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Highlights
Direct connections between the actin
cytoskeleton and the nucleus govern
nuclear positioning, nuclear movement
during cell polarization andmigration, nu-
clear movement before and after mitosis
and meiosis, nuclear envelope break-
down, mechanotransduction, and gene
expression.

The nucleus directly connects to actin
through transmembrane proteins (LINC
complex proteins) complemented by a
Actin plays roles in many important cellular processes, including cell motility,
organelle movement, and cell signaling. The discovery of transmembrane
actin-binding proteins at the outer nuclear membrane (ONM) raises the exciting
possibility that actin can play a role in direct force transmission to the nucleus
and the genome at its interior. Actin-dependent nucleus displacement was first
described a decade ago. We are now gaining a more detailed understanding of
its mechanisms, as well as new roles for actin during mitosis and meiosis, for
gene expression, and in the cell’s response to mechanical stimuli. Here we re-
view these recent developments, the actin-binding proteins involved, the tissue
specificity of these mechanisms, and methods developed to reconstitute and
study this interaction in vitro.
large family of actin-associated proteins
that interact with proteins of the nuclear
envelope.

Actin can act indirectly on the nucleus to
displace it, to protect it from external
forces, and to dampen mechanical stim-
uli. However, the compression exerted
by actin can cause nuclear rupture.

Interactions between the nucleus and
actin are studied in vitro using isolated
nuclei and reconstituted actin networks.
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Preamble: The Nucleus and the Surrounding Actin
The nucleus was once considered a simple, static reservoir for the genetic material of the cell. We
now know that it plays a wide range of roles, from controlling mechanical sensing to regulating
gene expression. Similarly, actin structures around the nuclear envelope (NE) (see Glossary)
were first described decades ago, but their role was initially unclear. The discovery of the
transmembrane linker of nucleoskeleton to cytoskeleton (LINC) complexes in the early
21st century established that nuclear lamins and chromatin inside the nucleus mechanically
connect to the cytoskeleton outside the nucleus [1]. The NE and the actin cytoskeleton
(Boxes 1 and 2) are now generating renewed interest as active partners in gene expression. NE
proteins are implicated in a wide variety of diseases and their connections to actin may thus play
important roles in many physiological processes, likely in a tissue-dependent manner (Figure 1).

Here, we discuss the recently described roles that NE-associated actin plays, including displacement
of the nucleus within the cell, NE breakdown (NEBD), gene expression, and cellular responses to
stress. An entire parallel field has also risen from the (long controversial) idea that actin can assemble
and perform functions inside the nucleus, although we do not discuss nuclear actin in this review.

Actin Functions around the Nucleus
Actin for Positioning Nuclei: Anchoring and Moving Nuclei into Position
Actin mediates nuclear movement to a particular functional position within the cell in many tissues
and is responsible for maintaining this position. One striking example is the interkinetic movement
of nuclei in pseudostratified epithelia, first described in 1935 [2], in which nuclei are displaced from
the basal to the apical surface of the cell to undergomitosis. The roles of actin andmicrotubules in
mediating nuclear movement differ significantly depending on the tissue, most likely due to the
geometry and the thickness of the epithelial layer, which determine the mechanical constraints
and the distance the nucleus must move [3]. Microtubules are required for nuclear movement in
the highly elongated cells of the rodent neocortex, whereas in the zebrafish retina and hindbrain,
nuclear displacement toward the apical surface depends on actomyosin contraction at the nucleus
rear [4,5]. In mouse models, removal of the Klarsicht, nuclear anchorage protein 1 (ANC-1),
synaptic nuclear envelope (Syne) homology (KASH) domain of Nesprin-2 or removal of
both of the Sad1p, UNC-84 (SUN)-containing proteins SUN1 and SUN2 impairs interkinetic
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Glossary
Actin-related protein 2/3
complex (Arp2/3): a seven-subunit
protein complex that serves as
nucleation sites for new actin
filaments in eukaryotic cells; binds to
existing filaments and initiates the
growth of a new filament.
Calcium-mediated actin reset
(CaAR): a process in which a calcium
burst induces accumulation of actin
around the nucleus.
Cell division cycle 42 (Cdc42): small
GTPase regulating multiple cellular
functions by affecting cytoskeletal
organization.
Endoplasmic reticulum (ER):
organelle continuous with the ONM;
involved in protein maturation and
transport.
Formin homology 2 domain-
containing 1 (FHOD1): involved in the
assembly of actin structures in a
Rho-dependent way.
Inner nuclear membrane (INM): the
lipid bilayer facing the nucleoplasm.
Inverted formin 2 (INF2): accelerates
the polymerization and depolymerization
of actin.
IQ motif-containing GTPase
activating protein 1 (IQGAP1):
involved in the dynamics and assembly
of the actin cytoskeleton.
Klarsicht, ANC-1, Syne homology
(KASH): a conserved domain of fewer
than 30 amino acids known to interact
with a SUN domain in the perinuclear
space between the two lipid bilayers of
the NE.
Lamin-associated polypeptide 1
(LAP1): localized in the INM; binds both
lamin A and lamin B.
Leucine repeat adaptor protein 35
(LRAP35): interacts with MRCK or
Dock8 to promote cell migration.
Linker of nucleoskeleton and
cytoskeleton (LINC): protein complex
comprising Nesprin and SUN proteins;
spans the entire NE; implicated in
mechanotransduction.
Myocardin-related transcription
factor A (MRTF-A): predominantly
nuclear, associates with SRF to control
gene expression regulating the
cytoskeleton.
Myotonic dystrophy kinase-related
Cdc42-binding kinase (MRCK):
involved in actin organization, actin
retrograde flow, and actomyosin
contraction, determinant for cell
migration and cell protrusion.
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Figure 1. The Interaction between
Actin and the Nuclear Envelope
(NE) Has Several Implications
Decisive for Cell Biology. The NE is a
physical barrier between the cytoplasm
and the genetic information. Multiple
studies in different systems have shown
that actin in the cytoplasm interacts with
the NE in several ways (wavy arrows)
and can thus influence (curved arrows)
gene expression, NE stiffness, cell
division, and nuclear movement.
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movement during retinal development [6], but in a mouse model in which the actin-binding domain
of Nesprin-2 has been deleted, no clear nuclear positioning defects could be observed [7]. This
actin-dependent mechanism is thus likely to rely on an as-yet unidentified connection between
SUN proteins and actin. In the developing zebrafish hindbrain, actomyosin contractility at the
rear of the nucleus is driven by the Rho–ROCK pathway, while formin-like-3 nucleates actin behind
the nucleus in the retina [8,9]. Coordinated actin polymerization creates a pushing force to move
the nucleus toward the apical surface of pseudostratified epithelial in both of these mechanisms.
Similarly, Diaphanous, the sole Dia-class formin in Drosophila, and Rok, the activator of myosin
II, move the nucleus to the apical face of the developing wing disc before mitosis [10]. Strikingly,
dependence on this formin grows with increasing tissue density, indicating a mechanism that is
turned on in a crowded environment, when mechanical constraints on the nucleus increase. All
of these studies suggest that, during nuclear movement in pseudostratified epithelial cells, actin
acts at the rear of the nucleus to push it forward through actomyosin contractility with formin-
dependent mechanisms (Figure 3A).
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Nuclear anchorage protein 1
(ANC-1): Nesprin homolog in
Caenorhabditis elegans.
Nuclear envelope (NE): a double lipid
bilayer evenly punctured by nuclear
pores.
Nuclear envelope breakdown
(NEBD): occurs at the beginning of the
M phase of the cell cycle, to allow
microtubules to interact with the
chromosomes.
Nuclear localization sequence
(NLS): targets proteins toward the
nucleus interior.
Nuclear pore complex (NPC): large
protein complex spanning the NE;
controls the passage of molecules
between the cytoplasm and
nucleoplasm.
Outer nuclearmembrane (ONM): the
lipid bilayer facing the cytoplasm.
Sad1p, UNC-84 (SUN): proteins
embedded in the INM connecting the
lamin meshwork to Nesprins; part of the
LINC complex.
Serum response factor (SRF):
transcription factor that binds to serum
response elements upstream of the
transcription initiation of several genes;
when associated with MRTF, controls
the expression of cytoskeleton-
regulating genes.
Sif and Tiam1-like exchange factor
(STEF): a GEF that modulates Rac1
activity.
Synaptic nuclear envelope (Syne):
gene encoding KASH proteins; initially
discovered in muscle; five different
genes have been discovered in
mammals and homologs were found in
other species.
Transmembrane actin-associated
nuclear (TAN) lines: structures
involving Nesprin-2G and actin at the
NE.
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Figure 2. Differences between Transmembrane Actin-Associated Nuclear (TAN) Lines and Perinuclear Actin
Caps. (A) TAN lines are associated with actin transverse arcs, parallel with the edge of the cell front, and are not
connected to focal adhesions. Actin caps are longitudinal actin fibers initiated at focal adhesions. Both require the linker of
the nucleoskeleton and the cytoskeleton (LINC) complex comprising Nesprins (blue) and Sad1p, UNC-84 (SUN) proteins
(red) in (B,C). (B) Several partners of the TAN lines have been identified on both sides of the nuclear envelope (NE), such
as formin homology 2 domain-containing 1 (FHOD1) (orange), fascin (yellow), TorsinA (light green), lamin-associated
polypeptide 1 (LAP1) (purple), and Samp1 (dark green). (C) Various partners are involved in actin cap formation and
maintenance, such as myosin II (fluo-green), α-actinin (light green), and Refilin (dark green) that interacts with filamin A (red)
in a Rac1 (blue)/phospho-Rac1 (dark yellow) -dependent manner driven by Sif and Tiam1-like exchange factor (STEF)
(light yellow). Both actin caps and TAN lines are connected to lamins (pink) and then DNA (blue-white-red ribbon).
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Muscle cells, which are created by fusing many myoblasts together, contain several evenly
spaced nuclei. This spacing is controlled by microtubule motors and is followed by an actin-
dependent displacement of nuclei to the periphery of the cell. This outward movement is charac-
terized by squeezing of the nucleus; it is excluded from the cell’s center by the progressive
desmin-dependent crosslinking of myofibrils, without an active connection identified between
the cytoskeleton and the nucleus [11]. In the hypodermal syncytium of Caenorhabditis elegans,
the KASH protein ANC-1 anchors nuclei in place, and the mechanism was long assumed to be
actin dependent [12]. However, recent results from the same authors contradict this assumption,
Trends in Cell Biology, March 2021, Vol. 31, No. 3 213
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Box 1. Actin

Actin is a highly conserved, abundant. 42-kDa globular protein. It is essential in eukaryotic cells, in which it can be found in its monomeric form (G-actin) or its polymerized
form (F-actin). In its monomeric form, actin plays roles in gene regulation; for example, through the binding and sequestration of MRTF proteins in the cytoplasm to prevent
the activation of SRF (serum response factor) genes in the nucleus. Actin monomers are polarized and assemble from both the + (or barbed) end and the − (or pointed)
end; however, addition of monomers to the barbed end is more rapid. The rate-limiting step in actin filament formation is the creation of stable dimers and trimers. Under
physiological conditions, actin-sequestering proteins (e.g., profilin) prevent the spontaneous dimerization of actin. Filament formation is thus initiated by nucleation proteins.
Three major types of actin nucleators have been identified. Formins and tandem monomer-binding nucleators (e.g., spire, cordon blue) nucleate linear actin filaments,
whereas the Arp2/3 complex nucleates actin branches from pre-existing filaments [100].

The length and organization of actin filaments is further regulated through a large family of actin-binding proteins.We have listed some of the relevant proteins around the
nucleus in Table I. Capping proteins stabilize filament length. Crosslinking proteins (e.g. α-actinin, fascin) stabilize filaments into arrays of parallel or mesh-like structures.
Actin filament turnover is regulated by proteins that depolymerize the actin network. The actin cytoskeleton is thus a highly dynamic structure that is constantly evolving.

Actin assemblies form a range of diverse structures in the cell [72]: the lamellipodium, a broad, flat cell protrusion at the leading edge of migrating cells, is formed from a
sheet of Arp2/3-nucleated branched actin, while filopodia – thin, dynamic cell extensions – are formed from parallel actin filaments nucleated by formins and bundled
together by actin crosslinkers such as α-actinin and fascin. The cell cortex, a thin layer of actin meshwork underlying the plasmamembrane, comprises crosslinked actin
filaments, the spacing of which is determined by the specific crosslinkers present. Antiparallel actin bundles form the stress fibers, which form contractile structures
actuated by non-muscle myosin II motors. All of these structures serve as scaffolds and active participants in the functioning of the cell.

Table I. Actin-Binding Proteins around the NE

Protein Reported localization outside the nucleus Associated protein Function Refs

Transmembrane proteins

Nesprin-1 ONM Emerin Cytoskeleton interaction [101]

Nesprin-2 ONM FHOD1, fascin, Emerin Cytoskeleton interaction [20]

Emerin ONM NMII Defective heterochromatin anchoring to the nuclear
lamina

[60]

ONM/ER Nesprin-1 Nuclear front–rear polarity [102]

ONM Actin Binds and stabilizes pointed end of actin filaments,
increased polymerization

[103]

Cytoplasmic proteins

Amphiphysin ONM Nesprin-2, CLIP170 Required for nucleus positioning in Caenorhabditis
elegans; binds Nesprin-2 at SR48-49

[104]

Fascin TAN lines, dorsal side Nesprin-2 (SR51-53) Bridges Nesprin-2 and actin [21]

FHOD1 TAN lines, dorsal side Nesprin-2 (SR11-13) TAN line assembly in 2D migration
Behaves as a capping protein that inhibits
polymerization

[20,105]

Filamin A Actin cap RefilinB Actin crosslinker
Organizes actin cap in fibroblasts

[36]

Nurse cells Villin, fascin, MSP-300 (Cheerio in Drosophila)
Crosslinks perinuclear actin to actin cables

[14]

INF2 ER, ONM Calcium-dependent perinuclear actin polymerization [57,58]

IQGAP1 Perinuclear ring Not yet known [106]

NE, NPC MT IQGAP1 bundles and caps actin filaments [80]

mDia2 NPC, nuclear localization sequence (NLS)
targets it to the cytoplasmic side of the
nucleus

Importin B No clear function [92]

myo18A Subnuclear MRCK, LRAP35a Subnuclear actomyosin network assembly [40]

MyoIIb Stress fibers around nucleus Probably Nesprin-2 Squeezing of the nucleus during 3D migration; drives
directional actin flow in polarizing fibroblasts

[53]

Shot Nuclear periphery of Drosophila larval wall
cells

MSP-300 and EB-1 Actin–microtubule crosslinker [107]

STEF ONM Rac1 Phosphorylates RAC1 to recruit Refilin at bundling actin
filaments

[38]
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Box 2. The NE

One common feature among eukaryotes is the presence of a double lipid bilayer encapsulating the genome. Continuous
with the ER, the NE is evenly punctured with large protein assemblies known as NPCs, allowing the nucleocytoplasmic
shuttling of proteins. Close to the inner surface of the NE, a meshwork of intermediate filaments, the lamins, bind to
chromatin and NE proteins and provide a physical scaffold that is partially responsible for nuclear shape and stiffness.

While its role was initially thought to be solely as a separation between DNA and the cytoplasm, several embedded proteins
confer additional roles on the NE. A complex of proteins bridges the NE: the LINC complex, comprising two transmembrane
proteins, SUN proteins at the INM and KASH proteins at the ONM. SUN proteins interact with lamins and chromatin-binding
proteins inside the nucleus and connect to KASHproteins in the luminal space. These in turn bind cytoskeletal filaments. This
complex is decisive for the transfer of mechanical cues from the exterior of the cell to the nucleus interior. The SUN and SYNE
(encoding KASH proteins) genes are able to generate different splicing variants in a cell-type-dependent manner, thus fine-
tuning their ability to transmit forces to the nuclear interior. The KASH proteins Nesprin-1 and -2, can bind actin filaments
through calponin homology domains or through other intermediary proteins. Nesprins can indirectly bind to microtubules,
while plectin links Nesprin-3 to intermediate filaments. Nesprins contain multiple spectrin repeats that may act as springs
to buffer mechanical forces. This diversity in Nesprin isoforms contributes to the differences observed in the response to
mechanical stress by cells and tissues.

Trends in Cell Biology
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as abolishing the actin-binding domain of ANC-1 is not necessary for nucleus anchorage [13]. It
now remains to be determined how these giant actin-binding KASH proteins anchor the nucleus
and the rest of the cellular organelles in place. In Drosophila nurse cells, nuclei are maintained in
place by actin. This prevents the nuclei from clogging ring canals when nurse cells contract and
expel their nutrient-rich cytoplasm to feed the growing oocyte. Actin filaments emerge from the
ring canals and crosslink perinuclear actin via Cheerio, the Drosophila ortholog of filamin A that
appears at the NE before dumping [14]. This mechanism is independent of LINC complex
proteins. Mesenchymal stem cells and epithelial cells position their nucleus in concave areas
below the cell, releasing strain on the nucleus in a mechanism that is dependent on cell division
cycle 42 (Cdc42), the actin-related protein 2/3 complex (Arp2/3), A-type lamins, and LINC
complex proteins [15].

Cell polarization prior to migration is characterized by the positioning of the nucleus behind the
centrosome respective to the direction of migration. In a tissue-culture cell-based assay in
which actin stress fibers are abolished and allowed to form again, actomyosin contraction at
the cell front is transmitted toward the nucleus through actin retrograde flow [16,17]. Steered
by a Cdc42/myotonic dystrophy kinase-related Cdc42-binding kinase (MRCK) pathway,
nuclear movement is then driven by transverse actin cables bound to Nesprin-2, forming
transmembrane actin-associated nuclear (TAN) lines, which undergo retrograde flow.
These rearward-traveling actin fibers drag the nucleus toward the back of the cell, behind the
centrosome [18], in concert with TorsinA, Emerin, Samp1, SUNs, lamins, lamin-associated
polypeptide 1 (LAP1), formin homology 2 domain-containing 1 (FHOD1), fascin, and
nuclear pore complexes (NPCs) (Figure 2) [19–24]. TorsinA, in the perinuclear space, interacts
with LAP1, which spans the inner nuclear membrane (INM), to assemble TAN lines. Emerin, a
NE-associated protein known to be present on both nuclear membranes, is involved in the direc-
tionality of the retrograde flow [24]. Samp1, a component of TAN lines, is crucial for rearward nu-
clear movement [19]. FHOD1 and fascin are localized at the cytoplasmic side of the NE and
crosslink Nesprin-2 to actin [20,21]. This TAN line assay, coupled with centrifugation to displace
the nucleus away from its natural position in the cell, was used to demonstrate that nucleus
movement toward the front of the cell is SUN1 andmicrotubule dependent, while rearwardmove-
ment is actin and SUN2 dependent [25]. It is unclear how cells differentiate between these two
mechanisms, as both use Nesprin-2G as the central element linking SUN1 to microtubules and
SUN2 to actin, respectively. However, this mechanism has potential implications in a disease
context: the mutant form of lamin A that causes progeria, an extremely rare disorder
Trends in Cell Biology, March 2021, Vol. 31, No. 3 215
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Figure 3. Nuclear Envelope–Actin Interactions Have Been Observed in Several Important Cellular Processes. (A) Actin-dependent nuclear migration in
neurons is decisive during development for cell division and cell migration. The interkinetic nuclear movement preceding cell division is driven by Rho and formin-2
(FMN2) and actin polymerization at the nucleus rear. For neuronal migration, saltatory nuclear movement is driven by myosin IIB (MYOIIB) and actin polymerization at
the nucleus rear. (B) During cell polarization, using actin retrograde flow, transmembrane actin-associated nuclear lines move the nucleus toward the back of the cell.
(C) Actin polymerization is required to displace the nucleus through a constriction in fibroblasts and dendritic cells. In fibroblasts, nuclei are pulled through constrictions
as Nesprin-2 accumulates at the front of the nucleus (orange). Actin is organized in bundles around the nucleus parallel to the direction of migration. In dendritic cells,
actin-related protein 2/3 complex (Arp2/3) along the nucleus (purple) creates an actin sleeve to squeeze the nucleus through the constriction. (D) On mechanical stress,
calcium (yellow) release into the cytoplasm [from the cells’ exterior or endoplasmic reticulum (ER) stores] induces actin polymerization around the nucleus in an inverted
formin-2- (INF2) and Emerin-dependent manner. (E) Immediately after nuclear envelope breakdown (NEBD), actin surrounds the chromosomes and contracts,
preventing them from dispersing and thus reducing mitotic errors. (F) Actomyosin contraction induces nuclear deformation and chromatin organization changes in the
nucleus.
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characterized by premature aging symptoms, induces accumulation of SUN1 at the NE, reducing
the potential for actin-based nuclear movements [26] (Figure 3B).

Actin around the Nucleus during Cell Migration
In vivo, nuclear movement is particularly important during the formation of the brain, when neuro-
nal progenitors migrate across long distances. This movement is saltatory due to decoupling of
the growth cone and the nucleus: extension of the leading process occurs through actin polymer-
ization in the growth cone followed by nuclear movement, often initiated bymyosin IIB-dependent
actomyosin contraction at the nucleus rear [27]. Although lack of Nesprin-1 and -2 results in
morphological defects in the mouse brain, it remains to be established whether this intermittent
nuclear movement is dependent on a direct connection between actin and the NE [28]. It is,
however, likely to involve drebrin, a microtubule–actin crosslinking protein [29].
216 Trends in Cell Biology, March 2021, Vol. 31, No. 3
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In fibroblasts, actin filaments above the nucleus, termed the perinuclear actin cap, orient the nu-
cleus in the direction of migration [30,31]. These dynamic structures align with the long axis of the
cell, contain phosphorylated myosin II and α-actinin-1, and terminate at vinculin-containing focal
adhesions [30]. Unlike ventral actin fibers, the actin cap is connected to the nucleus through
Nesprin-2, is involved in nuclear shape, and controls mechanotransduction [30,32]. Actin fibers
of the perinuclear actin cap connect to 30% of focal adhesions and can thus exert higher tension
than other actin structures, potentially increasing their responsiveness to mechanical stress
[33,34]. In a similar manner, actin connects cell adhesion complexes with the NE of human breast
epithelial cells in 3D culture [35].

Many proteins participate in linking the nucleus to actin and help to organize the actin cap. Cells
that do not assemble perinuclear actin caps, such as cancer cells or cells lacking α-actinin-1, do
not orient their nucleus in the direction of migration even if dorsal and transverse actin fibers are
intact. At the nuclear periphery, the actin branching protein filamin A is converted into an actin
bundler by RefilinB to organize the actin structures above the nucleus [36] and is also involved
in mechanotransduction [37]. Interestingly, depletion of the Rac1-selective guanine exchange
factor (GEF) Sif and Tiam1-like exchange factor (STEF), localized at the NE and colocalizing
with Nesprin-2, leads to a decrease of perinuclear actin caps [38]. Lamin A/C is also required for
the formation of the actin cap, suggesting feedback from the nuclear interior that dictates the ar-
chitecture of the actin network [39]. The actin structures that exist below the nucleus in HeLa and
Cos7 cells are not organized in the same direction as the actin cap and colocalize with MRCK and
leucine repeat adaptor protein 35 (LRAP35) [40]. The role of these subnuclear structures is
not clear yet, but they may be involved in contact guidance, characterized by cellular adaptation
and cytoskeletal organization along topographical cues [41].

TAN lines and the perinuclear cap share many similarities (Figure 2), although TAN lines have not
yet been shown to connect to focal adhesions nor has their role in mechanotransduction been
demonstrated [18]. Recently, Hoffman et al. [23] described TAN lines formation upon cyclic
stretching of cells. However, in a previous report Kim et al., using the same cell-based assay,
showed that the actin lines formed upon stretch are perinuclear actin caps instead of TAN
lines, as they are connected to focal adhesions [32]. Several partners of TAN lines have been as-
sociated with multiple diseases where mechanical load is known to occur, such as laminopathies
[42–44], Emery–Dreifuss muscular dystrophy [45–47], and cancer [48,49], thus indicating a po-
tential role of this structure in transmitting mechanical cues to the nucleus interior. Further studies
are required to determine whether TAN lines and the perinuclear cap could be specialized struc-
tures emanating from the same mechanism and whether they share partner proteins. Further-
more, it remains unclear whether these structures are found in vivo.

Actin around the Mechanically Deformed Nucleus
The deformability of the cell nucleus is a limiting factor for cell migration through narrow constrictions.
In some cell types, actin-based mechanisms facilitate nuclear deformation. Dendritic cells squeeze
their nuclei during entry into a narrow channel using an Arp2/3-nucleated actin sleeve to facilitate in-
gression [50]. This LINC complex-independent mechanism relies on the size of the object to be
pushed through the constriction, as demonstrated using beads of different sizes injected in the cy-
toplasm: beads larger than the constriction are surrounded by actin when the cell attempts to trans-
fer them through the constriction, but smaller beads are not. Actomyosin contractility, observed at
the back of the cell indicating that the nuclei are pushed through the constriction from the rear, is
not necessary for the formation of this actin sleeve. In a contrasting mechanism, murine fibroblasts
deform their nucleus through constrictions via actomyosin contractility at the front of the cell [51],
reminiscent of the nuclear movement observed when actomyosin contraction is induced at the
Trends in Cell Biology, March 2021, Vol. 31, No. 3 217
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cell front on 2D substrates [52]. Fibroblasts lacking Nesprin-2G and fascin have defects in nu-
clear translocation through constrictions [21,53]. In these cells, actin filaments run parallel to
the axis of migration, myosin IIB accumulates along these filaments [53], and Nesprin-2G accu-
mulates at the front of the nucleus in an actin-dependent manner, implying that Nesprin-2G
participates in pulling the nucleus through the constriction [51]. Primary human fibroblasts un-
dergoing lobopodial migration through the extracellular matrix display a similar mechanism.
(Lobopodia are blunt, cylindrical protrusions forming when fibroblasts migrate in 3D matrices
[54].) In these cells, the confined nucleus is pulled forward via actin, vimentin, Nesprin-3, and
myosin II at the cell front, resulting in increased pressure at the front of the cell and the formation
of lobopodia in a piston-like mechanism [55]. It remains to be determined whether these similar
mechanisms are related (Figure 3C).

Actin around the Nucleus in Response to Mechanical Stimuli
Actin structures around the nucleus can protect it from mechanical damage. The nuclei of
stretched cells devoid of lamins A/C (that do not assemble a perinuclear actin cap) are more
deformed than their wild-type counterparts, suggesting that the actin cap protects the nucleus
from mechanical deformation [32]. Conversely, mechanical confinement exerted by actin on the
nucleus is the force behind spontaneous NE rupture on 2D substrates [56].

Application of force to the cell, by direct probing, cell stretching, or shear, triggers an accumula-
tion of actin in a ring around the nucleus that is dependent on calcium and inverted formin 2
(INF2) [57,58]. This rapid response (under 2 min), termed ‘calcium-mediated actin reset’
(CaAR), is observed in epithelial, mesenchymal, endothelial, and immune cells. It can be triggered
by the import of extracellular calcium into the cytoplasm or the release of calcium from the
endoplasmic reticulum (ER) in a Piezo-1-dependent mechanism [58,59]. In endothelial cells,
actin accumulation around the nucleus in response to stretch is Emerin dependent and triggers
the displacement of Emerin from the INM to theONM [60]. This rapid, force-dependent response
induces nuclear softening by reducing heterochromatin levels, thereby protecting the genome
[59]. In mesenchymal stem cells, high-frequency cell stretching (above 5 Hz) results in decoupling
of the nucleus from the cytoskeleton in a SUN2-dependent manner [61]. This is consistent with
nucleus rounding observed in response to high-amplitude stretch in endothelial cells [59] and
calcium/Piezo-1-dependent nuclear shrinkage in sheared epithelial cells [62]. Sustained force
application leads to tissue-level reorganization into a cobblestone pattern [59], but changing
the direction of the force exertion rapidly triggers a new actin ring around the nucleus. It is not
yet clear how this calcium-mediated mechanism triggers changes inside the nucleus, although
the pivotal role of the formin INF2 is a strong indicator that actin polymerization is involved
(Figure 3D).

Actin around the Nucleus during Mitosis and Meiosis
During meiosis, actin plays roles immediately before and during NEBD and moves the nucleus
and the spindle in mouse oocytes. Actin also forms filaments at centrosomes and in the spindle
during mitosis and contributes to NE reassembly [63].

While microtubules are responsible for tearing down the NE in many systems [64], they are
dispensable in some systems, where actin may play the starring role instead. Transient
actin shells appear immediately before NEBD in echinoderms, cnidaria, and polychaetes
[65]. In starfish oocytes, actin spikes, nucleated by Arp2/3 at the nuclear lamina, tear the
INM between NPCs [65]. This mechanismmay allow NPCs to remain intact in nucleoplasmic bod-
ies throughout meiosis, thereby reducing the energy necessary to reform these NPCs when the NE
is reassembled.
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In mouse oocytes, nuclear movements during meiosis to the center of the cell and back to the
cortex are actin dependent. Before meiosis I, actin polymerization creates a pressure gradient
that nonspecifically centers large objects, thereby moving the largest organelle, the nucleus, to
the cell center [66–69]. After this nucleus-centering step, the spindle is formed and it is
then moved back to the cortex. Both of these movements depend on actin and its nucleator
formin-2 [66,70].

At the start of mitosis, a contractile actin network reduces the volume taken up by chromosomes
to ensure efficient chromosome capture by spindle microtubules. This serves to reduce the
dispersion of individual chromosomes after NEBD. Removing LINC complexes from the NE or re-
ducing myosin II contractility increases chromosome congression time and chromosome
mislocalization, resulting in inefficient mitosis [71]. This actin network was not found in HeLa
cells, suggesting that loss of this nonessential mechanism could be a source of mitotic errors in
malignant cells (Figure 3E).

Actin interacts with centrosomes and the spindle in vitro and during mitosis [72–74]. Inhibition of
Arp2/3-dependent branched actin nucleation reduces this spindle-associated pool of actin and
results in disorganized chromosome congression and mitotic defects [75]. Similarly, centrosome
separation and positioning around the cell centroid are orchestrated by transient perinuclear actin
and the LINC complex [76]. Actin filaments nucleated by formin-2 can even be found in the spin-
dle itself during mitosis, working with microtubules to ensure faithful chromosome segregation
[77]. Actomyosin plays indirect roles during cell mitosis by exerting forces that flatten the cell. In
HeLa cells, compressing the cells is sufficient to rescue mitosis when myosin II contractility is
inhibited [78]. After mitosis, actin contributes to the reassembly of the NE; transient perinuclear
F-actin rings have been reported in reforming nuclei (late telophase) in murine fibroblast and
epidermal cell cultures, as well as insect epidermis [79]. The actin-regulator IQmotif-containing
GTPase activating protein 1 (IQGAP1) coordinates NPC reassembly after mitosis [80].

Taken together, these results indicate that actin plays important roles during mitosis and meiosis,
alongside microtubules. Actin plays important roles in setting up the nucleus for mitosis, reducing
chromosomal segregation errors, and NE reassembly after mitosis. Whether these two cytoskeletal
components work in parallel or together remains to be investigated.

Actin around the Nucleus and Gene Expression
Actomyosin contraction around the nucleus can affect the organization of chromatin. One striking
example is the inversion of genomic architecture in rod photoreceptor cells caused by
actomyosin-mediated nuclear deformation [81,82]. Actin contraction around the nucleus reduces
nuclear volume and chromatin accessibility, resulting in poor reprogramming of fibroblasts to plurip-
otent stem cells [83]. It can also reduce telomere and heterochromatin dynamics [81] in a mecha-
nism that is dependent on SUN2 [83], Nesprin-2G and lamin A/C [84]. Similarly, pulling on the
LINC complex results in nucleus stiffening and altered gene expression [85,86]. This modulation of
gene expression is well described in cells harboring high actomyosin contractility, such as cardiac
and skeletal muscle cells [87]. In agreement with this, mutations in proteins associated with the
LINC complex affect tissues subject to high mechanical forces. Actomyosin contractility increases
SUN2’s association with lamins in vascular smooth muscle cells, thus remodeling interactions at
the INM and altering the balance between actin and microtubule associations with the ONM [88].
Downregulation of Nesprin-2 or non-muscle myosin II, both involved in the formation and mainte-
nance of TAN lines and actin perinuclear caps, results in similar alterations of the expression of
genes associated with the epithelial-to-mesenchymal transition [18,24,89,90]. Overall, actomyosin
contractility around the nucleus results in alteration of gene expression by reducing the nuclear
Trends in Cell Biology, March 2021, Vol. 31, No. 3 219



Outstanding Questions
How is actin selectively engaged at
the NE (knowing that actin-binding
Nesprins can also bind microtubules)?

Are the actin fibers under the nucleus
connected to the NE?

Do TAN lines and the perinuclear actin
cap exist in vivo? Are they related to
the actin structures observed in 3D
migration?

What are the nuclear envelope proteins
involved in forming TAN lines and actin
caps and how are they similar or differ-
ent between these two structures?

How does the CaAR response
regulate gene expression and nucleus
deformability?

Are there other NET proteins that bind
and regulate actin filaments?

What is the organization of Nesprins
and Nesprin-binding proteins at the
surface of the nucleus? Does actin
contribute to organizing Nesprins at
the surface of the nucleus?

Is there a relation between the
viscoelasticity of the nucleus and
perinuclear actin?
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volume and via LINC complex-dependent mechanisms (i.e., mechanotransduction). These mecha-
nismsmay explain in part the disease phenotypes observed in nuclear envelopathies [91] (Figure 3F).

Preventingmonomeric actin from entering the nucleus is a promising strategy to modulate the ex-
pression of genes that are regulated by nuclear actin or to reduce the import of gene-regulating
proteins that require actin to enter the nucleus [e.g., myocardin-related transcription factor
A (MRTF-A)]. Actin polymerization at the NE reduces stores of actin at the cell periphery [58]
and depletes nuclear actin [60]. The formin mDia2 shuttles between the nucleoplasm and cyto-
plasm and accumulates at the outer NE due to importin beta, colocalizing with NPCs [92].
These mechanisms could explain how actin polymerization around the NE (e.g., during CaAR)
can result in downstream signaling.

In Vitro Reconstitution of Actin around the Nucleus
To better understand the factors that regulate actin assembly around the nucleus, the interaction
between actin and the ONM is investigated by injecting fluorescent actin into cells, extracting nu-
clei out of the cell to observe actin structures present on the ONM, or observing the interaction of
isolated nuclei with monomeric or polymerized actin. Injection or transient expression of fluores-
cent actin in HeLa cells results in accumulation of actin at the nuclear periphery, while isolated he-
patocyte nuclei incubated in the presence of fluorescent actin monomers accumulate
polymerized actin [93]. A similar accumulation of actin at the nuclear periphery was observed in
nuclei isolated using non-ionic detergents [94]. Antibodies against NE proteins (Nesprin-2 and
a NPC protein) reduce the accumulation of actin around the nucleus, but it is unclear whether
this is due to a specific interaction with these specific proteins or whether the bulky antibodies
mask the surface of the NE from actin. Precise studies are thus still required to determine whether
actin filament accumulation around nuclei is due to the binding of one or several specific proteins.
Nevertheless, this system presents exciting opportunities to study actin assembly at the NE.

To study force transmission between the cytoskeleton and the nucleus, beads coated with actin
are brought into contact with nuclei using optical tweezers [95]. Jumps of a few nanometers were
recorded upon retraction of the beads using forces up to 50 pN, likely indicating protein unfolding.
The authors hypothesize that they are probing Nesprin-1 or -2, and that their transitions
correspond to the unfolding of a helix (5–10 nm) or of a Nesprin spectrin repeat (15 nm) [95].
Further study is necessary to confirm that actin-coated beads are specifically probing Nesprins
at the NE. Nevertheless, applying forces to Nesprins using antibody-coated beads triggers nu-
clear stiffening that is dependent on the nuclear lamina and Emerin [85].

Concluding Remarks
The diversity of architectures that actin can adopt and its wide variety of target proteins make it a
versatile actor in the cell (Figure 3). Whereas actin was historically depicted as the cytoskeletal
network in charge of cell shape and contractility, we now know that it has leading and supportive
roles in many other cell processes. Careful examination of actin structures and associated pro-
teins in vivo is likely to provide evidence for many more extraordinary ways that actin orchestrates
functions in the cell.

Much work remains onmany fronts to understand the roles that NE proteins play with actin. Many
NE transmembrane (NET) proteins have yet to be described fully and overexpression or knock-
down of some of these leads to cytoskeletal disruption. The results obtained in vitro or in cell-
based assays to decipher the actin–nucleus connection are not always readily transferable
in vivo. For example, the existence of TAN lines in tissues or even in 3D culture remains confirmed.
The recent development of organoids, recapitulating organ structure and function, combined
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with the latest improvements in super-resolution imaging could allow better visualization and
comprehension of the mechanisms involved. Optogenetics to locally perturb protein conforma-
tion or localization, Förster resonance energy transfer (FRET) sensors inserted in proteins under
mechanical stress, and microfluidics are some of the techniques to be applied to gain more in-
sight into the nucleus–actin connection. A recent approach using mutually attracted magnetic
beads on both sides of the plasma membrane has revealed the fluctuations of actomyosin con-
tractions [96]. A similar approach using a single bead inside the cytoplasm revealed the elastic
component of the NE [97]. In addition, exciting new tools are being developed that could be
adapted to expand our understanding of actin around the NE: a technique to reveal actin that
is in contact with the cytoplasmic membrane could be adapted to similarly reveal actin structures
in contact with the NE [98]. In vitro models could help to elucidate the structures we observe in
cells and in vivo: a recent publication, studying the interaction of actin with lipid membranes, strik-
ingly recapitulated the membrane protrusions observed during NEBD in starfish oocytes [65,99].

We discussed previously the potential impact that the balance between perinuclear actin polymer-
ization and the shuttling of monomeric actin across the nuclear membrane can have on gene ex-
pression and cell fate. Further research is necessary to determine whether this mechanism is
used by the cell and whether it can explain the impact of actin accumulation around the nucleus
on gene expression (e.g., during CaAR) (see Outstanding Questions). Many mechanisms
discussed here, frommitosis to nuclear displacement during 3Dmigration, could play a particularly
important role in tumor cell proliferation and metastatic dissemination, implying that actin binding
partners could provide new therapeutic partners to investigate in the fight against cancer and
metastatic disease. The link between actin and the NE may also be decisive in the mechanisms
of nuclear envelopathies.
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