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ABSTRACT

DNA methylation patterns are highly rearranged in hepatocellular carcinomas (HCCs). However, 

diverse sources of variation are intermingled in cancer methylomes, precluding the precise 

characterization of underlying molecular mechanisms. We developed a computational framework 

(methylation signature analysis with independent component analysis [MethICA]), leveraging 

independent component analysis (ICA) to disentangle the diverse processes contributing to DNA 

methylation changes in tumors. Applied to a collection of 738 HCCs, MethICA unraveled 13 

stable methylation components (MCs) preferentially active in specific chromatin states, sequence 

contexts, and replication timings. These included signatures of general processes associated with 

gender and age but also new signatures related to specific driver events and molecular subgroups. 

Catenin beta 1 (CTNNB1) mutations were major modulators of methylation patterns in HCC, 

characterized by a targeted hypomethylation of transcription factor 7 (TCF7)-bound enhancers in 

the vicinity of Wnt target genes as well as a widespread hypomethylation of late-replicated 

partially methylated domains (PMDs). By contrast, demethylation of early-replicated highly 

methylated domains (HMDs) was a signature of replication stress, leading to an extensive 

hypomethylator phenotype in cyclin (CCN)-activated HCC. Inactivating mutations of the 

chromatin remodeler AT-rich interactive domain-containing protein 1A (ARID1A) were 

associated with epigenetic silencing of differentiation-promoting transcriptional networks, also 

detectable in cirrhotic liver. Finally, a hypermethylation signature targeting Polycomb-repressed 

chromatin domains was identified in the G1 molecular subgroup with progenitor features. 

Conclusion: This study elucidates the diversity of processes remodeling HCC methylomes and 

reveals the epigenetic and transcriptional impact of driver alterations.
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Hepatocellular carcinoma (HCC), the third most deadly cancer worldwide, is a heterogeneous 

disease that usually develops in a context of cirrhosis, related to diverse risk factors, such as 

hepatitis B virus (HBV) or hepatitis C virus (HCV) infection, alcohol intake, or metabolic 

syndrome.(1) HCCs are heterogenous at the molecular level, with up to six distinct transcriptional 

subgroups(2-4) and >30 driver genes belonging to 11 major pathways.(4-6) After telomerase reverse 

transcriptase (TERT) promoter (60% of HCC cases), TP53, and catenin beta 1 (CTNNB1) (25%-

30%), chromatin remodeling is the most frequently altered pathway with recurrent mutations in 

AT-rich interactive domain-containing protein 1A (ARID1A) (13%) and ARID2 (7%) genes. 

Epigenetic regulation is also strongly altered in HCC. In particular, DNA methylation changes are 

widespread, including hypermethylation of CpG islands (CGIs) and an extensive hypomethylation 

in open sea regions.(7-10) HCCs display heterogeneous methylation landscapes. DNA methylation-

based classifications revealed between three and seven HCC subgroups showing more or less 

widespread hypo- and hypermethylation changes.(4,11,12) Methylation markers are also valuable for 

early HCC detection(13) and prognosis.(14) However, the molecular mechanisms causing these 

changes and the relationship between DNA methylation signatures and driver genes, including 

epigenetic regulators, remain largely unknown. 

The DNA methylation landscape of human cancers is modulated by various factors, including the 

cell of origin,(15) age-related processes,(16,17) environmental exposures,(18) driver alterations,(19) 

deregulated oncogenic pathways,(20) and stromal cell composition.(21) Thus, the DNA methylation 

profile of each tumor reflects the addition of many processes, operative with different strengths 

and during different time windows in tumor history. The DNA methylation signatures of these 

processes are intermingled in the final tumor methylome, precluding the precise characterization 

of underlying molecular mechanisms. Blind source separation methods are dedicated to the 

deconvolution of independent signals intermingled in a data set, and these methods have shown 

promising applications to cancer biology.(22) Non-negative matrix factorization (NMF) is widely 

used to uncover signatures of mutational processes in cancer genomes.(23) Independent component 

analysis (ICA) has been shown to outperform principal component analysis and clustering-based 

methods to identify biologically meaningful transcriptomic components in cancers.(24) However, 

these methods have not yet been applied to analyze DNA methylation changes in cancer.
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Here, we present the methylation signature analysis with independent component analysis 

(MethICA) statistical framework, leveraging ICA to disentangle independent sources of variation 

in methylation data. Applying MethICA to a collection of 738 HCCs with extensive clinical and 

molecular data, we show that the methylome of each tumor reflects a unique combination of 13 

ubiquitous and tumor-specific processes. We unravel DNA methylation signatures induced by 

several driver genes and their transcriptional consequences, providing insights into the causes and 

roles of DNA methylation changes in the pathogenesis of HCC.

A
cc

ep
te

d 
A

rt
ic

le



This article is protected by copyright. All rights reserved

MATERIAL AND METHODS

Liver Cancer (France) cohort

A series of 274 samples—239 HCCs, including 4 fibrolamellar carcinomas (FLCs), and 35 

adjacent non-tumor (NT) liver tissues—were collected from patients surgically treated in four 

French hospitals located in the Bordeaux and Paris regions. The study was approved by the 

institutional review board committees (CCPRB Paris Saint-Louis, 1997, 2004, and 2010, approval 

number 01–037; Bordeaux, 2010, A00498–31). Written informed consent was obtained in 

accordance with French legislation. Of the 239 HCC cases, 105 (44%) developed in non-fibrotic 

(METAVIR F0-F1), 55 (23%) in chronic hepatitis (F2-F3), and 78 (33%) in cirrhotic liver (F4). 

Clinicopathological data were available for all cases. The Liver Cancer (France) (LICA-FR) 

cohort mostly comprises males (81%), with a median age at sampling of 65 years, related to 

diverse risk factors, including alcohol (45%), HBV (18%), and HCV (16%). The 274 samples 

were analyzed using Illumina Infinium HumanMethylation450 BeadChip arrays for this study (see 

below). Somatic mutations were available for 209 samples previously analyzed by whole-genome 

sequencing (WGS) or whole-exome sequencing (WES).(5,25-28) For samples that were not analyzed 

using these techniques, gene mutation data were completed using MiSeq or Sanger sequencing, as 

described.(29) RNA sequencing (RNA-seq) data were also available for 145 tumor and 5 NT 

samples.(25,28) Gene expression of a panel of 190 genes was also analyzed in 229 HCCs by 

quantitative reverse-transcription polymerase chain reaction (qRT-PCR) on Fluidigm 96 dynamic 

arrays to classify HCC in the G1-G6 molecular groups, as described.(2,29)

Detailed clinical characteristics and sequencing details for each sample are provided in Supporting 

Table S1.

The Cancer Genome Atlas Liver Hepatocellular Carcinoma (TCGA-LIHC)(4) and genomic 

predictors and oncogenic drivers in HCC (HEPTROMIC)(14) cohorts are described in the 

Supporting Methods.

DNA methylation arrays

We analyzed the 274 samples from the LICA-FR cohort using Illumina Infinium 

HumanMethylation450 BeadChip arrays. Microarray experiments were performed by Integragen 

SA (Evry, France). In brief, genomic DNA was bisulfite-converted using the EZ-96 DNA A
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Methylation Kit (Zymo Research, Irvine, CA, USA), whole-genome amplified, enzymatically 

fragmented, and hybridized to the BeadChip arrays in accordance with the manufacturer’s 

instructions. The beta value (bval) DNA methylation scores for each locus were extracted together 

with detection P values from Illumina GenomeStudio software. The bval gives an estimate of the 

methylation level of each CpG locus using the ratio of intensities between methylated and 

unmethylated probes. We removed CpGs with “NA (not available)” values or a detection P value 

>0.05 in more than 20% of the samples, leaving 351,509 probes for analysis. 

The two other cohorts (TCGA-LIHC and HEPTROMIC) were analyzed with the same 

methylation array. We retrieved the bval and detection P value matrices for these two data sets and 

selected reliable CpGs as we did for the LICA-FR cohort.

RNA-seq data processing

RNA-seq read counts per gene were obtained for the LICA-FR cohort, as described,(25) and 

directly from TCGA website for TCGA-LIHC cohort. We then applied the same pipeline to the 

raw counts of the two series to obtain normalized fragments per kilobase of exon per million reads 

mapped (FPKM) and variance stabilizing transformation (VST) matrices. We used DESeq2(30) to 

import raw read counts into R statistical software and apply VST to the raw count matrix. FPKM 

scores were calculated by normalizing the count matrix for the library size and the coding length 

of each gene.

ICA

We restricted each data set to the 200,000 most variant CpGs based on their standard deviation. 

We computed 20 independent methylation components (MCs) in each cohort using the FastICA 

algorithm,(31) as implemented in the sklearn.decomposition Python library, with a first step of 

whitening of the matrix, the function of approximation to neg-entropy logcosh, and parallel 

algorithm. Because the FastICA algorithm involves random initialization, we performed 100 

iterations and kept the results from the most stable iteration. A component was considered “stable” 

when a similar component (Pearson correlation of CpG contribution >0.9) was identified in 50% 

or more of the iterations. We selected the iteration giving the highest number of stable components 

and the highest average Pearson correlation score among stable components. A
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We next compared the results obtained for the three data sets. The similarity of two components 

from two different data sets was determined by calculating the absolute value of the Pearson 

correlation coefficient from the contribution of their common CpGs. For further analysis, we 

selected the 13 most reliable components found in at least two of the three HCC data sets with a 

Pearson correlation score >0.45.

Association between MCs and (epi)genomic features

To better understand the preferential activity of each component toward specific regions, we 

analyzed the enrichment of their most contributing CpG sites across diverse types of (epi)genomic 

features. We selected the most representative CpG (MRCpG) sites of each MC by thresholding 

their absolute projections onto the MC: abs(projection) >0.005. We next estimated the enrichment 

of these MRCpGs across diverse (epi)genomic features (see the description of features and their 

sources in the Supporting Methods). To do so, we calculated an enrichment score (ES) for each 

feature corresponding to the ratio between the proportion of the most contributing CpGs being 

located within the feature and the proportion of the 200,000 analyzed CpGs being located within 

the feature:

𝐸𝑆 =

𝑁𝑐𝑜𝑛𝑡𝑟𝑖𝑏
𝑓𝑒𝑎𝑡𝑢𝑟𝑒

𝑁𝑐𝑜𝑛𝑡𝑟𝑖𝑏

𝑁𝑎𝑙𝑙
𝑓𝑒𝑎𝑡𝑢𝑟𝑒

200,000

 indicates the number of most contributing CpGs located within the feature; , the 𝑁𝑐𝑜𝑛𝑡𝑟𝑖𝑏
𝑓𝑒𝑎𝑡𝑢𝑟𝑒 𝑁𝑐𝑜𝑛𝑡𝑟𝑖𝑏

number of most contributing CpGs; and , the number of CpGs located within the feature 𝑁𝑎𝑙𝑙
𝑓𝑒𝑎𝑡𝑢𝑟𝑒

among the 200,000 analyzed CpGs.

Association between MCs and clinico-molecular annotations

We analyzed the association of each MC with more than 50 clinical and molecular features. For 

this part, we chose to focus on the LICA-FR and TCGA-LIHC cohorts, for which extensive 

clinical and molecular data were available. The full list of clinical and molecular features included 

in the analysis is provided in the Supporting Methods. We first used linear models to identify 

features significantly correlated with sample contributions, using the lm function in R statistical 

software: lm(sample contribution ~ annotation). Only positive associations were considered (i.e., 

features associated with an increased activity of a component). For example, mutation of a given A
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driver gene was considered to be associated with a component only if mutated cases displayed a 

higher activity of the MC, to favor the identification of causal factors rather than indirect 

associations. This step was done separately in the LICA-FR and TCGA-LIHC cohorts. Clinico-

molecular features that were significant (P value <0.005) in both cohorts were then included in 

multivariate analyses also using the lm function: lm(sample contribution ~ all selected 

annotations). We defined the most contributing features of each MC as those that remained 

significant (P value <0.05) in multivariate analysis in both cohorts.

Data availability

The DNA methylation data generated for this study (274 tumor and NT liver tissues analyzed with 

Illumina Infinium HumanMethylation450 BeadChip arrays) have been deposited to the Gene 

Expression Omnibus database (accession number: GSE157341).

MethICA is an open-source collaborative initiative available in the GitHub repository 

FunGeST/MethICA.
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RESULTS

Independent component analysis of liver cancer methylomes

To unravel the diverse epigenetic processes remodeling liver cancer methylomes, we analyzed 

three independent data sets (LICA-FR, n = 274; TCGA-LIHC,(4) n = 325; HEPTROMIC,(14) n = 

243) totaling 738 HCC and 104 non-tumor (NT) liver samples, all profiled with Illumina Infinium 

HumanMethylation450 BeadChip arrays (Supporting Table S1). We first performed ICA within 

each cohort to decompose the DNA methylation matrix as a mixture of 20 independent 

methylation components (MCs), each characterized by a specific pattern of activation across 

samples and across CpG sites (Fig. 1A). To evaluate the reproducibility of the results, we 

quantified the correlation of MCs across the three data sets based on the contributions of CpG 

sites. A total of 13 components (MC1-MC13) were highly reproducible and shared by at least two 

data sets (Pearson correlation >0.45), 11 of which were identified in the three data sets 

(Supporting Fig. S1). 

Then, we identified for each component a set of most representative CpG sites (MRCpGs, i.e., 

CpGs with the strongest contribution to the component), and we examined the DNA methylation 

changes across these MRCpGs in the 5% of tumors with the strongest deviation from NT liver 

tissues (Fig. 1B). MC1-MC3 were dominated by hypermethylation, MC10-MC13 were dominated 

by hypomethylation, and MC4-MC9 showed a combination of hyper- and hypomethylation. The 

range of methylation changes also varied strongly across components. MC10 and MC11 involved 

hypomethylation of CpG sites that are highly methylated in NT liver (median bval >0.87), 

whereas MC12 and MC13 involved hypomethylation of CpG sites with intermediate methylation 

levels (median bval ~0.7). MC1 and MC2 both involved hypermethylation of CpG sites with low 

methylation in NT liver (median bval = 0.14), but the median methylation increase was only 0.36 

in MC1 versus 0.52 in MC2. Thus, each component displays its own dynamics of methylation 

changes.

Methylation components are preferentially active in specific chromatin states and sequence 

contexts

We next examined whether the MRCpGs of each component were preferentially located within 

specific CGI-based features (island, shore, shelf, or outside CGI), gene-based features 

(transcription start site [TSS] ± 500 bases, gene body, or intergenic), or chromatin states (Fig. 2A A
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and Supporting Fig. S2). Chromatin states were defined by the Roadmap consortium based on the 

chromatin immunoprecipitation (ChIP)-seq analysis of six different histone modifications in 

normal liver tissue.(32) Although histone marks are altered in cancer cells, we observed a good 

agreement between chromatin states defined in normal liver tissue and in the liver cancer cell line 

HepG2 (Supporting Fig. S3). Thus, normal liver chromatin states likely reflect reasonably well the 

actual chromatin state at the time DNA methylation changes occur. We also investigated the 

methylation domains and sequence contexts of the MRCpGs of each component (Fig. 2B). We 

first used normal liver whole-genome bisulfite sequencing (WGBS) data(33) to identify CpGs 

located in large (megabase-scale) partially methylated domains (PMDs)(34) and highly methylated 

domains (HMDs) or in short (hundreds to thousands of base pairs [bps]) lowly methylated regions 

(LMRs) and unmethylated regions (UMRs). LMRs and UMRs correspond respectively to distal 

and proximal regulatory elements.(35) We then classified the sequence context around each CpG 

dyad into 12 categories as described by Zhou et al.,(17) taking into account the local CpG density 

(number of CpG sites within 35 bps on each side of the dyad) and the nucleotides directly flanking 

the CpG (S = C or G; W = A or T). 

The MRCpGs of hypermethylation components (MC1-MC3) were preferentially located in CGIs, 

TSSs, and UMRs but displayed different chromatin state enrichment patterns: mostly bivalent and 

Polycomb-repressed chromatin for MC2, active TSS for MC3, and a mixture for MC1 (Fig. 2A). 

Hypomethylation components (MC10-MC13) were associated with inactive chromatin domains 

(Fig. 2A) but with different methylation contexts: MC10 and MC11 were mostly active in HMDs 

and MC12 and MC13 in PMDs (Fig. 2B). MC4-MC8, characterized by a more balanced 

combination of hyper- and hypomethylation events, were enriched in enhancer regions and LMRs. 

These components had the greatest transcriptional impact with, on average, 20% of their MRCpGs 

linked with the expression of a gene versus 8.6% among hypermethylation components MC1 and 

MC2 and 5.6% among hypomethylation components MC10-MC13 (Supporting Fig. S4). The 

enrichment patterns of MCs within chromatin states and CpG sequence contexts were 

reproducible across the three cohorts (Supporting Figs. S5 and S6), suggesting that MCs 

correspond to genuine biological processes preferentially active in specific epigenomic contexts.

Gender- and age-related componentsA
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To unravel the origin of each process, we analyzed the activity of components across tumor 

samples in two independent series (LICA-FR and TCGA-LIHC cohorts) for which extensive 

clinical and molecular data were available. We performed univariate (Fig. 3A; Supporting Table 

S2) and multivariate (Fig. 3B; Supporting Table S3) linear regression analyses to identify the main 

contributing features.

Several components were associated with general patient characteristics, such as gender and age. 

MC3 was perfectly associated with gender (P = 5.0 × 10−64; Fig. 4A). Of its MRCpGs, 96% were 

located within active TSS regions (Fig. 2A) of X chromosome genes (Fig. 4B). These CpGs were 

unmethylated in males and hemi-methylated in females (Fig. 4C). Thus, MC3 corresponds to the 

signature of X chromosome inactivation in females, illustrating the ability of MethICA to extract 

signatures of well-defined epigenetic processes, even when they involve a limited number of CpG 

sites.

Hypermethylation component MC1 involved CpG-dense islands enriched at bivalent promoters 

and enhancers (Fig. 2). These regions display a coexistence of active (monomethylation of histone 

H3 at lysine 4 [H3K4Me1] and/or trimethylation (H3K4Me3) and inactive (trimethylation of 

histone H3 on lysine 27 [H3K27Me3]) histone marks and have been shown to be prone to 

hypermethylation in cancer(36,37) and aging.(16,38) Consistently, the most contributing CpG sites of 

MC1 were progressively hypermethylated with age, both in HCC and NT liver (Fig. 4D). 

However, the gain of methylation at these CpG sites was considerably faster in tumors (+0.32% 

per year on average) than in NT liver (+0.024% per year), and this observation was validated in 

cancers from several other tissues (Supporting Fig. S7). Thus, MC1 reflects the progressive 

hypermethylation of bivalent chromatin domains that occurs naturally with age but is sharply 

increased in tumors.

Hypomethylation components MC12 and MC13 also increased linearly with age in both LICA-FR 

and TCGA-LIHC series (Fig. 4D). These components were particularly active in late-replicated 

PMDs, known to be prone to hypomethylation in cancer and aging,(17,39) but displayed different 

sequence context preferences (Fig. 5A). MC13 was more active in CpG-dense sequences, whereas 

MC12 was more active in sequences of low CpG density, particularly in the “solo-WCGW” 

context (CpG dyads surrounded by A/T and with no other CpG within 35 bps) prone to A
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methylation loss along cell divisions.(17) Thus, MC12 and MC13 suggest the existence of two 

distinct processes associated with the loss of methylation in late-replicated PMDs in liver cancer, 

operative in different sequence contexts.

CTNNB1 mutation is a major modulator of DNA methylation in HCC

Among HCC driver genes, CTNNB1 showed the greatest impact on methylation, being 

significantly associated with four distinct components (Fig. 3). 

First, age-related hypermethylation (MC1) and hypomethylation (MC12 and MC13) components 

were markedly increased in CTNNB1-mutated tumors. This observation is partly explained by the 

fact that CTNNB1-mutated cases tend to be older (mean age, 66 years versus 61 for non-mutated 

cases; P = 0.017). However, these associations remained significant independently from age, 

CTNNB1 mutation being the most significant feature in multivariate analysis for MC12 and MC13 

(Fig. 5B). As a result, CTNNB1-mutated tumors display a massive hypomethylation of PMDs as 

compared with other HCCs (Fig. 5A), with an average methylation in these regions of 45% versus 

53% in other HCCs and 71% in NT liver.

In addition to age-related processes, MC8 was the most strongly associated with CTNNB1 

activating mutations (P = 1.5 × 10−21). In addition, different types of CTNNB1 mutations activate 

ß-catenin with different strengths,(40) and the activity of MC8 followed this gradient of activation 

(Fig. 6A). The most contributing CpG sites, preferentially located in active enhancers, were 

strongly correlated to the expression of adjacent genes (Fig. 6B) enriched in Wnt/ß-catenin target 

genes (Fig. 6C). Motif analysis revealed an enrichment of transcription factor 7 (TCF7)-binding 

sites in the vicinity of MC8 MRCpGs (Fig. 6D). TCF7 is a member of the TCF/lymphoid 

enhancer–binding factor (LEF) family of transcription factors, the main downstream effectors of 

Wnt signaling pathway. Thus, MC8 reveals a coordinated hypomethylation of enhancers bound by 

TCF7 in CTNNB1-mutated HCC, associated with the up-regulation of Wnt/ß-catenin pathway 

genes. A representative example is shown in Fig. 6E,F where the hypomethylation of a cluster of 

CpG sites, overlapping intragenic H3K27Ac and TCF7 ChIP-seq peaks, accompanies the 

overexpression of AXIN2 in CTNNB1-mutated tumors. These methylation changes likely play an 

active role in tumorigenesis by stabilizing the transcriptional changes induced by CTNNB1 

mutations.A
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Hypomethylation of HMD is a signature of cyclin-activated HCC with intense replication 

stress

Unexpectedly, hypomethylation components MC10 and MC11 were enriched in early replicated, 

CpG-dense regions within HMDs (Fig. 5A), which have been shown to be hypomethylation-

resistant in previous studies. These components were strongly associated with the cyclin (CCN)-

HCC subgroup of highly proliferative tumors, driven by cyclin A2/E1 (CCNA2/E1) activation 

(Fig. 5B). In these tumors, CCNA2 or CCNE1 activation by viral insertion, gene fusion, or 

enhancer hijacking leads to premature S phase entry and intense replication stress.(25) We 

hypothesize that, in CCN-HCC, cancer cells are pushed to replicate so fast that even early 

replicated HMDs become hypomethylated. As a result, this subgroup displays a striking 

hypomethylator phenotype involving all chromatin domains and sequence contexts (Fig. 5A). 

MC4, characterized by hypermethylation of partially methylated CpGs in early replicated regions, 

was also associated with CCN-HCC and may be another consequence of replication stress.

Altogether, our data indicate that several epigenetic processes are involved in the loss of DNA 

methylation in liver cancer cells. These processes are modulated by oncogenic alterations and lead 

to more or less extended hypomethylation patterns between molecular subgroups (Fig. 5A). CpG 

sites within PMDs are hypomethylated in all HCCs, but the methylation decrease is particularly 

strong in CTNNB1-mutated tumors. By contrast, CpG sites within HMD seem resistant to 

demethylation, except in CCN-HCC that are highly proliferative and subject to intense replication 

stress.

Methylation signatures related to cellular differentiation

MC2 and MC7 were encountered in tumors with a progenitor phenotype (Fig. 3), associated with 

diverse molecular features.

MC7 was significantly associated with ARID1A mutations in both the LICA-FR (P = 0.0012) and 

TCGA-LIHC (P = 1.2 × 10−5) cohorts (Fig. 7A). ARID1A, a member of the SWltch/Sucrose Non-

Fermentable (SWI/SNF) chromatin remodeling complex, is recurrently mutated in HCC (13%, the 

fourth most frequently altered gene(5)). In mice, Arid1a interacts with several transcription factors 

that repress proliferation and maintain liver differentiation (CCAAT enhancer–binding protein A
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alpha [CEBPA], hepatocyte nuclear factor 4 alpha [Hnf4a], and forkhead box A2 [Foxa2]), and 

these pathways are down-regulated in Arid1a-deficient cells.(41) Consistently, MC7 was 

characterized by a hypermethylation of enhancers enriched in several transcription factor binding 

motifs (Fig. 7B), including CEBPA, FOXA2, and HNF4A, but also nuclear factor I A (NFIA) 

implicated in the differentiation of several cell types.(42-45) In addition, genes paired with 

hypermethylated CpGs related to MC7 were enriched in liver-specific genes (Gene Set 

Enrichment Analysis [GSEA]; P < 2.2 × 10−16; normalized enrichment score [NES] = 4.0). This 

methylation signature suggests that ARID1A deficiency impairs the DNA binding of several 

transcription factors and promotes the dedifferentiation of liver cancer cells.

MC2 was characterized by the hypermethylation of CGIs and CpG shores in chromatin regions 

repressed by Polycomb proteins (marked by the repressive H3K27Me3 histone mark only), in 

addition to bivalent TSS and enhancers (Fig. 2). Contrary to MC1, MC2 was not active in all 

HCCs but essentially in the G1 transcriptional subgroup (P = 8.1 × 10−8; Fig. 7C,D). This 

subgroup, enriched in young patients of African origin, is characterized by a progenitor phenotype 

with an overexpression of fetal liver genes.(2,46) G1 tumors display frequent alterations in AXIN1, 

ribosomal protein S6 kinase A3 (RPS6KA3), and BRCA1-associated protein 1 (BAP1) genes, all 

of which were significantly associated with MC2, but not independently from G1 subgroup (Fig. 

7C). The specific hypermethylation signature of G1 tumors may thus reflect the epigenetic state of 

a progenitor cell of origin or the consequence of driver alterations enriched in this molecular 

subtype.

DNA methylation-based classification of HCC reflects the combination of several 

components

We next explored the relationships between MCs and methylation-based HCC classifications. 

Consensus clustering revealed relatively stable partitions of both LICA-FR and TCGA-LIHC 

cohorts into eight tumor clusters. These clusters, highly consistent in the two series, defined seven 

common subgroups (  to ), with subdivided in two ( and ) in the LICA-𝑀𝐻𝐶𝐶
1 𝑀𝐻𝐶𝐶

7 𝑀𝐻𝐶𝐶
6 𝑀𝐻𝐶𝐶

6𝑎 𝑀𝐻𝐶𝐶
6𝑏

FR cohort (Fig. 8A,B) and subdivided in two ( and ) in TCGA-LIHC cohort (Fig. 𝑀𝐻𝐶𝐶
1 𝑀𝐻𝐶𝐶

1𝑎 𝑀𝐻𝐶𝐶
1𝑏

8C,D). 
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DNA methylation-based HCC subgroups were significantly associated with age, geographical 

origin, transcriptional subgroups, and driver alterations. Cluster displayed the least 𝑀𝐻𝐶𝐶
1

methylation changes with respect to NT liver tissues. Cluster , characterized by a high 𝑀𝐻𝐶𝐶
2

activity of MC2, comprised tumors of the G1 transcriptional subgroup, of Asian or African origin, 

with high frequencies of BAP1, AXIN1, and RPS6KA3 mutations. Clusters to 𝑀𝐻𝐶𝐶
3 𝑀𝐻𝐶𝐶

7

comprised older patients, with high activity of age-related hypermethylation (MC1) and 

hypomethylation (MC12 and MC13) components. Cluster was enriched in TP53-mutated 𝑀𝐻𝐶𝐶
4

tumors of the G3 transcriptional subgroup. Clusters and , with a high activity of 𝑀𝐻𝐶𝐶
5 𝑀𝐻𝐶𝐶

6

hypomethylation components MC12 and MC13, were enriched in well-differentiated CTNNB1-

mutated tumors of the G5 and G6 transcriptional subgroups. Cluster , with a high activity of 𝑀𝐻𝐶𝐶
7

MC4, MC10, and MC11, was strongly associated with CCNA2/E1 activation and displayed the 

most striking hypomethylator phenotype.

Thus, MCs capture variations that are either widespread in the data set (e.g., MC1), restricted to a 

precise cluster (e.g., MC2), or dispersed across tumors belonging to distinct clusters (e.g., MC3), 

as clearly illustrated in t-distributed stochastic neighbor embedding (t-SNE) plots (Supporting Fig. 

S8). For example, ARID1A-mutated tumors are not enriched in a particular cluster, but MethICA 

was able to extract their common signature within MC7. Thus, ICA reveals individual sources of 

variation that are intermingled in cancer methylomes and highlights subtle methylation signatures 

beyond the main methylation clusters that reflect the activity of a few dominant processes.

Methylation components reveal pre-neoplastic changes in cirrhotic liver

We next examined the methylation profiles of 35 NT liver tissues of the LICA-FR cohort, 

comprising 5 non-fibrotic (METAVIR F0-F1), 14 chronic hepatitis (F2-F3), and 16 cirrhotic (F4) 

livers. Hierarchical clustering revealed four homogeneous subgroups strongly associated with 

fibrosis stage (P = 1.6 × 10−6). The two main groups corresponded to cirrhotic and non-cirrhotic 

livers. Non-cirrhotic livers were further divided in three subgroups distinguishing F0-F1 from F2-

F3 samples (Supporting Fig. S9A). To identify methylation changes accompanying cirrhosis, we 

compared the intensity of our 13 MCs between different fibrosis stages. MC6 and MC7 were 

significantly more active in cirrhotic liver (Supporting Fig. S9B), which was validated in TCGA-

LIHC cohort (Supporting Fig. S9C). A
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MC6 increased progressively in F2-F3 and F4 livers. This component was correlated with the 

level of immune infiltration estimated from gene expression data (Fig. 3) and with the immune-

mediated cancer field (ICF) signature, a signature of deregulated immune response associated with 

risk of HCC development in patients with cirrhosis.(47) (Supporting Fig. S9D,E) DNA methylation 

changes related to MC6 involve two anti-correlated sets of CpGs. On one side, CpG sites located 

within hepato-specific enhancers, enriched in hepatocyte nuclear factor–binding motifs, are 

hypermethylated in samples with a stronger immune infiltrate (Supporting Fig. S9F). On the other 

side, CpG sites located within immune cell–specific enhancers, enriched in JUN/FOS-binding 

motifs, are demethylated in more infiltrated samples (Supporting Fig. S9G). Thus, MC6 is an 

epigenetic signature of the immune response that occurs in fibrotic / cirrhotic liver and promotes 

carcinogenesis.(47)

In addition, ARID1A-associated MC7 was activated in cirrhotic liver although to a lesser extent 

than in HCC (Supporting Fig. S9B,C). Interestingly, ultra-deep sequencing revealed ARID1A 

mutations in cirrhotic nodules, and Arid1a depletion was shown to promote clonal expansion and 

regeneration in chronic liver disease.(48) In agreement with these findings, our results suggest that 

the coordinated hypermethylation of enhancers implicated in liver differentiation may drive 

hepatocytes to a more proliferative state, favoring the clonal expansion of cirrhotic nodules.
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DISCUSSION

Independent component analysis of the largest HCC series analyzed so far revealed 13 different 

methylation components operative with different strengths across HCC and NT liver tissues. This 

represents a much greater diversity of signatures than identified in previous methylation studies. 

Early reports described global changes in HCC as compared with NT liver tissue, including 

hypermethylation of CpG islands enriched in Polycomb-repressive complex 2 (PRC2) target 

genes, and a widespread hypomethylation in open sea regions.(7-10) Previous unsupervised 

classifications revealed between three and seven HCC subgroups.(4,11,12) In particular, TCGA 

described four tumor subgroups based on hypermethylated probes and three subgroups (largely 

overlapping) based on hypomethylated probes. These subgroups, strongly associated with our 

consensus clusters (Fig. 8D), display varying levels of hyper- and hypomethylation with respect to 

NT samples. However, ICA allowed us to define more DNA methylation signatures, related to 

precise biological processes, and to disentangle age- and gender-related processes from changes 

associated with specific tumor subgroups and driver alterations.

MC1 captured the hypermethylation of CGIs located in bivalent chromatin domains, known to 

occur naturally with aging. This component increases with age in both NT liver and HCC, but the 

slope of this increase is much sharper in tumors. By contrast, MC2 is associated with the G1 

transcriptomic subgroup and defines a strongly hypermethylated HCC entity. Further studies are 

required to determine whether this methylation signature reflects a different cell of origin for this 

subgroup or is acquired during tumorigenesis.

Global loss of DNA methylation has been described in most cancer types,(49) including HCC,(50) 

but the mechanisms by which this hypomethylation occurs remain incompletely understood. We 

show here that four independent processes are involved in this process. MC12 and MC13 are 

preferentially active in late-replicated PMD, known to be prone to hypomethylation along cell 

divisions.(17) Hypomethylation of MC12 and MC13 MRCpGs was correlated with age in HCC but, 

surprisingly, not in NT liver (Fig. 4D). We hypothesize that the loss of methylation in PMD occurs 

stochastically at different CpG sites in each normal cell and is thus barely detectable in NT tissue. 

By contrast, clonal expansion amplifies the hypomethylation pattern of the cell of origin that 

becomes visible in the tumor, just like somatic mutations. In addition, these components were 

significantly more active in CTNNB1-mutated HCC. This might reflect differences in terms of cell A
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of origin or tumor growth dynamics. CTNNB1-mutated HCCs are usually well differentiated and 

less proliferative than other HCC subgroups. Thus, these tumors may have a longer development, 

leaving more time for methylation changes to occur.

The two other hypomethylation components (MC10 and MC11) affect HMDs and are particularly 

active in the CCN-HCC subgroup, driven by CCNA2/E1 activation. We previously found that, in 

CCN-HCC, replication stress induces a massive accumulation of structural rearrangements, 

preferentially located in early replicated regions.(25) Here we show that replication stress also 

impacts the methylome of these tumors, presumably because cells enter S phase prematurely, 

before the newly synthesized strand has been properly methylated.

Finally, we identified five MCs (MC4-MC8) of coordinated enhancer methylation 

reprogramming. These components have been missed in previous studies, possibly because they 

involve fewer CpG sites and can be dispersed across the main DNA methylation subgroups. 

However, they have the strongest transcriptional impact and constitute valuable markers of 

transcriptional network activity. MC8 reflects the precise level of activation of the Wnt/ß-catenin 

pathway induced by diverse CTNNB1 mutations.(40) To our knowledge, MC7 is the first 

methylation signature associated with ARID1A mutations. Motif analysis shed light on the 

transcription factors impacted by ARID1A deficiency, including several key regulators of liver 

differentiation.

Although our approach was not primarily designed for biomarker identification, several 

components may have therapeutic implications. First, a high activity of MC10 and MC11 indicates 

highly proliferative tumors with replication stress, who might benefit from ATR pathway 

inhibitors.(25) Second, MC6 provides a precise estimation of the level of immune infiltration in the 

tumor. A high activity of MC6 may thus highlight good candidates for immunotherapy. Future 

studies are required to determine if MCs constitute valuable biomarkers for treatment response. 

Overall, ICA appears as a powerful tool for the analysis of DNA methylation signatures. All the 

utilities we developed for extracting and interpreting MCs are included in the MethICA package, 

applicable to both microarray and bisulfite sequencing data.A
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Figure Legends

FIG. 1. Identification of 13 stable methylation components in liver cancers. (A) MethICA 

workflow. Three independent HCC data sets analyzed with the same methylation array are 

included in this study. ICA is used to decompose the methylation bval matrix X of dimension n  

200,000 (n samples and 200,000 most variant CpGs) as the product of a matrix A (size n  20 

MCs) giving the contributions of the samples to each MC (or activities of the MC in the n 

samples) and a matrix S (size 20  200,000) giving the projections of the CpGs onto each MC. 

CpGs having the largest projection onto a component (providing the greatest contribution) are the 

most strongly influenced by the epigenetic process underlying the MC. To unravel the biological 

meaning of each component, we analyzed the clinical and molecular annotations of the most 

contributing samples and the (epi)genomic features of the most contributing CpGs. (B) Major 

DNA methylation changes associated with each component in the LICA-FR cohort. For each MC, 

the most contributing CpG sites were selected and their methylation compared between NT 

samples and the 5% of tumors with the strongest methylation changes. Abbreviations: bval, beta 

value; CGI, CpG island; HCC, hepatocellular carcinoma; ICA, independent component analysis; 

LICA-FR, Liver Cancer (France); MC, methylation component; MethICA, methylation signature 

analysis with independent component analysis; T, tumor; NT, non-tumor; RNA-seq, RNA 

sequencing; TCGA-LIHC, The Cancer Genome Atlas Liver Hepatocellular Carcinoma; WES, 

whole-exome sequencing; WGS, whole-genome sequencing.

FIG. 2. Methylation components preferentially affect specific methylation domains and chromatin 

states. (A) Epigenomic features associated with each component. The most contributing CpG sites 

of each component were extracted. The first two lines indicate the proportion of these CpG sites 

falling within each CGI- and gene-based feature. Enrichment scores (ESs) in active/inactive 

chromatin and across the 18 chromatin states defined by the Roadmap consortium in normal liver 

are represented below, with a color code for each chromatin state as displayed in Supporting Fig. 

2B. (B) Methylation contexts associated with each component. Each CpG of the array was 

classified into one of 48 categories based on the methylation domain in normal liver (HMD, PMD, 

LMR, UMR), local CpG density (number of flanking CpGs within 35 bps on each side of the 

dyad), and sequence context (SCGS, SCGW, or WCGW, with S denoting C or G and W denoting 

A or T). The distribution of CpG methylation in each category in 35 NT liver tissues is 

represented as a violin plot. ESs of the most contributing CpG sites of each component across the A
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48 categories are represented as bar plots. Displayed ESs were computed in the LICA-FR cohort 

except for MC10 (TCGA). ESs were highly reproducible in the three cohorts (Supporting Figs. S5 

and S6). Abbreviations: bps, base pairs; ES, enrichment score; HMD, highly methylated domain; 

LMR, lowly methylated region; PMD, partially methylated domain; TSS, transcription start site; 

UMR, unmethylated region; ZNF, zinc finger.

FIG. 3. Clinical and molecular features associated with each component. (A) Results of the 

univariate analysis in the LICA-FR (top) and TCGA-LIHC (bottom) series are shown. All clinical 

and molecular features significantly associated (P value <0.05) with at least one component are 

shown. The size of each circle indicates the P value of the association as represented in the legend 

below, and its color indicates the type of feature (clinical, molecular, or phenotypic). Associations 

that are significant in both series are squared. MC10 was not identified in LICA-FR. See also 

Supporting Table S2. * Molecular subgroups correspond to the G1-G6 transcriptomic groups 

defined by Boyault et al. ** Gene expression signatures were previously described by Nault et al. 

(differentiation, proliferation), Caruso et al. (liver progenitor, stem cell, EMT/metastasis) and 

Becht et al. (immune infiltrate). See Supplementary Methods for more details. (B) Results of the 

multivariate analysis in LICA-FR (top) and TCGA-LIHC (bottom) series. Only features 

significant in univariate analyses in both series were included; others are colored in light gray. See 

also Supporting Table S3. 

Abbreviations: ARID1A/2, AT-rich interactive domain-containing protein 1A/2; BAP1, BRCA1-

associated protein 1; CCNA2/E1, cyclin A2/E1; CTNNB1, catenin beta 1; EMT, epithelial-to-

mesenchymal transition; KEAP1, kelch-like ECH-associated protein 1; RB1, RB transcriptional 

corepressor 1; RPS6KA3, ribosomal protein S6 kinase A3; TERT, telomerase reverse 

transcriptase.

FIG. 4. Gender- and age-related MCs. This figure describes MCs associated with gender (MC3) 

and age (MC1, MC12 and MC13). (A) Sample contribution to MC3 allows to perfectly split males 

and females. (B) Enrichment of MC3 most contributing CpG sites in sexual chromosomes. (C) 

Average methylation of MC3 most contributing CpG sites in males (x axis) and females (y axis). 

(D) Correlation of hypermethylation component MC1 and hypomethylation components MC12 

and MC13 with age in cancerous (HCC) and NT liver tissue. Abbreviations: ChrX, chromosome A
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X; ChrY, chromosome Y; F, female; M, male; MRCpGs, most representative CpGs; NS, not 

significant.

FIG. 5. Four components shape the hypomethylation landscapes of HCC subgroups. (A) Top: 

methylation domains and sequence contexts enriched in the four hypomethylation components 

(MC10-MC13). Bottom: distribution of methylation levels per CpG sequence context in non-

tumor liver and different HCC molecular subgroups. (B) Heatmaps showing the methylation of the 

MRCpGs of MC10-MC13 across tumor and non-tumor samples, ordered by component intensity, 

with associated clinico-molecular features. Cyclin status refers to the presence or of genomic 

alterations (structural rearrangements, gene fusions or viral insertions) activating CCNA2 or 

CCNE1, as described in Bayard et al. Proliferation and differentiation scores refer to the mean 

expression of markers of liver differentiation and cell proliferation previously established by Nault 

et al. (see Supplementary Methods for more details). Non-tumor liver tissues are represented in 

the heatmaps but were not used in association tests. Abbreviations: NT, non-tumor; FLC, 

fibrolamellar carcinoma; M, mutated; NM, non-mutated; multiv., multivariate; univ., univariate; 

WT, wild-type.

FIG. 6. Coordinated hypomethylation of TCF7-bound enhancers in CTNNB1-mutated HCC. This 

figure describes MC8, the most strongly associated with CTNNB1 mutations. (A) MC8 is strongly 

correlated to somatic alterations that activate ß-catenin with different strengths. CTNNB1-mutated 

tumors were stratified according to the mutated amino acid hotspot (K335, N387, S45, T41). 

Mutations affecting the ß-Trcp binding site (D32-S37) were grouped. Large deletions correspond 

to activating in-frame deletions of exon 3. CTNNB1 mutations were ordered by the level of ß-

catenin activation established by Rebouissou et al. (B) Hypomethylation of its most contributing 

CpG sites is associated with the up-regulation of target genes, enriched in (C) Wnt/ß-catenin 

targets. (D) Motif analysis reveals an enrichment of TCF7 targets, exemplified by (E) cg11122009 

associated with AXIN2 regulation. (F) Epigenomic features and transcriptomic regulation at 

AXIN2 locus. Tracks display, from top to bottom, the chromatin states inferred by Roadmap 

consortium in normal liver, methylation beta-values measured by Illumina Infinium 

HumanMethylation450 array and RNA-seq coverage in non-tumor liver and CTNNB1-mutated 

HCC samples, H3K27 acetylation and TCF7 binding from ENCODE ChIP-seq data. In CTNNB1-

mutated HCC, AXIN2 overexpression is accompanied by the demethylation of a group of CpGs A
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comprising cg11122009 and overlapping H3K27Ac and TCF7 binding peaks. Abbreviations: 

NES, Normalized enrichment score; FDR, False Discovery Rate; H3K27ac, acetylation of histone 

H3 on lysine 27; TCF7, transcription factor 7; TxWk, Weak transcription; Enha2, Active enhancer 

2; Tx, Strong transcription; EnhWk, Weak enhancer; TssFlnkD, Flanking TSS downstream; bval, 

beta-value; NT, non-tumor; HCC, hepatocellular carcinoma.

FIG. 7. MCs related to cellular dedifferentiation. This figure describes components related to 

ARID1A inactivation (MC7) and the G1 molecular subgroup (MC2). (A,B) MC7, correlated with 

ARID1A inactivation, involves the hypermethylation of binding sites for several transcription 

factors related to liver differentiation. (C) Hypermethylation component MC2 is particularly active 

in the G1 progenitor subgroup, associated with AXIN1, RPS6KA3, and BAP1 mutations. (D) Box 

plot showing the distribution of MC2 activity in the G1-G6 molecular subgroups defined by 

Boyault et al. Abbreviations: CEBPA, CCAAT enhancer–binding protein alpha; FOXA2, 

forkhead box A2; geo., geographical; HNF4A, hepatocyte nuclear factor 4 alpha; NF1A, nuclear 

factor I A; TFBS, transcription factor–binding site; transcr., transcriptomic.

FIG. 8. DNA methylation-based classification of HCC. Tumors from the (A,B) LICA-FR and 

(C,D) TCGA-LIHC cohorts were classified according to the methylation levels of their most 

variant CpGs. (A) and (C) display the consensus matrices representing the similarity between 

tumors. Consensus index values range from 0 (highly dissimilar profiles, white) to 1 (highly 

similar profiles, dark blue). Samples are ordered on the x and y axes by the consensus clustering, 

which is depicted above the heatmap. (B) and (D) display heatmap representations of DNA 

methylation profiles. The degree of DNA methylation (bval) for each probe (row) in each sample 

(column) is represented with a color scale (dark blue, nonmethylated; yellow, methylated). 

Tumors are ordered by methylation cluster. Probes are arranged by similarity and in the same 

order in (B) and (D). Clinical and molecular annotations are indicated above the heatmap with P 

values showing their association with the clusters. The activity of each MC is represented below 

the heatmap with a color scale (blue, low activity; red, high activity). Abbreviations: hyper., 

hypermethylated; hypo., hypomethylated. 
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