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Abstract: Axonal myelination by oligodendrocytes increases the speed and reliability of action
potential propagation, and so plays a pivotal role in cortical information processing. The extent
and profile of myelination vary between different cortical layers and groups of neurons. Two
subtypes of cortical GABAergic neurons are myelinated: fast-spiking parvalbumin-expressing cells
and somatostatin-containing cells. The expression of pre-nodes on the axon of these inhibitory
cells before myelination illuminates communication between oligodendrocytes and neurons. We
explore the consequences of myelination for action potential propagation, for patterns of neuronal
connectivity and for the expression of behavioral plasticity.

Keywords: Myelin; oligodendrocytes; oligodendrocyte lineage cells; GABAergic neurons; interneu-
rons; fast-spiking PV+ cells

1. Introduction

Cortical circuit function is shaped by the cellular electrophysiology of different sets
of cortical neurons and synaptic communication between them. Most cortical neurons
are excitatory, while a minority, about 20%, release the inhibitory neurotransmitter GABA
(gamma-aminobutyric acid). Some GABAergic neurons (or interneurons) form synaptic
contacts with nearby principal cells, while others also project to more distant target cells.
GABAergic signaling generally acts to counter glutamatergic excitation, with specific
groups of interneurons fulfilling distinct operations. Interneurons can generate neuronal
timing, which enforces temporal precision in excitatory signals. Different GABAergic
cells form synapses with distinct regions of the pyramidal cell membrane and so can
provide a shunting somatic inhibition, functionally silence dendritic branches or modulate
integration by changing the balance of somatic and dendritic excitation.

Glial cells outnumber neurons in the mammalian cortex. They play critical roles
in neuronal development and survival as well as in the establishment and regulation of
neuronal networks and information processing. They comprise cells of the oligodendroglial
lineage as well as astrocytes and microglia. The role of astrocytes and microglial cells in
synapse formation and plasticity has been well described in excellent reviews [1,2] and
will not be developed here. Oligodendrocytes enhance neuronal function by producing
a myelin sheath that surrounds axons. Myelin accelerates action potential conduction
and regulates transmission, critical for the coherent arrival of synaptic inputs carried by
multiple axons in sensory systems [3,4]. Oligodendrocytes release factors that signal to
neurons during myelination and provide metabolic support to axons [5–7].

Axons of GABAergic neurons, including local interneurons, as well as pyramidal cells
can be myelinated in the cortex and hippocampus of rodents and humans [8–11]. This re-
view will examine interactions between oligodendrocytes and GABAergic neurons. Nodal
proteins cluster on axons of some GABAergic cells before myelination. We will examine
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signaling between oligodendrocytes and GABAergic neurons as myelination develops
and also metabolic signaling between these cell types. The review explores the effects of
interneuron myelination on action potential propagation and neuronal connectivity and
plasticity.

2. GABAergic Neuron Properties
2.1. GABAergic Neuron Diversity and Origins

Almost a century ago, Ramon y Cajal described a vast diversity in neuronal mor-
phologies leading him to qualify them as “butterflies of the soul”. He surmised that
neuronal heterogeneity was associated with a diversity of function in cortical circuits
(Ramon y Cajal, 1923). Our present understanding of the features and functions of cortical
neurons, excitatory and inhibitory, derives from techniques including anatomy, electro-
physiology and molecular biology (for review see [12–16]. While pyramidal cells are not
uniform, GABAergic cells possess a startling diversity. Agreement on how this diver-
sity should be classified remains to be established. In 2008, an exhaustive list of features
that differentiate GABAergic neurons was compiled by a group of researchers, the Petilla
Interneuron Nomenclature Group [17]. Their nomenclature was based on (i) morphologi-
cal criteria, including axonal and dendritic form and orientation, (ii) molecular contents,
including calcium-binding proteins (calbindin, calretinin, parvalbumin), possible neuropep-
tide co-transmitters (neuropeptide-Y, vasoactive intestinal peptide, cholecystokinin and
somatostatin) and transcription factors and (iii) physiological properties, including firing
pattern [17]. A loose classification into three major groups accounts for nearly all cortical
GABAergic neurons: parvalbumin-expressing (PV+) neurons, somatostatin-expressing
(SST+) neurons, and ionotropic serotonin receptor-expressing (5HT3aR+) neurons [13].
These groups may not be exclusive since some PV+ interneurons also express SST, at
least transiently [18,19]. The more recent application of single-cell RNA sequencing has
provided detailed data on the molecular diversity of GABAergic neurons and how it is
correlated with anatomy and physiology [20–26]. Linking the transcriptional diversity
of mature cortical interneurons to the expression of distinct transcription factors led to
an estimate of at least 23 GABAergic neuronal types [26]. An alternative classification
based exclusively on morphology and physiological properties has identified 68 distinct
morpho-electric inhibitory combinations [27]. Dynamic gene regulatory networks includ-
ing transcription factors determine developmental trajectories and define stable identities
for GABAergic cells [16]. Transcriptional profiles of interneurons are suggested to govern
synaptic connectivity and the properties of synaptic communication [28].

Expression of combinations of spatial and temporal fate determinants during early
development govern distinct phenotypes of a remarkable variety of interneurons. Actions
of these determinants are initiated in the subpallium, a discrete region of the neural tube
in ventral telencephalon, from which cortical GABAergic neurons originate. It develops
into lateral, medial and caudal ganglionic eminences (LGE, MGE, CGE), preoptic area
(POA) and septum (SE). Progenitors from different domains of the subpallium express
different combinations of transcription factors that govern their fate [29]. Cell fate analysis
and migration assays indicate that MGE and CGE are major sources of cortical GABAergic
neurons [30–32], with a lesser contribution from the POA [33,34]. Nearly all PV+ and SST+

cells migrate from the MGE and POA [33–37], while heterogeneous cell groups, including
VIP+ and CCK+ interneurons, emerge from the CGE [38] (Figure 1).
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Figure 1. A classification of cortical GABAergic neurons. Three main classes account for almost all cortical GABAergic 
neurons: parvalbumin-expressing (PV+) neurons, somatostatin-expressing (SST+) neurons, and ionotropic serotonin recep-
tor-expressing (5HT3aR+) neurons. Of the PV+ cells, chandelier cells are axo-axonic cells that synapse with the initial seg-
ments of pyramidal cell axons. PV+ basket cells are the most abundant type of neocortical interneuron. They are fast-
spiking cells that innervate the soma and proximal dendrites of pyramidal cells and other interneurons. A small fraction 
of PV+ basket cells also expresses SST. There are two major types of SST+ interneuron: Martinotti cells, which innervate 
pyramidal cell dendrites, and non-Martinotti cells, which include cells that project over long distances. 5HT3aR neurons 
can be divided into two subgroups based on the expression of the neuropeptide VIP. Different classes of interneurons are 
generated and specified from spatially distinct progenitor cells in the preoptic area (POA), the medial and caudal gangli-
onic eminences (medial ganglionic eminences (MGE) and caudal ganglionic eminences (CGE), respectively). 

How does the subpallium generate so many different cell fates? One factor is that 
progenitors expressing similar transcription factors are spatially restricted to discrete re-
gions of the subpallium. For example, progenitors of the MGE all express the homeodo-
main transcription factor Nkx2.1 [39,40], but only those located in dorsal MGE express the 
transcription factor Nkx6.2 while in ventral MGE, Etv1 is expressed [15]. Fate examination 
indicates that SST+ GABAergic neurons tend to migrate from the dorsal MGE while PV+ 
cells originate from more ventrocaudal regions of the MGE [29,41–43]. A dorso-ventral 
sonic hedgehog signaling gradient is suggested to govern this spatial segregation of sites 
of origin for PV+ and SST+ cells in the MGE [44]. However, spatial cues may not completely 
explain fate determination, since clonal studies show individual MGE progenitors can 
produce both SST+ and PV+ clones [45–47]. Timing seems also to be important: SST+ GA-
BAergic neurons are generated during early neurogenesis while PV+ cells are generated 
later [43,48]. This sequence of cell birthdates predicts the “inside out” laminar cortical or-
ganization of SST and PV+ GABAergic neurons [42,49,50]. Migration along radial glial cells 
starts when the first cells are generated. Definitive specification, from cues received in 
migration and at final cortical destination sites, determines local afferent and efferent con-
nectivity, reviewed in [16] (Figure 1). 

We note that the same subpallium germinal regions give rise to oligodendrocyte pre-
cursor cells (OPCs) as well as about 70% of cortical GABAergic neurons. Similarities in 
transcriptional architecture associated with this common origin may favor later interac-
tions between neurons and oligodendrocytes [51]. Reports that MGE-derived precursors 

Figure 1. A classification of cortical GABAergic neurons. Three main classes account for almost all cortical GABAergic
neurons: parvalbumin-expressing (PV+) neurons, somatostatin-expressing (SST+) neurons, and ionotropic serotonin
receptor-expressing (5HT3aR+) neurons. Of the PV+ cells, chandelier cells are axo-axonic cells that synapse with the initial
segments of pyramidal cell axons. PV+ basket cells are the most abundant type of neocortical interneuron. They are
fast-spiking cells that innervate the soma and proximal dendrites of pyramidal cells and other interneurons. A small fraction
of PV+ basket cells also expresses SST. There are two major types of SST+ interneuron: Martinotti cells, which innervate
pyramidal cell dendrites, and non-Martinotti cells, which include cells that project over long distances. 5HT3aR neurons
can be divided into two subgroups based on the expression of the neuropeptide VIP. Different classes of interneurons are
generated and specified from spatially distinct progenitor cells in the preoptic area (POA), the medial and caudal ganglionic
eminences (medial ganglionic eminences (MGE) and caudal ganglionic eminences (CGE), respectively).

How does the subpallium generate so many different cell fates? One factor is that pro-
genitors expressing similar transcription factors are spatially restricted to discrete regions
of the subpallium. For example, progenitors of the MGE all express the homeodomain
transcription factor Nkx2.1 [39,40], but only those located in dorsal MGE express the tran-
scription factor Nkx6.2 while in ventral MGE, Etv1 is expressed [15]. Fate examination
indicates that SST+ GABAergic neurons tend to migrate from the dorsal MGE while PV+

cells originate from more ventrocaudal regions of the MGE [29,41–43]. A dorso-ventral
sonic hedgehog signaling gradient is suggested to govern this spatial segregation of sites of
origin for PV+ and SST+ cells in the MGE [44]. However, spatial cues may not completely
explain fate determination, since clonal studies show individual MGE progenitors can
produce both SST+ and PV+ clones [45–47]. Timing seems also to be important: SST+

GABAergic neurons are generated during early neurogenesis while PV+ cells are generated
later [43,48]. This sequence of cell birthdates predicts the “inside out” laminar cortical
organization of SST and PV+ GABAergic neurons [42,49,50]. Migration along radial glial
cells starts when the first cells are generated. Definitive specification, from cues received
in migration and at final cortical destination sites, determines local afferent and efferent
connectivity, reviewed in [16] (Figure 1).

We note that the same subpallium germinal regions give rise to oligodendrocyte
precursor cells (OPCs) as well as about 70% of cortical GABAergic neurons. Similarities in
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transcriptional architecture associated with this common origin may favor later interactions
between neurons and oligodendrocytes [51]. Reports that MGE-derived precursors express-
ing the oligodendroglial markers nerve/glia antigen 2 (NG2) and Olig2 later differentiate
into cortical interneurons adds to the evidence for an overlap [48,52,53]. Furthermore,
GABAergic neurons and ventrally-derived OPCs both exhibit high rates of programmed
cell death during the first two postnatal weeks in mice [54–56]. Recent work has also shown
that ventrally-derived interneurons initiate synaptic responses in ontogenetically-related
OPCs and that the two cell types form small clusters of cells throughout the mouse so-
matosensory cortex [57]. These data point to privileged interactions between OPCs and
cortical GABAergic neurons.

2.2. GABAergic Neuron Functions

GABAergic neurons serve a wide range of cortical functions beyond their classical
action to counter neuronal excitation. Notably, inhibitory cells can control the timing
of firing in populations of pyramidal cells since local synaptic connectivity is very high
(more than 50%) for some GABAergic cell types. Such interactions between inhibitory
and excitatory neurons are crucial for the generation of rhythmic activities necessary for
cortical information processing. An impaired excitatory/inhibitory balance is linked to
neurological disorders, including epilepsy, autism spectrum and schizophrenia [58,59].

PV+ interneurons represent about 40% of neocortical inhibitory cells, for review
see [14]. They principally consist of fast-spiking basket cells, which synapse with the soma
and proximal dendrites of principal cells and other inhibitory cells (Figure 1). PV+ cells fire
action potentials at high frequencies (>50 Hz at 22 ◦C and >150 Hz at 34 ◦C). Chandelier
cells are also PV+ and these “axo-axonic cells” form synapses selectively with the axon
initial segment of pyramidal cells [14,60]. Fast-spiking PV+ interneurons possess multiple
dendrites of a total length up to 3–9 mm [61–64]. They receive a high density of inhibitory
and excitatory synapses on dendrites and around the soma. For example, CA3 and CA1
hippocampal GABAergic cells are innervated by 16.000–34.000 synaptic terminals, the vast
majority of them excitatory [61–64]. Axon of fast-spiking PV+ interneurons arborize very
extensively in a local region forming 1000s of distal “en passant” boutons, which contact
peri-somatic regions of the pyramidal cell membrane [65]. Action potentials are initiated
proximally and propagate with high reliability and higher speeds than in principal cell
axons [66,67]. PV+ interneuron axons express very high densities of voltage-gated sodium
channels, especially Nav1.1 and Nav1.6 isoforms, which facilitate rapid action potential
propagation and repetitive firing at high frequency [68]. Fast, repetitive firing is essential
to PV+ interneuron functions in cortical and hippocampal circuits. In responses to afferent
excitation, interneurons fire before pyramidal cells, as in the feedforward inhibition of the
CA1 region when Schaffer collaterals are stimulated [69,70]. Fast-spiking PV+ interneurons
operate to limit pyramidal cell firing, adjusting their excitability to remain sensitive to
weak inputs but not to saturate with stronger stimuli [69–73]. PV+ interneurons are also
activated by local pyramidal cell activity in feedback circuits, which may underly pattern
separation [74,75] and activity sparsification [76].

Nearly 30% of cortical GABAergic neurons express somatostatin (Figure 1) and these
SST+ interneurons include Martinotti cells and non-Martinotti cells [77]. Martinotti cells
are mostly located in layers II/III of the cortex, and project to layer I where they synapse
onto distal pyramidal cell dendrites. Equivalent SST+ interneurons in the hippocampal also
innervate distal pyramidal cell dendrites. These SST+ cells represent almost 15% of total
GABAergic cortical interneurons [78–81] and mediate feedback inhibition of pyramidal
cells [77,82]. Non-Martinotti SST+ cells, which include long-range projection interneurons,
double-bouquet cells and some basket cells, form synapses with both pyramidal cells and
PV+ cells. The axons of long-range SST+ interneurons project out of a region of the cortex
or hippocampus to innervate functionally distinct brain areas. SST+ hippocampal interneu-
rons innervate neurons of the medial septum and entorhinal cortex. These projections are
mirrored by a reciprocal back-projection and have been linked to the synchronization of
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oscillatory activity between distant regions [8,83–85]. Both SST+ and PV+ interneurons
participate in the generation of synchronous rhythmic inhibition [86–90] of pyramidal cells
at gamma frequencies (30–120 Hz). Gamma oscillations have been linked to cognitive tasks
including working memory and attention [91,92].

The remaining 30% of interneurons are immunopositive for 5HT3aR+ (Figure 1). These
heterogenous interneurons co-express markers including vasoactive intestinal polypeptide
(VIP) [13,93], lysosomal marker proteins (LAMP) [27] or synuclein gamma (SNCG) [24].
VIP+ interneurons are mainly found in cortical layers II/III and were first thought to
innervate only other GABAergic cells (PV+ and SST+) to mediate disinhibition [94,95].
More recent data shows they also target principal cells [96]. Bipolar VIP+ interneurons, co-
express the calcium binding-protein calretinin (CR) [97] project an axon into deep cortical
layers and fire irregularly. In contrast, multipolar VIP+ interneurons are basket cells, co-
express the neuropeptide cholecystokinin (CCK) and fire in a regular or bursting pattern.
These cells are transcriptionally similar to 5HT3aR+ basket cells of layers V and VI, which
express CCK but not VIP.

3. Oligodendroglial Cells and Their Interactions with Neurons
3.1. Oligodendroglial Lineage Cells

Oligodendrocyte precursor cells (OPCs) proliferate and migrate in the central nervous
system (CNS) before differentiating into myelin-forming oligodendrocytes [98]. Several
intrinsic and extrinsic signals promote the expression of stage-specific markers during
maturation, resulting in subgroups of oligodendrocyte lineage cells with distinct abilities
to proliferate and migrate, as their morphology changes [99]. This diversity of lineage cells
has been explored with single-cell RNA sequencing, anatomy and functional responses to
neurons [100] (reviewed by Bostrand and Williams in this issue).

OPCs are small bipolar cells expressing specific markers including the transmembrane
proteoglycan NG2, platelet-derived growth factor receptor α (PDGFRα) and the transcrip-
tion factors Olig1/2 together with the ganglioside A2B5. OPCs have high capacities to
proliferate and migrate in early developmental stages [101,102]. During migration, they
extend and retract growth-cone-like processes, to sense chemotactic signals such as sonic
hedgehog (Shh), bone morphogenic proteins (BMPs) and Wingless-related integration
site (Wnt) glycoproteins [99]. OPC processes also survey neighboring cells by succinct
contacts invariably followed by a retraction. This self-avoidance mechanism underlies the
maintenance of a rather uniform spacing between OPCs in the brain and spinal cord [103].
Precursor cells remain abundant in the adult, representing 5–10% of cells, and maintain the
potential to generate new oligodendrocytes in response to environmental cues [104].

During early postnatal life, some OPCs exit the cell cycle and differentiate into imma-
ture, pre-myelinating, oligodendrocytes. NG2 and PDGFRα expressions decrease [105]
while sulfatide (O4) and glycolipid galactocerebroside (GalC) expression begin [106]. Mor-
phological changes are initiated, as cells arborize extensively with processes that “look
for” axons to myelinate [107]. Pre-myelinating oligodendrocytes mature over several days,
expressing myelinating molecules including myelin basic protein (MBP), proteolipid pro-
tein (PLP) and myelin-associated glycoprotein (MAG) [108]. As they wrap around axons,
cells arrive at the end-point of the lineage: myelinating oligodendrocytes expressing the
myelin/oligodendrocyte glycoprotein (MOG) [109].

Oligodendrocyte lineage cells express chondroitin sulfate proteoglycans (CSPGs),
including Brevican, Versican isoform V2, Phosphacan and NG2, as well as the glycoproteins
Tenascin-R [110–115], and Bral1 [116]. These molecules are integrated in a complex with
hyaluronic acid, a key component of the brain extracellular matrix (ECM) [117,118]. The
ECM forms a dynamic perisynaptic and axonal matrix, which surrounds neurons and
glial cells and may participate in plastic, adaptive CNS processes [119,120]. The ECM is
modified by matrix metalloproteinases in an activity-dependent manner under the actions
of neurons and glial cells [121,122]. We note that astrocytes and neurons also produce ECM
proteins with distinct splice variants and glycosylation profiles.
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3.2. Oligodendroglial Cell Interactions with Neurons

Bidirectional interactions between neurons and oligodendroglia are crucial for cortical
circuit function. OPCs sense excitatory or inhibitory cell firing by distinct but incompletely
understood mechanisms, as described in the review of Habermacher [123]. Oligodendro-
cytes myelinate axons of both glutamatergic and GABAergic neurons, and fulfill distinct
functions in interactions with other neuronal compartments (Figure 2).
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Figure 2. Oligodendroglial cells interact with different neuronal compartments. Schematic representation of interactions
between oligodendrocyte lineage cells and CNS neurons. Neuronal cell bodies are illustrated as surrounded by perineuronal
oligodendrocytes and extracellular matrix (ECM)-forming perineuronal nets (which are specific for PV+ cells). Myelinating
oligodendrocytes wrap axons with myelin, leaving small unmyelinated nodes of Ranvier. Nodes are enriched in Na+

channels, oligodendroglial-derived ECM and contacted by oligodendrocyte precursor cells (OPCs). Both excitatory and
inhibitory neurons make synaptic contacts with OPCs.

3.2.1. Axon Myelination

Myelin corresponds to compacted layers of plasma membrane extensions that wrap
spirally around axons. Myelinating elements in the peripheral nervous system are Schwann
cells, which form a single myelin sheath around each axon. Oligodendrocytes in the CNS
form up to 50 sheaths around multiple axons [124]. The insulating properties of myelin
enable rapid, precise action potential propagation over long distances [4,125]. Myelin
sheath around an axon is periodically interrupted by nodes of Ranvier, small domains
highly enriched in voltage-gated Nav channels, which boost action potentials. Different
aspects of myelination for excitatory and inhibitory cortical cells are described in Section 4.
Myelinating oligodendrocytes also provide metabolic support including the export of
lactate to neuronal axons [5–7], see also the review of Tepavcevic on oligodendroglial
energy metabolism and (re)myelination in this issue.

3.2.2. Perineuronal Interactions

Perineuronal oligodendrocytes, or satellite oligodendrocytes, in deep cortical layers
preferentially surround the soma and basal dendrites of glutamatergic neurons [126,127].
They are less frequently associated with GABAergic neurons [126]. Satellite oligodendro-
cytes form compact myelin and act to limit the excitability of their host neurons by rapidly
buffering K+ after firing [127].

3.2.3. Nodal Interactions

Clustering of nodal proteins during myelination depends on interactions with oligo-
dendrocytes (see Section 4.3). At nodes of Ranvier, chondroitin sulfate proteoglycans
(CSPGs; including Brevican, Phosphacan and Versican V2, associated with Tenascin-R and
Bral-1) form polyanionic molecular complexes that help stabilize nodal structures [113,128–130].
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These complexes have a high affinity for cations and may prevent Na+ diffusion at nodes
and so accelerate conduction. ECM interactions with cell adhesion molecules are suggested
to localize nodal clusters during initial assembly (see Section 4.3) and also contribute to
stabilizing CNS nodes [129,131,132].

Ultrastructural analyses provided the first evidence for interactions of other types of
the glial cell at nodes of Ranvier [133–135]. Astrocyte processes may participate in potas-
sium buffering at the nodal gap [136,137]. Recent work shows microglial cells preferentially
contact axons at nodes of Ranvier, and contact probability is enhanced by K+ released at
the nodes by neuronal activity [138]. Oligodendrocyte precursor cells also contact nodes of
Ranvier, but their role remains elusive [137]. The presence of distinct cell types indicates
that nodes of Ranvier constitute a critical site for interactions between glia and neurons.

3.2.4. Perineuronal Nets

The structure and composition of ECM at CNS nodal sites are similar to that of per-
ineuronal nets (PNNs) which ensheath the soma and proximal dendrites of PV+ inhibitory
neurons [120]. PNNs are suggested to stabilize synaptic connections and so control long-
term plasticity. It is notable that PNNs with PV+ basket cells are formed during post-natal
development as the critical period ends. At this point, sensory experiences initiate plas-
ticity in neuronal circuits less effectively. Critical period plasticity returns when ECM
is removed enzymatically by Chondroitinase ABC, suggesting that PNNs act as a brake
on experience-dependent plasticity [139–141]. PNNs may then protect interneurons from
sensory over-activation and stabilize cortical networks [142,143], even at the cost of reduced
cortical plasticity and deficits in adult skill acquisition [142].

3.3. Effects of Oligodendrocyte Lineage Cells on Synapses

Work on how glial cells affect neural circuit development has been greatly facilitated
by the ability to purify and culture neurons in isolation. Twenty years ago, the laboratory
of Ben Barres developed glia-free retinal ganglion cell (RGC) cultures [144] and showed the
formation of functional excitatory synapses was enhanced when astrocytes were present in
co-cultures [145–147]. Subsequent work showed that the astrocyte conditioned medium
enhances excitatory synaptogenesis [1]. OPCs or oligodendrocytes have been shown to
regulate neuronal physiology using similar approaches. Signaling is independent of myelin
and communication is bi-directional. Furthermore, OPCs make functional synapses with
both excitatory and inhibitory neurons [123,148,149]. OPC secretion of micro-vesicles
containing proteins with trophic, modulatory and neuroprotective actions contributes to
the homeostasis of neurotransmission [150–155].

Oligodendrocytes and OPCs participate in a bi-directional regulation of neurotrans-
mission. Neuronal activity cleaves the NG2 ectodomain on the OPC membrane to release
an extracellular domain, which in turn modulates NMDAR-dependent long-term potentia-
tion in pyramidal cells [150]. OPC ablation induces a deficit in glutamatergic signaling by
cortical pyramidal cells, which seems to be mediated via reduced secretion of the fibroblast
growth factor 2 (FGF2) by NG2 cells [156]. Mature oligodendrocytes secrete the brain-
derived neurotrophic factor (BDNF) which modulates glutamate release from excitatory
synapses [152]. Mature cells also affect glutamate metabolism via the enzyme glutamine
synthetase [157]. The effects of oligodendrocyte expression of glutamine synthetase varies
between brain sites possibly due to regional specialization. While the role of astrocytes in
glutamate uptake is well established, further work is needed to define whether glutamate
and glutamine are exchanged directly via oligodendrocyte transporters or indirectly by
astrocyte intermediaries.

The recent production of pure cultures of GABAergic neurons will advance under-
standing of how these cells are affected by glia secreted factors [158]. Pure cultures are
based on cell sorting of fluorescent GABAergic neurons [159] from VGAT-Venus- Wistar
rats [160]. In this way, Turko et al. (2019) showed glial-secreted factors influence the growth
and survival of both inhibitory and pyramidal cells and that glial factors are needed for
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the formation of excitatory but not inhibitory synapses [161]. However, the identity of the
glial cells was not clearly defined. Our group recently attempted to correct this deficit by
work on interactions between GABAergic neurons and factors secreted selectively by oligo-
dendroglia [162]. Electrophysiological and transcriptomic analysis of single GABAergic
neurons, revealed that glial cell presence enhances action potential discharge and excitatory
post-synaptic potentials (EPSPs) received by GABAergic neurons [162]. Specific changes in
transcripts for ion channels, transporters and synaptic markers were induced in glial cell
co-cultures and adding oligodendrocyte conditioned medium [163] to purified GABAergic
cell cultures partly recapitulated these changes. Conditioned medium also increased ax-
onal length and dendritic arborizations [112,162]. BDNF, a key regulator of interneuron
development [164], is a possible candidate as one of the oligodendrocyte secreted factors.

4. Myelination of GABAergic Neurons
4.1. Identification and Localization of Myelinated Axons

The organization of myelinated axons and nodes of Ranvier in vertebrate CNS un-
derlies rapid, precise conduction of action potentials [4,125]. Myelinated fibers are not
homogeneously distributed—some regions contain more myelin than others. Heavily
myelinated regions were originally termed white matter, as opposed to grey matter, since
lipid-rich myelinated axons appeared white to the naked eye. Axons in neocortical white
matter have traditionally been associated with pyramidal cell axons projecting over long
distances to form synapses with neurons in distant cortical areas or subcortical regions.
The axonal myelination of pyramidal cells with somata in superficial cortical layers is often
discontinuous with long unmyelinated segments. In contrast, axons from pyramidal cells
of deep layers are typically densely myelinated throughout their trajectory [165]. This
organization is correlated with an increased density of mature oligodendrocytes in deeper
cortical layers [165].

Axons of GABAergic cortical neurons were first thought to be unmyelinated, possibly
since they typically project for only short distances to make local connections. Myelin was
first shown to be associated with GABAergic cell axons in electron microscopy studies of
cat visual cortex in the 1980s [166,167]. Subsequent work on the myelination of rodent
and primate inhibitory cells highlights strong myelination of GABAergic axons in mouse
cortex [9,11,168–172], and hippocampus [8,11], in the rat medial septum [83] and entorhinal
cortex [173] as well as in human cortex [10,11,169]. One group of inhibitory cells with
myelinated axons are the hippocampal SST+ long-range projection inhibitory cells that
innervate the septum or entorhinal cortex [8]. However, the vast majority of myelinated
GABAergic axons are made by fast-spiking PV+ interneurons. VIP+ and locally-projecting
SST+ interneurons are rarely and sparsely myelinated [9,11,170]. Myelination of PV+

cell axons varies significantly between cortical regions. Array tomography and electron
microscopy analysis indicate that myelinated PV+ cell axons represent almost 50% of the
myelin content in layers II/III of the mouse somatosensory cortex [9]. The fraction can
reach 80% in the CA1 region of the mouse hippocampus [11]. In the human cortex, however,
with a lower density of synaptic profiles than in the mouse cortex [174] the density of
myelinated GABAergic axons is mostly lower than in the mouse cortex, except in the
superficial layer I [10].

4.2. Characteristics of Myelinated GABAergic Axons

How does this subtype-specific myelination of fast-spiking PV+ GABAergic neurons
arise? Axonal diameter is known to be a major factor regulating myelination [175–178].
Reports suggest the diameter of myelinated inhibitory axons is larger than that of pyramidal
cell axons [8,9,83,176]. With a similar myelin thickness, this implies a higher ratio between
the inner and the outer diameter of the myelin sheath (g-ratio) [9]. Genetic manipulations
to increase the size of somata and axons, increased myelin deposition on axons of PV+

interneurons from mouse prefrontal cortex [169]. Myelination was also increased in similar
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experiments on SST+ interneurons which originally had thinner and largely non-myelinated
axons [169]. These data emphasize that axonal morphology shapes myelination.

The myelination of PV+ GABAergic neurons is most strong for proximal axonal seg-
ments, where the axonal diameter is large, and decreases for thinner distal axons [11,169,171]
(Figure 3). The first internode is stereotypically located at ~30 µm from the origin of the
axon and more distal internodes are segmented by branch points at a minimal separation of
~14 µm [11,169]. Nodes of Ranvier and internode distances are shorter for GABAergic than
for pyramidal cells [9]. Myelin composition also differs between excitatory and inhibitory
axons: levels of myelin proteolipid protein (PLP) are similar, but myelin basic protein (MBP)
is 20% higher in GABAergic axons [9]. Cytoskeletal analysis shows myelinated GABAergic
axons are enriched in neurofilaments while excitatory axons contain more microtubules [9].
These results have been confirmed for the human neocortex, where GABAergic axons are
enriched in mitochondria as needed to sustain high energy demands of PV+ cells [10].
Moreover, myelin is enriched in 2′,3′-cyclic nucleotide 3′-phosphodiesterase (CNPase), a
major component of cytoplasmic channels ensuring the connection of oligodendroglial
cell body with the myelin sheath and the axonal compartment [10,125] (Figure 3). Dif-
ferences between myelin of GABAergic and pyramidal cells also extend to remodeling
during adaptive responses. Myelinated axons of callosal excitatory projection neurons
and PV+ interneurons from cortical layer II/III were compared in an in vivo two-photon
imaging study of PLP-eGFP mice [179]. During adaptive changes induced by monocular
deprivation, myelin of PV+ interneurons showed balanced elongations and contractions
while myelin of excitatory neurons tended to display elongations alone [179].
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Figure 3. Characteristics of myelinated PV+ interneurons. The vast majority of myelinated GABAergic neurons are fast-
spiking PV+ interneurons. Myelination is most strong along proximal axonal segments, with larger axonal diameters, and
diminishes gradually in more distal and thinner axons, which are enriched in “en passant” boutons. The first internode is
located at ~30 µm from the site where the axon emerges from the soma. Internodes are segmented by axonal branch points
at distances of at least 14 µm. Compared to excitatory neurons, the myelin of GABAergic cells is enriched in CNPase and
MBP and axons contain many mitochondria and neurofilaments. GABAergic internodes and nodes are shorter than those of
excitatory neurons.

Lastly, different structural and molecular properties of distinct subsets of GABAergic
cells may influence myelination. Patterns of myelin deposition along inhibitory cell axons
during development differ for SST+ and PV+ interneurons of the mouse visual cortex [170].
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These heterogeneities may reflect distinct codes for communication between neurons and
oligodendrocytes. Zonouzi and colleagues recently showed that single oligodendrocytes
exhibit different patterns of axonal targets [170]. Some oligodendrocytes myelinated only
inhibitory cells, some myelinated excitatory neurons and others displayed no bias. While
molecular substrates are unclear, mature oligodendrocytes are highly heterogenous [100]
and distinct neuronal cues may govern their choice of target cells.

4.3. Prenodes Are Formed before Myelination of Hippocampal GABAergic Neurons

The assembly of nodes of Ranvier depends on interactions between oligodendrocytes
and neurons [132,180,181]. Clustering of nodal proteins during myelination has been
attributed to three, possibly complementary, mechanisms [129]: (i) via formation of paran-
odes, critical regions where axons interact with myelin and act as a barrier to membrane
movements of nodal proteins, (ii) through interaction with extracellular matrix proteins
expressed by oligodendroglial lineage cells and nodal Nfasc186 and (iii) by interactions
with axonal cytoskeletal scaffolds. Some evidence suggests the mechanisms vary for dif-
ferent types of neuron. Factors secreted by oligodendrocytes can cluster Nav channels on
retinal ganglion cells without direct contact with an axon [182,183]. A role for secreted
oligodendrocyte cues has been confirmed for the formation of clusters, including Nav
channels, Nfasc186, NrCAM and Ankyrin G, at prenodal structures before SST+ and PV+

GABAergic cell axons are myelinated [112,184]. Time-lapse live imaging of fluorescently
tagged markers suggests nodal proteins preassemble before targeting GABAergic cell axons
in hippocampal cultures [185]. Mass spectrometry analysis of oligodendrocyte conditioned
medium showed the clustering cues consist of Contactin-1 associated with the extracellular
matrix proteins Tenascin-R and Phosphacan [112]. Clusters persist and so may participate
in node formation by acting as localization signals to guide myelin deposition [185]. We
note that hippocampal pyramidal neurons do not form prenodes suggesting that different
mechanisms operate during myelination of hippocampal pyramidal cell axons [132,184].

5. Myelin, Axonal Conduction and Neural Circuit Function
5.1. Determinants of Action Potential Propagation along Myelinated Fibers

Axons convert synaptic inputs into outputs as action potentials are initiated and
propagate to synapses where they trigger transmitter release [186]. Conduction veloci-
ties depend on temperature, axonal diameter and Nav channel density. The insulating
properties of myelin accelerate propagation and clusters of voltage-gated Nav channels
at nodes of Ranvier boost velocity, underlying a saltatory form of conduction [187–190].
Recent work suggests periaxonal and paranodal submyelin spaces may form a second
conducting pathway. Cohen et al. [190] used electron microscopy, fast voltage-calibrated
optical records from nodal and internodal sites and computational modeling to propose a
double cable model for conduction by myelinated neocortical pyramidal axons.

Theoretical studies show that conduction velocity in myelinated axons is linearly
proportional to axonal diameter [191]. Conduction also depends on myelin sheath thickness
and internodal length [192,193] both of which are linearly related to axon diameter. The size
and structure of nodes of Ranvier, as well as Nav channel density, also influence conduction
speed [132,194–197]. Pathological conditions, alter these parameters and so degrade axonal
conduction [180]. Our work suggests that clustering of Nav channels at prenodes accelerates
conduction, representing another action of oligodendrocytes to speed propagation before
myelin is deposited [184]. In addition, hippocampal inhibitory axons express distinct Kv
channel subunits with different axonal distributions than those expressed by pyramidal
cells. Kv1.2 is selectively enriched all along the axons of hippocampal SST+ and PV+ cells
with prenodes before myelination proceeds [198] and may contribute to regulating firing
during development. Kv1 channels are then progressively enriched at the juxtaparanodes of
myelinated axons (see the review of Pinatel and Faivre Sarrailh on assembly and function
of the juxtaparanodal Kv1 complex in this issue), where they contribute to internodal
resting potential and act to prevent repetitive firing [199,200]. Specific expression of
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slowly activating Kv3.1 and Kv3.2 channels by PV+ axons, combined with fast-inactivating
Na+ channels, assures high-frequency axonal firing at a low energetic cost [201,202]. K+

conductances at nodes of Ranvier are mediated by leak-type channels, identified as TRAAK
and/or TREK1 [203,204], and by slowly opening Kv7.2/Kv7.3 channels [205].

5.2. Effects of Myelination on GABAergic Neurons

Fast-spiking PV+ GABAergic interneurons have a key role in local cortical circuits
and the speed and reliability of action potential conduction are critical to their functions.
The fast-firing, fast signaling phenotype of PV+ cells depends on high axonal Na+ channel
densities [68]. Myelin may provide metabolic support for the high energy needs of PV+

cells during sustained high-frequency activities. Two recent studies have asked how myeli-
nation affects axonal conduction and the reliability of neurotransmission by GABAergic
neurons [171,172]. Micheva and colleagues showed myelination increases conduction
velocity in axons of mouse cortical PV+ cells, by comparing latencies between interneuron
firing and inhibitory post-synaptic currents (IPSCs) and using array tomography images to
trace the length and myelination profile of individual axons [172]. The data suggest that
increasing myelination and larger axonal diameters accelerate conduction and support tem-
porally precise synaptic interactions. Benamer and colleagues used transgenic mice where
myelination defects were induced in PV+ cells by inactivating the γ2 subunit of GABAA
receptors in OPCs to disrupt PV+ cell communication with OPCs [171]. Myelination was
severely perturbed in these mutants and was associated with a reduced PV+ cell firing,
suggesting inhibitory cell maturation was compromised [206]. The strength of feedforward
cortical IPSCs was reduced and latencies were increased, consistent with simulations based
on slower conduction for dysmyelinated axons [171,196]. These myelination defects for PV+

cells of barrel cortex were associated with degraded texture discrimination [171] showing
behavioral consequences of dysfunction in cortical inhibitory circuits due to the loss of
myelin.

Basket cell axons are characterized by extensive branching with numerous en-passant
boutons [14]. In mutant Shiverer mice, which are deficient for MBP and lack compact
myelin [207], basket cell bouton density increases and synapses are located more proxi-
mally [11], suggesting myelination influences synapse formation. Cortical feedforward
inhibitory circuits have been shown, by 3D reconstructions of multiple electron microscopy
sections, to involve thick and highly myelinated interneuron axons, which mediate a
precisely timed inhibitory control of pyramidal cell firing [172,173].

5.3. Contributions of Myelination to Sensory Processing and Learning

Myelination tunes axonal conduction for precise spike-timing, and so can optimize
the synchronous arrival of afferent activity at synaptic relays [3,4,208]. This effect is crucial
in the auditory system, where sound localization is computed from time differences, in
the sub-millisecond range, between signals from two ears [209]. This sound localization
circuit involves nucleus magnocellularis (NM) neurons in birds or neurons of the cochlear
nucleus in the mammalian brainstem, which signal bilaterally to the ipsi- and contralateral
nucleus laminaris in birds or the medial superior olivary nucleus (MSO) in mammals.
Seidl et al. (2010) have shown that axon diameter and internode length vary significantly
greatly between ipsi- and contra-lateral branches of NM axons [210]. Modeling suggests
these differences operate to adjust conduction speeds to compensate for different axonal
lengths [210]. Data on conduction velocities confirms that they are adjusted in the two
collaterals to optimize discrimination of differences in timing and sound localization [211].

Neurons in the medial nucleus of the trapezoid body (MNTB), form a distinct part
of the sound localization circuit, receiving excitatory inputs from globular bushy cells
(GBCs) of the contralateral cochlear nucleus via giant calyx of Held synapses. They project
inhibitory signals to binaural comparator neurons in the medial and lateral superior
olive (MSO and LSO respectively). Internodal length, internodal axon diameter and
node diameter for each GBC axon, all change systematically with distance from the calyx
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of Held [195]. Computer simulations suggest these graduated changes are essential to
minimize conduction delay [195]. These pathway specializations are detected in auditory
circuits of the gerbil, which does compute inter-aural time differences, but absent in those
of mice, which does not compute such differences. These data suggest axonal myelination
is optimized to specific temporal processing requirements of different species [212].

The influence of myelin on the reliability and timing of firing at the calyx of Held
synapse [213], has been examined by Kim and colleagues in shaker mutant rats, which
lack compact myelin, due to a spontaneous genetic deletion of the myelin basic protein
(MBP) [214]. Comparison with wild-type animals indicates myelination is crucial for precise
presynaptic action potential firing during high-frequency stimulation [214,215]. It enhances
the reliability of post-synaptic firing and promotes the precise timing of sound signals in the
ascending auditory system [214]. Oligodendrocytes also influence transmitter release at the
calyx of Held. Ca2+ transients in oligodendrocytes release BDNF, which enhances glutamate
release [152]. Moore and colleagues showed impaired metabolic support from myelinating
oligodendrocytes also affect auditory processing [216]. They compared auditory brainstem
potentials and multiunit activity in the auditory cortex in dysmyelinated mice and in
animals with a normal myelin profile but with a deleted monocarboxylate transporter 1
(MCT1 or SLC16A1). This transporter mediates metabolic support from oligodendroglia [6].
When neurons fired repetitively, either the reduced metabolic support or the absence of
myelin induced conduction failure and affected temporal processing [216]. These data
suggest that export of lactate from oligodendrocytes to axons by MCT1 may be critical to
maintain repetitive firing.

Can the structure of axonal myelin be adjusted to optimize conduction velocity and
synaptic transmission? Communication between excitatory neurons and oligodendrocytes
is now known to shape myelination and circuit maturation during experience- or learning-
induced tasks in adults [4,123,217–219]. New myelin is formed and existing internodes
are also remodeled, as well as the width of periaxonal space and the length of node of
Ranvier [197,220,221]. These parameters adjustment alters action potential propagation and
contributes to promote coincident arrival of synaptic inputs from multiple axons in target
regions and improve the fidelity of signal transmission. Neuronal activity also regulates
PV+ cell myelination. Selective stimulation of cortical PV+ cells using the DREADD
technique enhances axonal branching and increases myelination [168]. GABAergic cell
morphology is important since it determines where myelin is located, or added during
de novo myelination of poorly myelinated cells [169]. Adaptive myelination of PV+ cells,
which innervate large numbers of pyramidal cells, may enhance rhythmic population
activities. During the adaptive remodeling of PV+ cells, myelination profiles are specific to
each cell [179].

6. Conclusions

A better comprehension of signaling between oligodendrocyte lineage cells and neu-
rons is central to improve our knowledge of how oligodendrocytes and myelination shape
brain circuit maturation. Here we have reviewed their interactions with GABAergic
neurons and the functional consequences for inhibitory cell activity, synaptic inhibition,
connectivity and optimization of inhibitory circuits. Pathological changes in this dynamic
dialog between GABAergic neurons and oligodendrocyte lineage cells may contribute
to some CNS psychiatric disorders [222,223]. Recent work on post-mortem tissue also
suggests inhibitory cells of the motor cortex may be selectively vulnerable to secondary,
progressive demyelinating diseases such as multiple sclerosis [224]. Dissecting mecha-
nisms of bi-directional communication between oligodendroglia and their precursors and
GABAergic cells will improve understanding of such vulnerabilities and help develop
better therapies for neurological disorders.
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