. Note that the lower ϱ
alue for the analysis in Fig. 12 A is likely due to the sensitivity limit
f the current experimental protocol to changes in 𝜏 i . Moreover, the
act that EM measurements of intra-axonal volume fraction are consis-
ently higher than the RF estimation from in vivo DW-MRI may be due
o unaccounted shrinkage effects, which affect mostly the extracellu-
ar space and thus can lead to an increase in the intra-axonal volume
raction. 

iscussion 

In this work, we focus on the experimental study of a RF based com-
utational model for axonal permeability estimation using an in-vivo
uprizone mouse model of demyelination. Because no analytical model
s available for permeability characterisation in the general case of nei-
her very fast or very slow exchange, here we use the computational
pproach proposed in Nedjati et al. ( 2017 ) . Specifically, we use Monte
arlo simulations of the DW-MRI signal and train our model to esti-
ate microstructure parameters with a focus on the intra-axonal wa-

er exchange time 𝜏 i , a parameter inversely related to axonal perme-
bility. Using synthetic substrates mimicking our in-vivo data, we show
hat our imaging protocol has good sensitivity to exchange times 𝜏 i ≤

00 ms for large axons (mean diameter of 2 𝜇m) and to 𝜏 i ≤ 250 ms
or small axons (mean diameter of 0.4 𝜇m ) under the noise conditions
f our in-vivo data (SNR = 40). Following from this, we find that the RF
odel we developed works very well in this range: we find a good cor-

elation between RF estimates and the ground truth for 𝜏 i ≤ 400 ms
R 

2 = 0.87 for SNR = inf and R 

2 = 0.68 for SNR = 40), and a weak correla-
ion for 𝜏 i > 400 ms (R 

2 = 0.3 for SNR = inf and R 

2 = 0.07 for SNR = 40)
ue to the low sensitivity in our protocol for values above 400 ms.
n our in-vivo imaging experiments, we find that the RF estimates of

i are within the sensitivity range and in line with literature values of
he exchange time reported in healthy rat brain tissue ( Prantner, 2008 ,
uirk et al., 2003 ). Furthermore, we find that the RF estimates of 𝜏 i in

he CPZ group are significantly lower than in the WT group, a finding
hat one would intuitively expect to see in a model of demyelination.
urthermore, we find that our intra-axonal volume fraction estimates
n CPZ mice are also significantly lower than in controls. These results
re in strong agreement ( ϱ𝜏i = 0.82, ϱf = 0.98) with our EM histol-
gy results of myelin thickness and intra-axonal volume fraction, re-
pectively. Finally, we show that potentially confounding factors such
s axonal swelling and dispersion have a negligible effect on the esti-
ated differences between the WT and CPZ group. These results sug-

est for the first time, quantitatively and in-vivo, that machine learning
ased computational models could act as a suitable biomarker to de-
ect and track changes in demyelinating pathologies. Furthermore, they
upport the application of 𝜏 i as more sensitive and specific marker of
emyelination. 

.1. Simulations 

Sensitivity analysis . Our sensitivity analysis shows that our imaging
rotocol has good sensitivity for exchange times in the range 𝜏 i ∈ [0,
00] ms for substrates with large axons (mean diameter 𝜇D = 2 𝜇m) and
n the range 𝜏 i ∈ [0, 250] ms for substrates with small axons (mean
iameter 𝜇D = 0.4 𝜇m ), under noise conditions matching that of our in-
ivo data (SNR = 40). Generally speaking, the noise in the data affects
he sensitivity differently, depending on the mean axon diameter in the
ubstrate. For substrates with large axons ( 𝜇D = 2 𝜇m), the sensitivity
alves from 𝜏 i ∈ [0, 400] ms for SNR = 40 to 𝜏 i ∈ [0, 200] ms for SNR = 20.
or substrates with smaller axons ( 𝜇D = 0.4 𝜇m), decreasing the SNR from
0 to 20 has a smaller effect on the sensitivity range, reducing it by
4% from 𝜏 i ∈ [0, 250] ms (SNR = 40) to 𝜏 i ∈ [0, 140] ms (SNR = 20).
urthermore, we find that the larger the axons in the substrate, the better
he sensitivity range. Substrates with 𝜇D = 2 𝜇m have a sensitivity range
ider by 60% (for SNR = 40) and by 43% (for SNR = 20) than substrates
ith 𝜇D = 0.4 𝜇m . 

Shell selection . To optimise the performance of the machine learning
odel, we explore the wide range of parameters in our PGSE protocol

nd select the best combination of 4 and 9 shells. We show that for our
n-vivo data with SNR = 40 the number of shells that maximises the per-
ormance of the model is 9, with the b-values [620, 775, 930, 1241,
384, 2489, 4973, 6803, 7773] smm 

− 2 and an R 

2 score of 0.67. When
nalysing the best combinations of 4 and 9 shells, we observe that they
ample every value of 𝚫 in our sequence, resulting in a combination of
ow and high b-value shells. This finding is in accordance with the opti-
ised STEAM protocol in Nedjati et al. ( 2017 ), which contains two long
and two short 𝚫 shells. This suggests that to maximise sensitivity to

he intra-axonal exchange time, it is necessary to include a combination
f short and long 𝚫s . 
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We show that noise is an important factor for the performance of our
odel. We find that in the noise free case, it is sufficient to use only 4

hells as introducing more shells does not improve performance. How-
ver, in the presence of noise, we find that increasing the number of
hells from 4 to 9 improves the R 

2 score between the estimated and the
round truth 𝜏 i . A potential explanation for this is that the addition of
oise corrupts the information in each shell, and having more shells to
orroborate information from helps the RF model learn better. Our anal-
sis also reveals that increasing the number of shells above 9 does not
ffer any additional benefits even in the presence of noise. Moreover, we
how that noise has a stronger effect on the estimation of 𝜏 i , for which
he R 

2 score drops from 0.84 in the noise free case to ≈0.5 for SNR = 20.
he estimation of f and d is considerably more robust: R 

2 
noise-free = 0.99

ersus R 

2 
SNR = 20 = 0.94 for f and no drop for d . This suggests that SNR

lays an important role in a protocol’s suitability for permeability esti-
ation using our approach. 

Feature extraction. When extracting the rotationally invariant fea-
ures from our synthetic signals, we obtain meaningful values for all b
hells in the synthetic data. When we apply the same method to in-vivo
ata, the feature extraction becomes difficult and does not give mean-
ngful results for b shells with high gradient strength (above 300 mT/m)
nd high b-values. We believe that this difference is most likely due to
he effect of fibre dispersion, present in the in-vivo data but not included
n our simulations. As the gradient strength increases, the dispersed fi-
res would cause larger drops in the signal, as can also be seen in ( Fig. 7 ),
here we notice that the drop in the signal intensity relative to the gra-
ient direction is less prominent in the synthetic signals than in the
n-vivo data. Moreover, we note that theoretically the diffusion tensor
eatures at b values higher than 2000 s/mm 

2 lose their physical mean-
ng. However, here we do not interpret the diffusion tensor features at
igh b values in terms of tissue microstructure, but we rather use them
ust as convenient metrics to represent the signal. Note that we include
ll of the diffusion tensor features even if some of them are not mutually
ndependent. We prefer to work with a comprehensive set of features to
nsure that our machine learning algorithm finds the most informative
plit criteria. 

Synthetic data experiments. The RF model estimates in the noise free
ase have very strong correlations with the ground truth values, pro-
iding an excellent benchmark performance for our model and imaging
rotocol ( f : R 

2 = 0.99, 𝜏 i : R 

2 = 0.84 d: R 

2 = 0.99). We show that the addi-
ion of noise with SNR = 40, matching our in-vivo data, does not affect
uch the estimation of f and d ( f : R 

2 = 0.97, d: R 

2 = 0.99), however, it
as a stronger effect on the estimation of 𝜏 i . In line with our sensitivity
esults, for 𝜏 i < 400 ms the effect is present, however, the performance is
till sufficiently good (R 

2 = 0.68), while for 𝜏 i > 400 ms the performance
f the model is severely affected (R 

2 = 0.07). The estimation of f and d
s considerably more robust than that of 𝜏 i due to the use of a range
f gradient strengths from 50 to 300 mT/m, which has been shown to
mprove the sensitivity to f and d ( Huang et al, 2015 , Sepehrband et al
016 ) . Moreover, the robust estimation of f and d is in agreement with
hat has been shown by Fieremans et al. (2011) about the estimation
f f and d in the case of parallel fibres. Indeed, the case of parallel fibers
s solvable analytically using only four estimated parameters: diffusivity
nd kurtosis in the directions parallel and perpendicular to the fibres.
ince all the information for computing these parameters is present in
he data, this explains the high fidelity of the prediction. However, we
ote that Fieremans et al.’s model is confounded by the fiber orientation
ispersion, which is known to be present in white matter ( Ronen et al.,
014 ) and therefore, in the case of non-negligible fibre dispersion, our
arameter estimates may be biased. 

In addition to this, we compare for the first time the signal and fea-
ure training approaches and show that there is no significant difference
n the RF performance according to which database is used for training.
his is a significant result as it shows that when extracting the rotation-
lly invariant features from the raw signals we do not lose information
hat is essential for training our model. Consequently, we can use the
eatures database without affecting the performance of our model. The
dvantage of a rotationally invariant feature approach is that it does
ot require the generation of a new library for every new acquisition
rotocol as long as the b-values and the TE of the protocols match.
evertheless, as discussed above, caution should be applied with this
pproach when the acquisition protocol uses high gradient strengths
G ≥ 300 mT/m) and the SNR is low, such as conditions often found in
he pre-clinical setting, and then using signals database might be the
referable choice. On the other hand, in the clinical setting, imaging
rotocols have much lower gradient strengths and sufficient SNR to fit
he DTI and SH model parameters in the feature extraction approach,
nd consequently, we expect the rotationally invariant feature approach
o be a better choice (as used in Nedjati et al. ( 2017 )). Irrespective of
he training approach, we expect our model’s performance to be similar
n both the clinical and preclinical setting. 

.2. In-vivo mouse data and correlation with post-mortem analysis 

Our data quality match shows that our synthetic training data is a
ood representation of the in-vivo data. Our DTI results show an in-
rease in RD and a decrease in FA between the two groups. This could
e explained by the breakdown of the myelin layer which allows wa-
er to diffuse more in the radial direction, leaving AD unchanged and
aving the overall effect of reducing FA. These changes in DTI met-
ics are in agreement with those reported in several studies of the CPZ
ouse model of demyelination ( Boretius et al., 2012 , Song et al., 2005 ,
hang et al., 2012b ). Nevertheless, the DTI metrics are not specific be-
ause they provide only indirect measures of the underlying microstruc-
ural changes in the CPZ model. For instance, the observed increase in
D may be due to the increase spaces between the axons and not to the
igher permeability of less myelinated axons. 

On the other hand, our RF estimates of 𝜏 i provide a more direct and
pecific measure of permeability. In fact, in our computational model,
iffusivity (via d) and permeability (via 𝜏 i ) are decoupled and individ-
ally estimated from the data. We find that our estimations of 𝜏 i in
he healthy mice compare well with literature values. Studies on sph-
ngomyelin membranes found in axonal membranes suggest values be-
ween 300 ms and 600 ms for axons with radii between 0.5 and 1 𝜇m
 Finkelstein, 1976 ). Contrast agent and relaxometry studies in the rat
rain estimate the intracellular water exchange lifetime in the rat brain
o be between 200 ms ( Prantner, 2008 ) and 550 ms ( Quirk et al., 2003 ) .
t is worthwhile to note that our experimental protocol does not pro-
ide enough sensitivity to detect exchange times > 0.4 s. Hence, our
ethod would estimate 𝜏 i ~ 0.4 s for any actual exchange time ≥ 0.4 s.
evertheless, we have high sensitivity to reliably measure any changes

n 𝜏 i occurring below 0.4 s due to demyelination. As accurate histol-
gy measurements of 𝜏 i are not available due to tissue fixation altering
he membrane permeability, we compare our estimates of 𝜏 i with EM
easurements of myelin thickness. We compute myelin thickness from
yelinated axons only, and it includes both the effect of demyelination

nduced by CPZ and some remyelination that happens spontaneously in
he CPZ model ( Matsushima and Morell, 2001 ). We find a strong corre-
ation between the RF estimates of 𝜏 i and myelin thickness ( ϱ𝜏i = 0.82).
his is in very good agreement with a recently published simulation
ork investigating the link between exchange time and myelin thickness
 Brusini et al., 2019 ), further supporting the findings that myelin wrap-
ing can meaningfully contribute to the signal in DW-MRI and impact 𝜏 i .
urthermore, our RF estimates of d lie in the range 1–1.3 𝜇m 

2 sm 

− 1 , an
xpected range for the mouse CC ( Wu et al., 2008 ), and our estimates
f f correlate very strongly with the EM intra-axonal volume fraction
easurements ( ϱf = 0.98). 

When comparing the two groups, we observe the following general
rends: a statistically significant decrease in the intra-axonal volume
raction f and in the intra-axonal exchange time 𝜏 i , together with a neg-
igible and statistically insignificant increase in the intrinsic diffusivity
. We expect f to be lower in the CPZ group as there is an increase in
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he extracellular space due to the breakdown of myelin. Demyelination
s also thought to cause a decrease in the intra-axonal exchange time
s the water molecules encounter less barriers when moving from the
ntracellular to the extracellular space. In line with this, the RF estima-
ions of 𝜏 i in the CPZ group are significantly lower than in the WT group.
owever, it is worth noting that the actual values of the estimated pa-

ameters may be biased by the presence of fibre dispersion, undulation
r beading ( Budde and Frank, 2010 , Nilsson et al., 2012 , Palombo et al.,
018 ), which we do not account for in our simulations. Nevertheless, we
xpect that these factors have negligible effects on our differential anal-
sis of control and cuprizone groups, as we explain in more details in
he next paragraph. 

The strong correlation between myelin thickness and the estimated

i suggests that demyelination could be one of the main factors behind
ur measured decrease in 𝜏 i . To strengthen this hypothesis, we analyse
he potential confounding effect of other underlying processes. Our AD
easurements from the DTI fit suggest that, if undulation or beading ef-

ects are present, they have a negligible effect ( Budde and Frank, 2010 ,
ilsson et al., 2012 , Palombo et al., 2018 ). Furthermore, we analyse

he effect fibre dispersion can have on our results. Previous work in-
estigating the impact of dispersion on axonal permeability estimation
hows that the presence of orientation dispersion could result in under-
stimated values of 𝜏 i ( Nilsson et al., 2013a ), and, therefore, could affect
ur estimates. In order to investigate this, we estimate NODDI ODI, and
nd, as shown in our results, that dispersion is very low (around 0.2),
nd, hence, the effect on the estimates of 𝜏 i will also be low. In ad-
ition to this, we find no significant difference in the ODI between the
T and CPZ groups ( Fig. 9 ). These findings are in line with recently pub-

ished work by Wang et al. (2019) and, together with the non-significant
hange in DTI AD, suggest that we can rule out the effect of disper-
ion on our estimation of the difference in 𝜏 i between the two groups.
e also rule out the potential confounding effect of axonal swelling by

ooking at the statistically non-significant changes in axonal diameter
s measured by EM. Finally, we note that, according to the findings of
elescu et al. (2016a) , we expect the effect of changes in extra-axonal
ransverse diffusivity for 6-week cuprizone intoxicated mice to be neg-
igible at the diffusion times experimentally probed in this study, ruling
ut changes in extra-axonal transverse diffusivity as another potential
onfounding factor to our estimation of exchange time. This, together
ith the measured changes in RD, FA and the RF estimations of 𝜏 i sug-
est that demyelination is the main process underpinning our DW-MRI
ontrast. In particular, our histological data strongly supports 𝜏 i as a
iomarker directly related to the thickness of the myelin sheath, which
uffers degeneration in demyelinating diseases such as Multiple Sclero-
is. 

.3. Limitations 

Tissue model. One limitation of the present work is the simplicity
f the white matter substrates used for the Monte Carlo simulations.
ere we use the same computational model proposed by Nedjati et al.
 2017 ) because the aim of this work is to validate that model and
ethod. Other models, perhaps more complex (e.g. including disper-

ion, along-axon axonal size variance etc.), may improve the estima-
ion of the exchange time, and will be explored in future work. Due
o current limitations in our simulation system, we make several as-
umptions about the geometry of the tissue such as representing axons
s non-abutting parallel cylinders. Such simplified sketch of the more
omplex white matter microstructure may lead to slight differences be-
ween the simulated DW-MRI signals and the measured ones, especially
t very strong diffusion gradients (see for example case G4 and G5 in
ig. 7 ). Future work should aim to train the machine learning model
n more realistic simulations, which account for different effects such
s myelin water ( Harkins and Does, 2016 , Brusini et al., 2019 ), axonal
ndulation ( Nilsson et al., 2012 ), dispersion ( Ginsburger et al., 2019 ,
allaghan et al., 2019 , Callaghan et al., 2020 ), neurons and glial cells
 Palombo et al., 2018 ). Such effects, once included in the simulations,
an easily be incorporated in the machine learning framework used in
his paper. Using more complex and realistic simulations will also nar-
ow down the gap between the synthetic and in-vivo data and increase
he robustness of the parameter estimates. The gap between simulations
nd in-vivo data could also be addressed by using domain adaptation
echniques, which can be integrated within other machine learning ap-
roaches such as neural networks. 

Sensitivity of the imaging protocol. The sensitivity of our imaging pro-
ocol to the exchange time in the presence of noise, as we show in our
imulation experiments, is not ideal. Although we perform some level
f optimisation by choosing the most optimal shells in our large explo-
ative protocol, the sensitivity might have been better if we optimised
he protocol using our computational framework with respect to 𝜏 i prior
o imaging, as done in Nedjati et al.. Nevertheless, even with the pro-
ocol we use we can estimate values of 𝜏 i ≤ 400 ms, which is suffi-
ient for the in-vivo mouse application used in this paper. The machine
earning model here can also easily be adapted to incorporate more spe-
ialised diffusion encoding sequences such as OGSE for more sensitivity
o axon diameter ( Drobnjak et al., 2016 ; Kakkar et al., 2018 ) or STEAM
or longer diffusion times ( Fieremans et al., 2016 ). This limitation can be
ddressed by using the machine learning framework in this paper with
efined Monte Carlo simulations and an imaging protocol optimised with
espect to the intra-axonal exchange time. 

RF model validation. Another limitation that stems from our simula-
ion system is the testing of the model on the same type of data as it is
rained on. Nevertheless, it is worth mentioning that despite using the
ame tissue model, we test our model using previously unseen param-
ter values. Future work should include the training and testing of the
achine learning model using different types of substrates once these

ecome available. 

.4. Implications for clinical applications 

The extension of our approach to clinical systems can potentially be
mportant for numerous white matter pathologies of the human ner-
ous system. Here, we demonstrate the potential of our model in a
uprizone mouse model of demyelination, which is extensively used
n the MS literature due to its close similarity to the demyelination
nd remyelination processes occurring in MS lesions Ransohoff (2012) .
he extension to clinical systems is challenging and most likely re-
uires a reduced and optimized acquisition protocol and the use of
TEAM based sequences to explore longer diffusion times. Neverthe-
ess, even once reduced and optimised, we expect the acquisition to still
ake longer time than conventional DW imaging. However, as shown
n Nedjati et al. ( 2017 ), that is feasible in approximately 30 min and
as been done for both control subjects and MS patients. This suggests
hat our approach may be suitable for clinical and biomedical research
pplications. 

The applicability of our approach extends to other myelin damaging
athologies such as spinal cord injury or leukodystrophies due to the
ypothesised correlation between 𝜏 i and the condition of the myelin
heath ( Nilsson et al., 2013a , Ford and Hackney, 1997 , Hwang et al.,
003 ). The current key limitation is the reduced sensitivity to the intra-
xonal exchange time of clinically available imaging protocols. This can
e addressed by using more specialised sequences such as the AXR se-
uence ( Nilsson et al., 2013a ) or optimised STEAM pulse sequences as
n Nedjati et al. ( 2017 ), to which our framework can easily be adapted.

ith the continually increasing SNR in the clinical scanners, we expect
he clinical applicability of this approach to also improve. 

Our machine learning approach can be easily extended to a range of
ther intractable parameters such as undulation or extracellular space.
urthermore, our approach can be trained also on databases of experi-
ental data, for which a precise correspondence between measured DW-
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RI signal features and ground-truth microstructure features is known.
nother important further development for clinical practice is the in-

roduction of uncertainty measures on the estimates of 𝜏 i . Uncertainty
ould be included via a Bayesian approach as in Tanno et al. (2016) and
t would help highlight areas of the brain where the estimates are less
eliable due to unfamiliar signals. From a clinical perspective, these
evelopments can have a great impact on the understanding and di-
gnosis of neurological conditions of the white matter in the near
uture. 
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ppendix 

.1. The table below presents information about the 15 DT and SH 

eatures extracted from each DW-MRI signal to construct the rotationally 
nvariant database 

Ftr No. Feature/Model Feature Information 

1 𝜆1 (DTI) First eigen value of the diffusion 

tensor, representing the first main 

direction of diffusion, Obtained as 

the first output of the dteig 

command in Camino. 

2 𝜆2 (DTI) Second eigenvalue of the diffusion 

tensor, representing the second 

main direction of diffusion. 

Obtained as the fifth output of the 

dteig command in Camino. 

3 𝜆3 (DTI) Third eigenvalue of the diffusion 

tensor, representing the third 

main direction of diffusion. 

Obtained as the ninth output of 

the dteig command in Camino. 

4 MD (DTI) Mean diffusivity, an estimate of 

the overall diffusion in a voxel, 

computed as 𝜆1 + 𝜆2 + 𝜆3 . 

5 FA (DTI) Fractional anisotropy, an estimate 

of the anisotropic diffusion in a 

voxel. It takes values between 0 

and 1 and is computed as: 

3 
2 

√ ∑
( 𝜆𝑗 − 𝑀𝐷 ) 2 ∑

𝜆𝑗 

6 I 0 (SH) A combination of the SH 

coefficients a k,i of order k = 0 and i 

ndex i , calculated as 

𝐼 0 = 
∑𝑘 

𝑖 =− 𝑘 |𝑎 𝑘,𝑖 |2 , where k = 0. 

7 I 2 (SH) A combination of the SH 

coefficients a k,i of order k = 2 and 

index i , calculated as 

𝐼 2 = 
∑𝑘 

𝑖 =− 𝑘 |𝑎 𝑘,𝑖 |2 , where k = 2. 

8 I 4 (SH) A combination of the SH 

coefficients a k,i of order k = 4 and 

index i , calculated as 

𝐼 4 = 
∑𝑘 

𝑖 =− 𝑘 |𝑎 𝑘,𝑖 |2 , where k = 4. 

9 mean ADC (SH) This feature is computed by 

calculating the values of the 

spherical functions f of the voxel 

at a set of evenly distributed 

sample points on a unit sphere S 

and taking the mean of these. 

Obtained directly from the sfpeaks 

command in Camino. 

10 peak ADC (SH) The maximum value of the 

spherical functions f over the 

points of the unit sphere S (see 

feature 9 for more details). 

Obtained as the 10th output of 

the sfpeaks command in Camino. 

11 𝜆1 (SH) The first eigenvalue of the Hessian 

matrix at the peak. 

.2. Camino and scikit-learn commands used to simulate the synthetic 
ignals database to train and apply the RF machine learning algorithm 

A. The datasynth Camino command was used to generate syn-
hetic diffusion MRI data. For each synthetic DW-MRI signal, the
ommand was run using a different combination of parameters, sam-
led uniformly at random over the ranges specified in Section 2.2.1 .
he intra-axonal exchange time was specified through the proba-
ility -p, described in detail in the same section. More details on
he other parameters of the datasynth command can be found at:
ttp://camino.cs.ucl.ac.uk/index.php?n = Man.Datasynth 
atasynth -walkers 100000 -tmax 2000 -voxels 1 -increments 1 -sub-
trate inflammation -numcylinders 100000 -separateruns -schemefile

https://zenodo.org/record/996889\043.WgH5E9vMx24
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GSE.scheme -initial uniform -p param1 -latticesize param2 -gamma
aram3 param4 -diffusivity param5 > simulated_signal.Bfloat 
. Python scikit-learn code 
 Import toolboxes 

rom sklearn.model_selection import train_test_split 
rom sklearn.ensemble 
rom sklearn.ensemble 
 Load parameters to fit 
arams_to_fit = scipy.io.loadmat(’parameters_to_fit.mat’) 
 Load the database of synthetic signals 

ynth_signals = scipy.io.loadmat(’synthetic_signals_database.mat’) 
 Initialise RF regressors. Details on parameters can be accessed at
ttps://scikit-learn.org/stable/modules/generated/sklearn.ensemble. 
andomForestRegressor.html. 
f_reg = RandomForestRegressor(n_estimators = no_trees, max_depth =
ree_depth,max_features = "sqrt", 

random_state = rndm_seed) 
 Divide database into train and test set 

est_set_size = 0.13 
im_train, sim_test, params_sim_train, params_sim_test = train_test_
plit(synth_signals, params_to_fit, 

test_size = test_set_size, 
random_state = rndm_seed) 

 Train the RF 
f_reg.fit(sim_train,y_sim_train) 
 Predict parameter values for the test set 
stimated_params = rf_reg.predict(sim_test) 

eferences 

boitiz, F. , Scheibel, A.B. , Fisher, R.S. , Zaidel, E. , 1992. Fiber composition of the human
corpus callosum. Brain Res. 598, 143–153 . 

lexander, D.C. , 2008. A general framework for experiment design in diffusion MRI and
its application in measuring direct tissue ‐microstructure features. Magn. Reson. Med.
60, 439–448 . 

lexander, D.C. , Hubbard, P.L. , Hall, M.G. , Moore, E.A. , Ptito, M. , Parker, G.J. ,
Dyrby, T.B. , 2010. Orientationally invariant indices of axon diameter and density
from diffusion MRI. Neuroimage 52, 1374–1389 . 

lexander, D.C. , Zikic, D. , Ghosh, A. , Tanno, R. , Wottschel, V. , Zhang, J. , Kaden, E. ,
Dyrby, T.B. , Sotiropoulos, S.N. , Zhang, H. , 2017. Image quality transfer and appli-
cations in diffusion MRI. Neuroimage 152, 283–298 . 

arazany, D. , Basser, P.J. , Assaf, Y. , 2009. In vivo measurement of axon diameter distri-
bution in the corpus callosum of rat brain. Brain 132, 1210–1220 . 

oretius, S. , Escher, A. , Dallenga, T. , Wrzos, C. , Tammer, R. , Brück, W. , Nessler, S. ,
Frahm, J. , Stadelmann, C. , 2012. Assessment of lesion pathology in a new animal
model of MS by multiparametric MRI and DTI. Neuroimage 59, 2678–2688 . 

reiman, L. , 2001. Random forests. Machine Learn. 45, 5–32 . 
rusini, L. , Menegaz, G. , Nilsson, M. , 2019. Monte Carlo simulations of water exchange

through myelin wraps: implications for diffusion MRI. IEEE Trans. Med. Imaging . 
udde, M.D. , Frank, J.A. , 2010. Neurite beading is sufficient to decrease the apparent

diffusion coefficient after ischemic stroke. Proc. Natl. Acad. Sci. 107, 14472–14477 . 
urcaw, L.M. , Fieremans, E. , Novikov, D.S. , 2015. Mesoscopic structure of neuronal tracts

from time-dependent diffusion. Neuroimage 114, 18–37 . 
allaghan, P.T. , 1997. A simple matrix formalism for spin echo analysis of restricted dif-

fusion under generalized gradient waveforms. J. Magn. Reson. 129, 74–84 . 
allaghan, R. , Alexander, D.C. , Zhang, H. , Palombo, M. , 2019. Contextual fibre growth to

generate realistic axonal packing for diffusion mri simulation. Information Processing
in Medical Imaging: IPMI 2019. Lecture Notes in Computer Science 11492, 429–440 .

allaghan, R., Alexander, D.C., Palombo, M., Zhang, H., 2020. ConFiG: Contextual Fibre
Growth to generate realistic axonal packing for diffusion MRI simulation. Neuroimage
220, 117107. doi: 10.1016/j.neuroimage.2020.117107 . 

odd, S.L. , Callaghan, P.T. , 1999. Spin echo analysis of restricted diffusion under general-
ized gradient waveforms: planar, cylindrical, and spherical pores with wall relaxivity.
J. Magn. Reson. 137, 358–372 . 

ook, P. , Bai, Y. , Nedjati-Gilani, S. , Seunarine, K. , Hall, M. , Parker, G. , Alexander, D.C. ,
2006. Camino: open-source diffusion-MRI reconstruction and processing. In: 14th Sci-
entific Meeting of the International Society for Magnetic Resonance in Medicine, Seat-
tle WA, USA, p. 2759 . 

riminisi, A. , Shotton, J. , Konukoglu, E. , 2011. Decision forests for classification, regres-
sion, density estimation, manifold learning and semi-supervised learning [internet].
Microsoft Res. . 

hital, B. , Reisert, M. , Kellner, E. , Kiselev, V. , 2019. Intra-axonal diffusivity in brain white
matter. Neuroimage 189, 543–550 . 

robnjak, I. , Zhang, H. , Ianu ş , A. , Kaden, E. , Alexander, D.C. , 2016. PGSE, OGSE, and
sensitivity to axon diameter in diffusion MRI: insight from a simulation study. Magn.
Reson. Med. 75, 688–700 . 

instein, A. , 1905. On the motion of small particles suspended in liquids at rest required
by the molecular-kinetic theory of heat. Ann. Phys. 17, 549–560 . 
ieremans, E. , Burcaw, L.M. , Lee, H.-H. , Lemberskiy, G. , Veraart, J. , Novikov, D.S. , 2016.
In vivo observation and biophysical interpretation of time-dependent diffusion in hu-
man white matter. Neuroimage 129, 414–427 . 

ieremans, E. , Novikov, D.S. , Jensen, J.H. , Helpern, J.A. , 2010. Monte Carlo study of a
two ‐compartment exchange model of diffusion. NMR Biomed. 23, 711–724 . 

ieremans, E. , Jensen, J.H. , Helpern, J.A. , 2011. White matter characterization with dif-
fusional kurtosis imaging. Neuroimage 58 (1), 177–188 . 

ieremans, E. , Lee, HH. , 2018. Physical and numerical phantoms for the validation of
brain microstructural MRI: a cookbook. Neuroimage 182, 39–61 . 

ilipiak, P. , Fick, R. , Petiet, A. , Santin, M. , Philippe, A.C. , Lehericy, S. , Ciuciu, P. , De-
riche, R. , Wassermann, D. , 2019. Reducing the number of samples in spatiotemporal
dMRI acquisition design. Magn. Reson. Med. 81, 3218–3233 . 

inkelstein, A. , 1976. Water and nonelectrolyte permeability of lipid bilayer membranes.
J. Gen. Physiol. 68, 127–135 . 

ord, J.C. , Hackney, D.B. , 1997. Numerical model for calculation of apparent diffusion
coefficients (ADC) in permeable cylinders —comparison with measured ADC in spinal
cord white matter. Magn. Reson. Med. 37, 387–394 . 

eremia, E. , Clatz, O. , Menze, B.H. , Konukoglu, E. , Criminisi, A. , Ayache, N. , 2011. Spa-
tial decision forests for MS lesion segmentation in multi-channel magnetic resonance
images. Neuroimage 57, 378–390 . 

insburger, K. , Matuschke, F. , Poupon, F. , Mangin, J.-F. , Axer, M. , Poupon, C. , 2019.
MEDUSA: a GPU-based tool to create realistic phantoms of the brain microstructure
using tiny spheres. Neuroimage . 

rebenkov, D.S. , Van Nguyen, D. , Li, J.-R. , 2014. Exploring diffusion across permeable
barriers at high gradients. I. Narrow pulse approximation. J. Magn. Reson. 248,
153–163 . 

all, M.G. , Alexander, D.C. , 2009. Convergence and parameter choice for Monte-Carlo
simulations of diffusion MRI. IEEE Trans. Med. Imaging 28, 1354–1364 . 

arkins, K.D. , Does, M.D. , 2016. Simulations on the influence of myelin water in diffu-
sion-weighted imaging. Phys. Med. Biol. 61, 4729 . 

u, J. , Verkman, A. , Hu, J. , Verkman, A. , 2006. Increased migration and metastatic po-
tential of tumor cells expressing aquaporin water channels. FASEB J. 20, 1892–1894 .

uang, S.Y. , Nummenmaa, A. , Witzel, T. , Duval, T. , Cohen-Adad, J. , Wald, L. , Mcnab, J.A. ,
2015. The impact of gradient strength on in vivo diffusion MRI estimates of axon
diameter. Neuroimage 106, 464–472 . 

wang, S.N. , Chin, C.L. , Wehrli, F.W. , Hackney, D.B. , 2003. An image ‐based finite differ-
ence model for simulating restricted diffusion. Magnet. Reson. Med. 50, 373–382 . 

nnocenti, G.M. , Caminiti, R. , Aboitiz, F. , 2015. Comments on the paper by Horowitz et al.
(2014). Brain Struct. Func. 220, 1789–1790 . 

elescu, I.O. , Zurel, M. , Winters, K.V. , Veraart, J. , Rajaratnam, A. , Kim, N.S. , Babb, J.S. ,
Sheperd, T.M. , Novikov, D.S. , Kim, S.G. , Fieremans, E. , 2016a. In vivo quantification
of demyelination and recovery using compartment-specific diffusion MRI metrics val-
idated by electron microscopy. Neuroimage 132, 104–114 . 

elescu, I.O. , Veraart, J. , Fieremans, E. , Novikov, D. , 2016b. Degeneracy in model param-
eter estimation for multi ‐compartmental diffusion in neuronal tissue. NMR Biomed.
29 (1), 33–47 . 

akkar, L.S. , Bennett, O.F. , Siow, B. , Richardson, S , Ianus, A. , Quick, T. , Atkinson, D. ,
Phillips, J.B. , Drobnjak, I. , 2018. Low frequency oscillating gradient spin-echo se-
quences improve sensitivity to axon diameter: an experimental study in viable nerve
tissue. Neuroimage 182, 314–328 . 

ärger, J. , Pfeifer, H. , Heink, W. , 1988. Principles and application of self-diffusion mea-
surements by nuclear magnetic resonance. Advances in Magnetic and Optical Reso-
nance. Elsevier . 

asi č, S. , Nilsson, M. , Lätt, J. , Ståhlberg, F. , Topgaard, D. , 2011. Apparent exchange rate
mapping with diffusion MRI. Magn. Reson. Med. 66, 356–365 . 

ätt, J. , Nilsson, M. , Van Westen, D. , Wirestam, R. , Ståhlberg, F. , Brockstedt, S. , 2009. Dif-
fusion ‐weighted MRI measurements on stroke patients reveal water ‐exchange mech-
anisms in sub ‐acute ischaemic lesions. NMR Biomed. 22, 619–628 . 

atsushima, G.K. , Morell, P. , 2001. The neurotoxicant, cuprizone, as a model to study
demyelination and remyelination in the central nervous system. Brain Pathol. 11,
107–116 . 

outon, P. , 2002. Principles and Practices of Unbiased Stereology: an Introduction for
Bioscientists. Johns Hopkins University Press, Baltimore . 

edjati-Gilani, G.L. , Schneider, T. , Hall, M.G. , Cawley, N. , Hill, I. , Ciccarelli, O. , Drob-
njak, I. , Wheeler-Kingshott, C.A.G. , Alexander, D.C. , 2017. Machine learning based
compartment models with permeability for white matter microstructure imaging.
Neuroimage 150, 119–135 . 

ilsson, M. , Alerstam, E. , Wirestam, R. , Sta, F. , Brockstedt, S. , Lätt, J. , 2010. Evaluating
the accuracy and precision of a two-compartment Kärger model using Monte Carlo
simulations. J. Magn. Reson. 206, 59–67 . 

ilsson, M. , Lätt, J. , Stählberg, F. , Van Westen, D. , Hagslätt, H. , 2012. The importance of
axonal undulation in diffusion MR measurements: a Monte Carlo simulation study.
NMR Biomed. 25, 795–805 . 

ilsson, M. , Van Westen, D. , StåHLBERG, F. , Sundgren, P.C. , Lätt, J. , 2013a. The role
of tissue microstructure and water exchange in biophysical modelling of diffusion in
white matter. Magn. Reson. Mater. Phys., Biol. Med. 26, 345–370 . 

ilsson, M. , Lätt, J. , Van Westen, D. , Brockstedt, S. , Lasi č, S. , Ståhlberg, F. , Topgaard, D. ,
2013b. Noninvasive mapping of water diffusional exchange in the human brain using
filter ‐exchange imaging. Magn. Reson. Med. 69, 1572–1580 . 

ovikov, D.S. , Veraart, J. , Jelescu, I.O , Fieremans, E. , 2018. Rotationally-invariant map-
ping of scalar and orientational metrics of neuronal microstructure with diffusion
MRI. Neuroimage 2018, 518–538 . 

alombo, M. , Ligneul, C. , Hernandez-Garzon, E. , Valette, J. , 2018. Can we detect the effect
of spines and leaflets on the diffusion of brain intracellular metabolites? Neuroimage
182, 283–293 . 

edregosa, F. , Varoquaux, G. , Gramfort, A. , Michel, V. , Thirion, B. , Grisel, O. , Blon-

http://refhub.elsevier.com/S1053-8119(20)30910-1/sbref0001
http://refhub.elsevier.com/S1053-8119(20)30910-1/sbref0001
http://refhub.elsevier.com/S1053-8119(20)30910-1/sbref0001
http://refhub.elsevier.com/S1053-8119(20)30910-1/sbref0001
http://refhub.elsevier.com/S1053-8119(20)30910-1/sbref0001
http://refhub.elsevier.com/S1053-8119(20)30910-1/sbref0002
http://refhub.elsevier.com/S1053-8119(20)30910-1/sbref0002
http://refhub.elsevier.com/S1053-8119(20)30910-1/sbref0003
http://refhub.elsevier.com/S1053-8119(20)30910-1/sbref0003
http://refhub.elsevier.com/S1053-8119(20)30910-1/sbref0003
http://refhub.elsevier.com/S1053-8119(20)30910-1/sbref0003
http://refhub.elsevier.com/S1053-8119(20)30910-1/sbref0003
http://refhub.elsevier.com/S1053-8119(20)30910-1/sbref0003
http://refhub.elsevier.com/S1053-8119(20)30910-1/sbref0003
http://refhub.elsevier.com/S1053-8119(20)30910-1/sbref0003
http://refhub.elsevier.com/S1053-8119(20)30910-1/sbref0004
http://refhub.elsevier.com/S1053-8119(20)30910-1/sbref0004
http://refhub.elsevier.com/S1053-8119(20)30910-1/sbref0004
http://refhub.elsevier.com/S1053-8119(20)30910-1/sbref0004
http://refhub.elsevier.com/S1053-8119(20)30910-1/sbref0004
http://refhub.elsevier.com/S1053-8119(20)30910-1/sbref0004
http://refhub.elsevier.com/S1053-8119(20)30910-1/sbref0004
http://refhub.elsevier.com/S1053-8119(20)30910-1/sbref0004
http://refhub.elsevier.com/S1053-8119(20)30910-1/sbref0004
http://refhub.elsevier.com/S1053-8119(20)30910-1/sbref0004
http://refhub.elsevier.com/S1053-8119(20)30910-1/sbref0004
http://refhub.elsevier.com/S1053-8119(20)30910-1/sbref0005
http://refhub.elsevier.com/S1053-8119(20)30910-1/sbref0005
http://refhub.elsevier.com/S1053-8119(20)30910-1/sbref0005
http://refhub.elsevier.com/S1053-8119(20)30910-1/sbref0005
http://refhub.elsevier.com/S1053-8119(20)30910-1/sbref0006
http://refhub.elsevier.com/S1053-8119(20)30910-1/sbref0006
http://refhub.elsevier.com/S1053-8119(20)30910-1/sbref0006
http://refhub.elsevier.com/S1053-8119(20)30910-1/sbref0006
http://refhub.elsevier.com/S1053-8119(20)30910-1/sbref0006
http://refhub.elsevier.com/S1053-8119(20)30910-1/sbref0006
http://refhub.elsevier.com/S1053-8119(20)30910-1/sbref0006
http://refhub.elsevier.com/S1053-8119(20)30910-1/sbref0006
http://refhub.elsevier.com/S1053-8119(20)30910-1/sbref0006
http://refhub.elsevier.com/S1053-8119(20)30910-1/sbref0006
http://refhub.elsevier.com/S1053-8119(20)30910-1/sbref0007
http://refhub.elsevier.com/S1053-8119(20)30910-1/sbref0007
http://refhub.elsevier.com/S1053-8119(20)30910-1/sbref0008
http://refhub.elsevier.com/S1053-8119(20)30910-1/sbref0008
http://refhub.elsevier.com/S1053-8119(20)30910-1/sbref0008
http://refhub.elsevier.com/S1053-8119(20)30910-1/sbref0008
http://refhub.elsevier.com/S1053-8119(20)30910-1/sbref0009
http://refhub.elsevier.com/S1053-8119(20)30910-1/sbref0009
http://refhub.elsevier.com/S1053-8119(20)30910-1/sbref0009
http://refhub.elsevier.com/S1053-8119(20)30910-1/sbref0010
http://refhub.elsevier.com/S1053-8119(20)30910-1/sbref0010
http://refhub.elsevier.com/S1053-8119(20)30910-1/sbref0010
http://refhub.elsevier.com/S1053-8119(20)30910-1/sbref0010
http://refhub.elsevier.com/S1053-8119(20)30910-1/sbref0011
http://refhub.elsevier.com/S1053-8119(20)30910-1/sbref0011
http://refhub.elsevier.com/S1053-8119(20)30910-1/sbref0007a
http://refhub.elsevier.com/S1053-8119(20)30910-1/sbref0007a
http://refhub.elsevier.com/S1053-8119(20)30910-1/sbref0007a
http://refhub.elsevier.com/S1053-8119(20)30910-1/sbref0007a
http://refhub.elsevier.com/S1053-8119(20)30910-1/sbref0007a
https://doi.org/10.1016/j.neuroimage.2020.117107
http://refhub.elsevier.com/S1053-8119(20)30910-1/sbref0012
http://refhub.elsevier.com/S1053-8119(20)30910-1/sbref0012
http://refhub.elsevier.com/S1053-8119(20)30910-1/sbref0012
http://refhub.elsevier.com/S1053-8119(20)30910-1/sbref0013
http://refhub.elsevier.com/S1053-8119(20)30910-1/sbref0013
http://refhub.elsevier.com/S1053-8119(20)30910-1/sbref0013
http://refhub.elsevier.com/S1053-8119(20)30910-1/sbref0013
http://refhub.elsevier.com/S1053-8119(20)30910-1/sbref0013
http://refhub.elsevier.com/S1053-8119(20)30910-1/sbref0013
http://refhub.elsevier.com/S1053-8119(20)30910-1/sbref0013
http://refhub.elsevier.com/S1053-8119(20)30910-1/sbref0013
http://refhub.elsevier.com/S1053-8119(20)30910-1/sbref0014
http://refhub.elsevier.com/S1053-8119(20)30910-1/sbref0014
http://refhub.elsevier.com/S1053-8119(20)30910-1/sbref0014
http://refhub.elsevier.com/S1053-8119(20)30910-1/sbref0014
http://refhub.elsevier.com/S1053-8119(20)30910-1/sbref0015
http://refhub.elsevier.com/S1053-8119(20)30910-1/sbref0015
http://refhub.elsevier.com/S1053-8119(20)30910-1/sbref0015
http://refhub.elsevier.com/S1053-8119(20)30910-1/sbref0015
http://refhub.elsevier.com/S1053-8119(20)30910-1/sbref0015
http://refhub.elsevier.com/S1053-8119(20)30910-1/sbref0016
http://refhub.elsevier.com/S1053-8119(20)30910-1/sbref0016
http://refhub.elsevier.com/S1053-8119(20)30910-1/sbref0016
http://refhub.elsevier.com/S1053-8119(20)30910-1/sbref0016
http://refhub.elsevier.com/S1053-8119(20)30910-1/sbref0016
http://refhub.elsevier.com/S1053-8119(20)30910-1/sbref0016
http://refhub.elsevier.com/S1053-8119(20)30910-1/sbref0017
http://refhub.elsevier.com/S1053-8119(20)30910-1/sbref0017
http://refhub.elsevier.com/S1053-8119(20)30910-1/sbref0018
http://refhub.elsevier.com/S1053-8119(20)30910-1/sbref0018
http://refhub.elsevier.com/S1053-8119(20)30910-1/sbref0018
http://refhub.elsevier.com/S1053-8119(20)30910-1/sbref0018
http://refhub.elsevier.com/S1053-8119(20)30910-1/sbref0018
http://refhub.elsevier.com/S1053-8119(20)30910-1/sbref0018
http://refhub.elsevier.com/S1053-8119(20)30910-1/sbref0018
http://refhub.elsevier.com/S1053-8119(20)30910-1/sbref0019
http://refhub.elsevier.com/S1053-8119(20)30910-1/sbref0019
http://refhub.elsevier.com/S1053-8119(20)30910-1/sbref0019
http://refhub.elsevier.com/S1053-8119(20)30910-1/sbref0019
http://refhub.elsevier.com/S1053-8119(20)30910-1/sbref0019
http://refhub.elsevier.com/S1053-8119(20)30910-1/sbref0020
http://refhub.elsevier.com/S1053-8119(20)30910-1/sbref0020
http://refhub.elsevier.com/S1053-8119(20)30910-1/sbref0020
http://refhub.elsevier.com/S1053-8119(20)30910-1/sbref0020
http://refhub.elsevier.com/S1053-8119(20)30910-1/sbref0021
http://refhub.elsevier.com/S1053-8119(20)30910-1/sbref0021
http://refhub.elsevier.com/S1053-8119(20)30910-1/sbref0021
http://refhub.elsevier.com/S1053-8119(20)30910-1/sbref0022
http://refhub.elsevier.com/S1053-8119(20)30910-1/sbref0022
http://refhub.elsevier.com/S1053-8119(20)30910-1/sbref0022
http://refhub.elsevier.com/S1053-8119(20)30910-1/sbref0022
http://refhub.elsevier.com/S1053-8119(20)30910-1/sbref0022
http://refhub.elsevier.com/S1053-8119(20)30910-1/sbref0022
http://refhub.elsevier.com/S1053-8119(20)30910-1/sbref0022
http://refhub.elsevier.com/S1053-8119(20)30910-1/sbref0022
http://refhub.elsevier.com/S1053-8119(20)30910-1/sbref0022
http://refhub.elsevier.com/S1053-8119(20)30910-1/sbref0022
http://refhub.elsevier.com/S1053-8119(20)30910-1/sbref0023
http://refhub.elsevier.com/S1053-8119(20)30910-1/sbref0023
http://refhub.elsevier.com/S1053-8119(20)30910-1/sbref0024
http://refhub.elsevier.com/S1053-8119(20)30910-1/sbref0024
http://refhub.elsevier.com/S1053-8119(20)30910-1/sbref0024
http://refhub.elsevier.com/S1053-8119(20)30910-1/sbref0025
http://refhub.elsevier.com/S1053-8119(20)30910-1/sbref0025
http://refhub.elsevier.com/S1053-8119(20)30910-1/sbref0025
http://refhub.elsevier.com/S1053-8119(20)30910-1/sbref0025
http://refhub.elsevier.com/S1053-8119(20)30910-1/sbref0025
http://refhub.elsevier.com/S1053-8119(20)30910-1/sbref0025
http://refhub.elsevier.com/S1053-8119(20)30910-1/sbref0025
http://refhub.elsevier.com/S1053-8119(20)30910-1/sbref0026
http://refhub.elsevier.com/S1053-8119(20)30910-1/sbref0026
http://refhub.elsevier.com/S1053-8119(20)30910-1/sbref0026
http://refhub.elsevier.com/S1053-8119(20)30910-1/sbref0026
http://refhub.elsevier.com/S1053-8119(20)30910-1/sbref0026
http://refhub.elsevier.com/S1053-8119(20)30910-1/sbref0026
http://refhub.elsevier.com/S1053-8119(20)30910-1/sbref0026
http://refhub.elsevier.com/S1053-8119(20)30910-1/sbref0027
http://refhub.elsevier.com/S1053-8119(20)30910-1/sbref0027
http://refhub.elsevier.com/S1053-8119(20)30910-1/sbref0027
http://refhub.elsevier.com/S1053-8119(20)30910-1/sbref0027
http://refhub.elsevier.com/S1053-8119(20)30910-1/sbref0028
http://refhub.elsevier.com/S1053-8119(20)30910-1/sbref0028
http://refhub.elsevier.com/S1053-8119(20)30910-1/sbref0028
http://refhub.elsevier.com/S1053-8119(20)30910-1/sbref0029
http://refhub.elsevier.com/S1053-8119(20)30910-1/sbref0029
http://refhub.elsevier.com/S1053-8119(20)30910-1/sbref0029
http://refhub.elsevier.com/S1053-8119(20)30910-1/sbref0030
http://refhub.elsevier.com/S1053-8119(20)30910-1/sbref0030
http://refhub.elsevier.com/S1053-8119(20)30910-1/sbref0030
http://refhub.elsevier.com/S1053-8119(20)30910-1/sbref0030
http://refhub.elsevier.com/S1053-8119(20)30910-1/sbref0030
http://refhub.elsevier.com/S1053-8119(20)30910-1/sbref0031
http://refhub.elsevier.com/S1053-8119(20)30910-1/sbref0031
http://refhub.elsevier.com/S1053-8119(20)30910-1/sbref0031
http://refhub.elsevier.com/S1053-8119(20)30910-1/sbref0031
http://refhub.elsevier.com/S1053-8119(20)30910-1/sbref0031
http://refhub.elsevier.com/S1053-8119(20)30910-1/sbref0031
http://refhub.elsevier.com/S1053-8119(20)30910-1/sbref0031
http://refhub.elsevier.com/S1053-8119(20)30910-1/sbref0031
http://refhub.elsevier.com/S1053-8119(20)30910-1/sbref0032
http://refhub.elsevier.com/S1053-8119(20)30910-1/sbref0032
http://refhub.elsevier.com/S1053-8119(20)30910-1/sbref0032
http://refhub.elsevier.com/S1053-8119(20)30910-1/sbref0032
http://refhub.elsevier.com/S1053-8119(20)30910-1/sbref0032
http://refhub.elsevier.com/S1053-8119(20)30910-1/sbref0033
http://refhub.elsevier.com/S1053-8119(20)30910-1/sbref0033
http://refhub.elsevier.com/S1053-8119(20)30910-1/sbref0033
http://refhub.elsevier.com/S1053-8119(20)30910-1/sbref0033
http://refhub.elsevier.com/S1053-8119(20)30910-1/sbref0034
http://refhub.elsevier.com/S1053-8119(20)30910-1/sbref0034
http://refhub.elsevier.com/S1053-8119(20)30910-1/sbref0034
http://refhub.elsevier.com/S1053-8119(20)30910-1/sbref0034
http://refhub.elsevier.com/S1053-8119(20)30910-1/sbref0034
http://refhub.elsevier.com/S1053-8119(20)30910-1/sbref0034
http://refhub.elsevier.com/S1053-8119(20)30910-1/sbref0034
http://refhub.elsevier.com/S1053-8119(20)30910-1/sbref0034
http://refhub.elsevier.com/S1053-8119(20)30910-1/sbref0034
http://refhub.elsevier.com/S1053-8119(20)30910-1/sbref0034
http://refhub.elsevier.com/S1053-8119(20)30910-1/sbref0034
http://refhub.elsevier.com/S1053-8119(20)30910-1/sbref0034
http://refhub.elsevier.com/S1053-8119(20)30910-1/sbref0035
http://refhub.elsevier.com/S1053-8119(20)30910-1/sbref0035
http://refhub.elsevier.com/S1053-8119(20)30910-1/sbref0035
http://refhub.elsevier.com/S1053-8119(20)30910-1/sbref0035
http://refhub.elsevier.com/S1053-8119(20)30910-1/sbref0035
http://refhub.elsevier.com/S1053-8119(20)30910-1/sbref0036
http://refhub.elsevier.com/S1053-8119(20)30910-1/sbref0036
http://refhub.elsevier.com/S1053-8119(20)30910-1/sbref0036
http://refhub.elsevier.com/S1053-8119(20)30910-1/sbref0036
http://refhub.elsevier.com/S1053-8119(20)30910-1/sbref0036
http://refhub.elsevier.com/S1053-8119(20)30910-1/sbref0036
http://refhub.elsevier.com/S1053-8119(20)30910-1/sbref0036
http://refhub.elsevier.com/S1053-8119(20)30910-1/sbref0036
http://refhub.elsevier.com/S1053-8119(20)30910-1/sbref0036
http://refhub.elsevier.com/S1053-8119(20)30910-1/sbref0036
http://refhub.elsevier.com/S1053-8119(20)30910-1/sbref0037
http://refhub.elsevier.com/S1053-8119(20)30910-1/sbref0037
http://refhub.elsevier.com/S1053-8119(20)30910-1/sbref0037
http://refhub.elsevier.com/S1053-8119(20)30910-1/sbref0037
http://refhub.elsevier.com/S1053-8119(20)30910-1/sbref0038
http://refhub.elsevier.com/S1053-8119(20)30910-1/sbref0038
http://refhub.elsevier.com/S1053-8119(20)30910-1/sbref0038
http://refhub.elsevier.com/S1053-8119(20)30910-1/sbref0038
http://refhub.elsevier.com/S1053-8119(20)30910-1/sbref0038
http://refhub.elsevier.com/S1053-8119(20)30910-1/sbref0038
http://refhub.elsevier.com/S1053-8119(20)30910-1/sbref0039
http://refhub.elsevier.com/S1053-8119(20)30910-1/sbref0039
http://refhub.elsevier.com/S1053-8119(20)30910-1/sbref0039
http://refhub.elsevier.com/S1053-8119(20)30910-1/sbref0039
http://refhub.elsevier.com/S1053-8119(20)30910-1/sbref0039
http://refhub.elsevier.com/S1053-8119(20)30910-1/sbref0039
http://refhub.elsevier.com/S1053-8119(20)30910-1/sbref0039
http://refhub.elsevier.com/S1053-8119(20)30910-1/sbref0040
http://refhub.elsevier.com/S1053-8119(20)30910-1/sbref0040
http://refhub.elsevier.com/S1053-8119(20)30910-1/sbref0040
http://refhub.elsevier.com/S1053-8119(20)30910-1/sbref0041
http://refhub.elsevier.com/S1053-8119(20)30910-1/sbref0041
http://refhub.elsevier.com/S1053-8119(20)30910-1/sbref0042
http://refhub.elsevier.com/S1053-8119(20)30910-1/sbref0042
http://refhub.elsevier.com/S1053-8119(20)30910-1/sbref0042
http://refhub.elsevier.com/S1053-8119(20)30910-1/sbref0042
http://refhub.elsevier.com/S1053-8119(20)30910-1/sbref0042
http://refhub.elsevier.com/S1053-8119(20)30910-1/sbref0042
http://refhub.elsevier.com/S1053-8119(20)30910-1/sbref0042
http://refhub.elsevier.com/S1053-8119(20)30910-1/sbref0042
http://refhub.elsevier.com/S1053-8119(20)30910-1/sbref0042
http://refhub.elsevier.com/S1053-8119(20)30910-1/sbref0042
http://refhub.elsevier.com/S1053-8119(20)30910-1/sbref0043
http://refhub.elsevier.com/S1053-8119(20)30910-1/sbref0043
http://refhub.elsevier.com/S1053-8119(20)30910-1/sbref0043
http://refhub.elsevier.com/S1053-8119(20)30910-1/sbref0043
http://refhub.elsevier.com/S1053-8119(20)30910-1/sbref0043
http://refhub.elsevier.com/S1053-8119(20)30910-1/sbref0043
http://refhub.elsevier.com/S1053-8119(20)30910-1/sbref0043
http://refhub.elsevier.com/S1053-8119(20)30910-1/sbref0044
http://refhub.elsevier.com/S1053-8119(20)30910-1/sbref0044
http://refhub.elsevier.com/S1053-8119(20)30910-1/sbref0044
http://refhub.elsevier.com/S1053-8119(20)30910-1/sbref0044
http://refhub.elsevier.com/S1053-8119(20)30910-1/sbref0044
http://refhub.elsevier.com/S1053-8119(20)30910-1/sbref0044
http://refhub.elsevier.com/S1053-8119(20)30910-1/sbref0045
http://refhub.elsevier.com/S1053-8119(20)30910-1/sbref0045
http://refhub.elsevier.com/S1053-8119(20)30910-1/sbref0045
http://refhub.elsevier.com/S1053-8119(20)30910-1/sbref0045
http://refhub.elsevier.com/S1053-8119(20)30910-1/sbref0045
http://refhub.elsevier.com/S1053-8119(20)30910-1/sbref0045
http://refhub.elsevier.com/S1053-8119(20)30910-1/sbref0046
http://refhub.elsevier.com/S1053-8119(20)30910-1/sbref0046
http://refhub.elsevier.com/S1053-8119(20)30910-1/sbref0046
http://refhub.elsevier.com/S1053-8119(20)30910-1/sbref0046
http://refhub.elsevier.com/S1053-8119(20)30910-1/sbref0046
http://refhub.elsevier.com/S1053-8119(20)30910-1/sbref0046
http://refhub.elsevier.com/S1053-8119(20)30910-1/sbref0046
http://refhub.elsevier.com/S1053-8119(20)30910-1/sbref0046
http://refhub.elsevier.com/S1053-8119(20)30910-1/sbref0047
http://refhub.elsevier.com/S1053-8119(20)30910-1/sbref0047
http://refhub.elsevier.com/S1053-8119(20)30910-1/sbref0047
http://refhub.elsevier.com/S1053-8119(20)30910-1/sbref0047
http://refhub.elsevier.com/S1053-8119(20)30910-1/sbref0047
http://refhub.elsevier.com/S1053-8119(20)30910-1/sbref0048
http://refhub.elsevier.com/S1053-8119(20)30910-1/sbref0048
http://refhub.elsevier.com/S1053-8119(20)30910-1/sbref0048
http://refhub.elsevier.com/S1053-8119(20)30910-1/sbref0048
http://refhub.elsevier.com/S1053-8119(20)30910-1/sbref0048
http://refhub.elsevier.com/S1053-8119(20)30910-1/sbref0049
http://refhub.elsevier.com/S1053-8119(20)30910-1/sbref0049
http://refhub.elsevier.com/S1053-8119(20)30910-1/sbref0049
http://refhub.elsevier.com/S1053-8119(20)30910-1/sbref0049
http://refhub.elsevier.com/S1053-8119(20)30910-1/sbref0049
http://refhub.elsevier.com/S1053-8119(20)30910-1/sbref0049
http://refhub.elsevier.com/S1053-8119(20)30910-1/sbref0049


I. Hill, M. Palombo, M. Santin et al. NeuroImage 224 (2021) 117425 

 

P  

Q  

 

R  

R  

 

 

R  

 

R  

 

S  

 

S  

 

S  

 

 

S  

 

S  

 

T  

 

V  

 

V  

 

 

W  

 

W  

 

 

W  

W  

 

 

Z  

 

Z  

 

del, M. , Prettenhofer, P. , Weiss, R. , Dubourg, V. , 2011. Scikit-learn: machine learning
in Python. J. Machine Learn. Res. 12, 2825–2830 . 

rantner, A.M. , 2008. Re-evaluation of Transmembrane Water Exchange in the Rat Brain.
Washington University in St. Louis . 

uirk, J.D. , Bretthorst, G.L. , Duong, T.Q. , Snyder, A.Z. , Springer Jr, C.S. , Ackerman, J.J. ,
Neil, J.J. , 2003. Equilibrium water exchange between the intra ‐and extracellular
spaces of mammalian brain. Magnet. Resonance Med. 50, 493–499 . 

ansohoff, R.M. , 2012. Animal models of multiple sclerosis: the good, the bad and the
bottom line. Nat. Neurosci. 15, 1074 . 

egan, D.G. , Kuchel, P.W. , 2000. Mean residence time of molecules diffusing in a cell
bounded by a semi-permeable membrane: Monte Carlo simulations and an expres-
sion relating membrane transition probability to permeability. Eur. Biophys. J. 29,
221–227 . 

eisert, M. , Kellner, E. , Dhital, B. , Hennig, J. , Kiselev, V.G. , 2017. Disentangling mi-
cro from mesostructure by diffusion MRI: a Bayesian approach. Neuroimage 147,
964–975 . 

onen, I. , et al. , 2014. Microstructural organization of axons in the human corpus callosum
quantified by diffusion-weighted magnetic resonance spectroscopy of N-acetylaspar-
tate and post-mortem histology. Brain Struct. Funct. 219 (5), 1773–1785 . 

chindelin, J. , Arganda-Carreras, I. , Frise, E. , Kaynig, V. , Longair, M. , Pietzsch, T. ,
Preibisch, S. , Rueden, C. , Saalfeld, S. , Schmid, B. , 2012. Fiji: an open-source platform
for biological-image analysis. Nat. Methods 9, 676 . 

epherband, F. , Alexander, D.C. , Kurniawan, N.D. , Reutens, D.C. , Yang, Z. , 2016. Towards
higher sensitivity and stability of axon diameter estimation with diffusion ‐weighted
MRI. NMR Biomed. 29 (3), 293–308 . 

mith, S.M. , Jenkinson, M. , Woolrich, M.W. , Beckmann, C.F. , Behrens, T.E. , Jo-
hansen-Berg, H. , Bannister, P.R. , De Luca, M. , Drobnjak, I. , Flitney, D.E. , 2004. Ad-
vances in functional and structural MR image analysis and implementation as FSL.
Neuroimage 23, S208–S219 . 

ong, S.-K. , Yoshino, J. , Le, T.Q. , Lin, S.-J. , Sun, S.-W. , Cross, A.H. , Armstrong, R.C. , 2005.
Demyelination increases radial diffusivity in corpus callosum of mouse brain. Neu-
roimage 26, 132–140 . 
tanisz, G.J. , Odrobina, E.E. , Pun, J. , Escaravage, M. , Graham, S.J. , Bronskill, M.J. , Henkel-
man, R.M. , 2005. T1, T2 relaxation and magnetization transfer in tissue at 3T. Magnet.
Resonance Med. 54, 507–512 . 

anno, R. , Ghosh, A. , Grussu, F. , Kaden, E. , Criminisi, A. , Alexander, D.C. , 2016. Bayesian
image quality transfer. In: International Conference on Medical Image Computing and
Computer-Assisted Intervention. Springer, pp. 265–273 . 

angelderen, P. , Despres, D. , Vanzijl, P. , Moonen, C. , 1994. Evaluation of restricted diffu-
sion in cylinders. Phosphocreatine in rabbit leg muscle. J. Magnet. Resonance, Series
B 103, 255–260 . 

olles, M.J. , Lee, S.-J. , Rochet, J.-C. , Shtilerman, M.D. , Ding, T.T. , Kessler, J.C. , Lans-
bury, P.T. , 2001. Vesicle permeabilization by protofibrillar 𝛼-synuclein: implica-
tions for the pathogenesis and treatment of Parkinson’s disease. Biochemistry 40,
7812–7819 . 

ang, N. , Zhang, J. , Cofer, G. , Qi, Y. , Anderson, R.J. , White, L.E. , Johnson, G.A. , 2019.
Neurite orientation dispersion and density imaging of mouse brain microstructure.
Brain Struct. Funct. 1–17 . 

assermann, D., Santin, M., Philippe, A.C., Fick, R., Deriche, R., Lehericy, S., & Petiet,
A. 2017. Test-Retest qt-dMRI datasets for "Non-Parametric GraphNet-Regularized
Representation of dMRI in Space and Time"; [Data set]. Zenodo. doi: 10.5281/zen-
odo.996889 . 

estin, C.-F. , Maier, S.E. , Mamata, H. , Nabavi, A. , Jolesz, F.A. , Kikinis, R. , 2002. Process-
ing and visualization for diffusion tensor MRI. Med. Image Anal. 6, 93–108 . 

u, Q.Z. , Yang, Q. , Cate, H.S. , Kemper, D. , Binder, M. , Wang, H.X. , Fang, K. , Quick, M.J. ,
Marriott, M. , Kilpatrick, T.J. , 2008. MRI identification of the rostral ‐caudal pattern
of pathology within the corpus callosum in the cuprizone mouse model. J. Magnet.
Resonance Img. 27, 446–453 . 

hang, H. , Schneider, T. , Wheeler-Kingshott, C.A. , Alexander, D.C. , 2012a. NODDI: prac-
tical in vivo neurite orientation dispersion and density imaging of the human brain.
Neuroimage 61, 1000–1016 . 

hang, J. , Jones, M.V. , Mcmahon, M.T. , Mori, S. , Calabresi, P.A. , 2012b. In vivo and ex
vivo diffusion tensor imaging of cuprizone ‐induced demyelination in the mouse cor-
pus callosum. Magn. Reson. Med. 67, 750–759 . 

http://refhub.elsevier.com/S1053-8119(20)30910-1/sbref0049
http://refhub.elsevier.com/S1053-8119(20)30910-1/sbref0049
http://refhub.elsevier.com/S1053-8119(20)30910-1/sbref0049
http://refhub.elsevier.com/S1053-8119(20)30910-1/sbref0049
http://refhub.elsevier.com/S1053-8119(20)30910-1/sbref0049
http://refhub.elsevier.com/S1053-8119(20)30910-1/sbref0050
http://refhub.elsevier.com/S1053-8119(20)30910-1/sbref0050
http://refhub.elsevier.com/S1053-8119(20)30910-1/sbref0051
http://refhub.elsevier.com/S1053-8119(20)30910-1/sbref0051
http://refhub.elsevier.com/S1053-8119(20)30910-1/sbref0051
http://refhub.elsevier.com/S1053-8119(20)30910-1/sbref0051
http://refhub.elsevier.com/S1053-8119(20)30910-1/sbref0051
http://refhub.elsevier.com/S1053-8119(20)30910-1/sbref0051
http://refhub.elsevier.com/S1053-8119(20)30910-1/sbref0051
http://refhub.elsevier.com/S1053-8119(20)30910-1/sbref0051
http://refhub.elsevier.com/S1053-8119(20)30910-1/sbref0052
http://refhub.elsevier.com/S1053-8119(20)30910-1/sbref0052
http://refhub.elsevier.com/S1053-8119(20)30910-1/sbref0053
http://refhub.elsevier.com/S1053-8119(20)30910-1/sbref0053
http://refhub.elsevier.com/S1053-8119(20)30910-1/sbref0053
http://refhub.elsevier.com/S1053-8119(20)30910-1/sbref0054
http://refhub.elsevier.com/S1053-8119(20)30910-1/sbref0054
http://refhub.elsevier.com/S1053-8119(20)30910-1/sbref0054
http://refhub.elsevier.com/S1053-8119(20)30910-1/sbref0054
http://refhub.elsevier.com/S1053-8119(20)30910-1/sbref0054
http://refhub.elsevier.com/S1053-8119(20)30910-1/sbref0054
http://refhub.elsevier.com/S1053-8119(20)30910-1/sbref0055
http://refhub.elsevier.com/S1053-8119(20)30910-1/sbref0055
http://refhub.elsevier.com/S1053-8119(20)30910-1/sbref0055
http://refhub.elsevier.com/S1053-8119(20)30910-1/sbref0057
http://refhub.elsevier.com/S1053-8119(20)30910-1/sbref0057
http://refhub.elsevier.com/S1053-8119(20)30910-1/sbref0057
http://refhub.elsevier.com/S1053-8119(20)30910-1/sbref0057
http://refhub.elsevier.com/S1053-8119(20)30910-1/sbref0057
http://refhub.elsevier.com/S1053-8119(20)30910-1/sbref0057
http://refhub.elsevier.com/S1053-8119(20)30910-1/sbref0057
http://refhub.elsevier.com/S1053-8119(20)30910-1/sbref0057
http://refhub.elsevier.com/S1053-8119(20)30910-1/sbref0057
http://refhub.elsevier.com/S1053-8119(20)30910-1/sbref0057
http://refhub.elsevier.com/S1053-8119(20)30910-1/sbref0057
http://refhub.elsevier.com/S1053-8119(20)30910-1/sbref0058
http://refhub.elsevier.com/S1053-8119(20)30910-1/sbref0058
http://refhub.elsevier.com/S1053-8119(20)30910-1/sbref0058
http://refhub.elsevier.com/S1053-8119(20)30910-1/sbref0058
http://refhub.elsevier.com/S1053-8119(20)30910-1/sbref0058
http://refhub.elsevier.com/S1053-8119(20)30910-1/sbref0058
http://refhub.elsevier.com/S1053-8119(20)30910-1/sbref0059
http://refhub.elsevier.com/S1053-8119(20)30910-1/sbref0059
http://refhub.elsevier.com/S1053-8119(20)30910-1/sbref0059
http://refhub.elsevier.com/S1053-8119(20)30910-1/sbref0059
http://refhub.elsevier.com/S1053-8119(20)30910-1/sbref0059
http://refhub.elsevier.com/S1053-8119(20)30910-1/sbref0059
http://refhub.elsevier.com/S1053-8119(20)30910-1/sbref0059
http://refhub.elsevier.com/S1053-8119(20)30910-1/sbref0059
http://refhub.elsevier.com/S1053-8119(20)30910-1/sbref0059
http://refhub.elsevier.com/S1053-8119(20)30910-1/sbref0059
http://refhub.elsevier.com/S1053-8119(20)30910-1/sbref0059
http://refhub.elsevier.com/S1053-8119(20)30910-1/sbref0060
http://refhub.elsevier.com/S1053-8119(20)30910-1/sbref0060
http://refhub.elsevier.com/S1053-8119(20)30910-1/sbref0060
http://refhub.elsevier.com/S1053-8119(20)30910-1/sbref0060
http://refhub.elsevier.com/S1053-8119(20)30910-1/sbref0060
http://refhub.elsevier.com/S1053-8119(20)30910-1/sbref0060
http://refhub.elsevier.com/S1053-8119(20)30910-1/sbref0060
http://refhub.elsevier.com/S1053-8119(20)30910-1/sbref0060
http://refhub.elsevier.com/S1053-8119(20)30910-1/sbref0061
http://refhub.elsevier.com/S1053-8119(20)30910-1/sbref0061
http://refhub.elsevier.com/S1053-8119(20)30910-1/sbref0061
http://refhub.elsevier.com/S1053-8119(20)30910-1/sbref0061
http://refhub.elsevier.com/S1053-8119(20)30910-1/sbref0061
http://refhub.elsevier.com/S1053-8119(20)30910-1/sbref0061
http://refhub.elsevier.com/S1053-8119(20)30910-1/sbref0061
http://refhub.elsevier.com/S1053-8119(20)30910-1/sbref0061
http://refhub.elsevier.com/S1053-8119(20)30910-1/sbref0062
http://refhub.elsevier.com/S1053-8119(20)30910-1/sbref0062
http://refhub.elsevier.com/S1053-8119(20)30910-1/sbref0062
http://refhub.elsevier.com/S1053-8119(20)30910-1/sbref0062
http://refhub.elsevier.com/S1053-8119(20)30910-1/sbref0062
http://refhub.elsevier.com/S1053-8119(20)30910-1/sbref0062
http://refhub.elsevier.com/S1053-8119(20)30910-1/sbref0062
http://refhub.elsevier.com/S1053-8119(20)30910-1/sbref0063
http://refhub.elsevier.com/S1053-8119(20)30910-1/sbref0063
http://refhub.elsevier.com/S1053-8119(20)30910-1/sbref0063
http://refhub.elsevier.com/S1053-8119(20)30910-1/sbref0063
http://refhub.elsevier.com/S1053-8119(20)30910-1/sbref0063
http://refhub.elsevier.com/S1053-8119(20)30910-1/sbref0064
http://refhub.elsevier.com/S1053-8119(20)30910-1/sbref0064
http://refhub.elsevier.com/S1053-8119(20)30910-1/sbref0064
http://refhub.elsevier.com/S1053-8119(20)30910-1/sbref0064
http://refhub.elsevier.com/S1053-8119(20)30910-1/sbref0064
http://refhub.elsevier.com/S1053-8119(20)30910-1/sbref0064
http://refhub.elsevier.com/S1053-8119(20)30910-1/sbref0064
http://refhub.elsevier.com/S1053-8119(20)30910-1/sbref0064
http://refhub.elsevier.com/S1053-8119(20)30910-1/sbref0065
http://refhub.elsevier.com/S1053-8119(20)30910-1/sbref0065
http://refhub.elsevier.com/S1053-8119(20)30910-1/sbref0065
http://refhub.elsevier.com/S1053-8119(20)30910-1/sbref0065
http://refhub.elsevier.com/S1053-8119(20)30910-1/sbref0065
http://refhub.elsevier.com/S1053-8119(20)30910-1/sbref0065
http://refhub.elsevier.com/S1053-8119(20)30910-1/sbref0065
http://refhub.elsevier.com/S1053-8119(20)30910-1/sbref0065
https://doi.org/10.5281/zenodo.996889
http://refhub.elsevier.com/S1053-8119(20)30910-1/sbref0067
http://refhub.elsevier.com/S1053-8119(20)30910-1/sbref0067
http://refhub.elsevier.com/S1053-8119(20)30910-1/sbref0067
http://refhub.elsevier.com/S1053-8119(20)30910-1/sbref0067
http://refhub.elsevier.com/S1053-8119(20)30910-1/sbref0067
http://refhub.elsevier.com/S1053-8119(20)30910-1/sbref0067
http://refhub.elsevier.com/S1053-8119(20)30910-1/sbref0067
http://refhub.elsevier.com/S1053-8119(20)30910-1/sbref0068
http://refhub.elsevier.com/S1053-8119(20)30910-1/sbref0068
http://refhub.elsevier.com/S1053-8119(20)30910-1/sbref0068
http://refhub.elsevier.com/S1053-8119(20)30910-1/sbref0068
http://refhub.elsevier.com/S1053-8119(20)30910-1/sbref0068
http://refhub.elsevier.com/S1053-8119(20)30910-1/sbref0068
http://refhub.elsevier.com/S1053-8119(20)30910-1/sbref0068
http://refhub.elsevier.com/S1053-8119(20)30910-1/sbref0068
http://refhub.elsevier.com/S1053-8119(20)30910-1/sbref0068
http://refhub.elsevier.com/S1053-8119(20)30910-1/sbref0068
http://refhub.elsevier.com/S1053-8119(20)30910-1/sbref0068
http://refhub.elsevier.com/S1053-8119(20)30910-1/sbref0069
http://refhub.elsevier.com/S1053-8119(20)30910-1/sbref0069
http://refhub.elsevier.com/S1053-8119(20)30910-1/sbref0069
http://refhub.elsevier.com/S1053-8119(20)30910-1/sbref0069
http://refhub.elsevier.com/S1053-8119(20)30910-1/sbref0069
http://refhub.elsevier.com/S1053-8119(20)30910-1/sbref0070
http://refhub.elsevier.com/S1053-8119(20)30910-1/sbref0070
http://refhub.elsevier.com/S1053-8119(20)30910-1/sbref0070
http://refhub.elsevier.com/S1053-8119(20)30910-1/sbref0070
http://refhub.elsevier.com/S1053-8119(20)30910-1/sbref0070
http://refhub.elsevier.com/S1053-8119(20)30910-1/sbref0070

	Machine learning based white matter models with permeability: An experimental study in cuprizone treated in-vivo mouse model of axonal demyelination
	1 Introduction
	2 Methods
	2.1 Mouse data
	2.1.1 In-vivo data acquisition
	2.1.2 Diffusion imaging protocol
	2.1.3 Histology samples
	2.1.4 Post-mortem analysis

	2.2 Synthetic data
	2.2.1 Synthetic signals database
	2.2.2 Synthetic features database

	2.3 Machine learning
	2.3.1 Random forest (RF)
	2.3.2 Training and testing

	2.4 Experiments
	2.4.1 Sensitivity analysis
	2.4.2 Shell selection
	2.4.3 Synthetic experiments
	2.4.4 In-vivo imaging experiments


	3 Results
	3.1 Sensitivity analysis
	3.2 Shell selection
	3.3 Synthetic experiments
	3.4 In-vivo imaging experiments
	3.5 Correlation with post-mortem analysis

	Discussion
	4.1 Simulations
	4.2 In-vivo mouse data and correlation with post-mortem analysis
	4.3 Limitations
	4.4 Implications for clinical applications

	CRediT authorship contribution statement
	Acknowledgements
	Data and Code availability statement
	Appendix
	A.1 The table below presents information about the 15 DT and SH features extracted from each DW-MRI signal to construct the rotationally invariant database
	A.2 Camino and scikit-learn commands used to simulate the synthetic signals database to train and apply the RF machine learning algorithm

	References


