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This article is protected by copyright. All rights reserved Hepatocellular carcinoma (HCC), the third most deadly cancer worldwide, is a heterogeneous disease that usually develops in a context of cirrhosis, related to diverse risk factors, such as hepatitis B virus (HBV) or hepatitis C virus (HCV) infection, alcohol intake, or metabolic syndrome. [START_REF] Llovet | Hepatocellular carcinoma[END_REF] HCCs are heterogenous at the molecular level, with up to six distinct transcriptional subgroups [START_REF] Boyault | Transcriptome classification of HCC is related to gene alterations and to new therapeutic targets[END_REF][START_REF] Hoshida | Integrative transcriptome analysis reveals common molecular subclasses of human hepatocellular carcinoma[END_REF][START_REF]Comprehensive and integrative genomic characterization of hepatocellular carcinoma[END_REF] and >30 driver genes belonging to 11 major pathways. [START_REF]Comprehensive and integrative genomic characterization of hepatocellular carcinoma[END_REF][START_REF] Schulze | Exome sequencing of hepatocellular carcinomas identifies new mutational signatures and potential therapeutic targets[END_REF][START_REF] Fujimoto | Whole-genome mutational landscape and characterization of noncoding and structural mutations in liver cancer[END_REF] After telomerase reverse transcriptase (TERT) promoter (60% of HCC cases), TP53, and catenin beta 1 (CTNNB1) (25%-30%), chromatin remodeling is the most frequently altered pathway with recurrent mutations in AT-rich interactive domain-containing protein 1A (ARID1A) (13%) and ARID2 (7%) genes.

Epigenetic regulation is also strongly altered in HCC. In particular, DNA methylation changes are widespread, including hypermethylation of CpG islands (CGIs) and an extensive hypomethylation in open sea regions. [START_REF] Zhang | CpG island methylator phenotype association with elevated serum alpha-fetoprotein level in hepatocellular carcinoma[END_REF][START_REF] Stefanska | Definition of the landscape of promoter DNA hypomethylation in liver cancer[END_REF][START_REF] Neumann | Methylome analysis and integrative profiling of human HCCs identify novel protumorigenic factors[END_REF][START_REF] Shen | Genome-wide DNA methylation profiles in hepatocellular carcinoma[END_REF] HCCs display heterogeneous methylation landscapes. DNA methylationbased classifications revealed between three and seven HCC subgroups showing more or less widespread hypo-and hypermethylation changes. [START_REF]Comprehensive and integrative genomic characterization of hepatocellular carcinoma[END_REF][START_REF] Mah | Methylation profiles reveal distinct subgroup of hepatocellular carcinoma patients with poor prognosis[END_REF][START_REF] Cheng | Integrative analysis of DNA methylation and gene expression reveals hepatocellular carcinoma-specific diagnostic biomarkers. Genome Accepted Article This article is protected by copyright[END_REF] Methylation markers are also valuable for early HCC detection [START_REF] Kisiel | Hepatocellular carcinoma detection by plasma methylated DNA: discovery, phase I pilot, and phase II clinical validation[END_REF] and prognosis. [START_REF] Villanueva | DNA methylation-based prognosis and epidrivers in hepatocellular carcinoma[END_REF] However, the molecular mechanisms causing these changes and the relationship between DNA methylation signatures and driver genes, including epigenetic regulators, remain largely unknown.

The DNA methylation landscape of human cancers is modulated by various factors, including the cell of origin, [START_REF] Hoadley | Cell-of-origin patterns dominate the molecular classification of 10,000 tumors from 33 types of cancer[END_REF] age-related processes, [START_REF] Rakyan | Human agingassociated DNA hypermethylation occurs preferentially at bivalent chromatin domains[END_REF][START_REF] Zhou | DNA methylation loss in late-replicating domains is linked to mitotic cell division[END_REF] environmental exposures, [START_REF] Vandiver | Age and sun exposure-related widespread genomic blocks of hypomethylation in nonmalignant skin[END_REF] driver alterations, [START_REF] Letouzé | SDH mutations establish a hypermethylator phenotype in paraganglioma[END_REF] deregulated oncogenic pathways, [START_REF] Yao | Inferring regulatory element landscapes and transcription factor networks from cancer methylomes[END_REF] and stromal cell composition. [START_REF] Chakravarthy | Pan-cancer deconvolution of tumour composition using DNA methylation[END_REF] Thus, the DNA methylation profile of each tumor reflects the addition of many processes, operative with different strengths and during different time windows in tumor history. The DNA methylation signatures of these processes are intermingled in the final tumor methylome, precluding the precise characterization of underlying molecular mechanisms. Blind source separation methods are dedicated to the deconvolution of independent signals intermingled in a data set, and these methods have shown promising applications to cancer biology. [START_REF] Zinovyev | Blind source separation methods for deconvolution of complex signals in cancer biology[END_REF] Non-negative matrix factorization (NMF) is widely used to uncover signatures of mutational processes in cancer genomes. [START_REF] Alexandrov | Signatures of mutational processes in human cancer[END_REF] Independent component analysis (ICA) has been shown to outperform principal component analysis and clustering-based methods to identify biologically meaningful transcriptomic components in cancers. [START_REF] Teschendorff | Elucidating the altered Accepted Article This article is protected by copyright. All rights reserved transcriptional programs in breast cancer using independent component analysis[END_REF] However, these methods have not yet been applied to analyze DNA methylation changes in cancer.
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This article is protected by copyright. All rights reserved Here, we present the methylation signature analysis with independent component analysis (MethICA) statistical framework, leveraging ICA to disentangle independent sources of variation in methylation data. Applying MethICA to a collection of 738 HCCs with extensive clinical and molecular data, we show that the methylome of each tumor reflects a unique combination of 13 ubiquitous and tumor-specific processes. We unravel DNA methylation signatures induced by several driver genes and their transcriptional consequences, providing insights into the causes and roles of DNA methylation changes in the pathogenesis of HCC.
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MATERIAL AND METHODS

Liver Cancer (France) cohort

A series of 274 samples-239 HCCs, including 4 fibrolamellar carcinomas (FLCs), and 35 adjacent non-tumor (NT) liver tissues-were collected from patients surgically treated in four French hospitals located in the Bordeaux and Paris regions. The study was approved by the institutional review board committees (CCPRB Paris Saint-Louis, 1997, 2004, and 2010, approval number 01-037; Bordeaux, 2010, A00498-31). Written informed consent was obtained in accordance with French legislation. Of the 239 HCC cases, 105 (44%) developed in non-fibrotic (METAVIR F0-F1), 55 (23%) in chronic hepatitis (F2-F3), and 78 (33%) in cirrhotic liver (F4).

Clinicopathological data were available for all cases. The Liver Cancer (France) (LICA-FR) cohort mostly comprises males (81%), with a median age at sampling of 65 years, related to diverse risk factors, including alcohol (45%), HBV (18%), and HCV (16%). The 274 samples were analyzed using Illumina Infinium HumanMethylation450 BeadChip arrays for this study (see below). Somatic mutations were available for 209 samples previously analyzed by whole-genome sequencing (WGS) or whole-exome sequencing (WES). [START_REF] Schulze | Exome sequencing of hepatocellular carcinomas identifies new mutational signatures and potential therapeutic targets[END_REF][START_REF] Bayard | Cyclin A2/E1 activation defines a hepatocellular carcinoma subclass with a rearrangement signature of replication stress[END_REF][START_REF] Guichard | Integrated analysis of somatic mutations and focal copy-number changes identifies key genes and pathways in hepatocellular carcinoma[END_REF](27)(28) For samples that were not analyzed using these techniques, gene mutation data were completed using MiSeq or Sanger sequencing, as described. [START_REF] Nault | Clinical impact of genomic diversity from early to advanced hepatocellular carcinoma[END_REF] RNA sequencing (RNA-seq) data were also available for 145 tumor and 5 NT samples. [START_REF] Bayard | Cyclin A2/E1 activation defines a hepatocellular carcinoma subclass with a rearrangement signature of replication stress[END_REF]28) Gene expression of a panel of 190 genes was also analyzed in 229 HCCs by quantitative reverse-transcription polymerase chain reaction (qRT-PCR) on Fluidigm 96 dynamic arrays to classify HCC in the G1-G6 molecular groups, as described. [START_REF] Boyault | Transcriptome classification of HCC is related to gene alterations and to new therapeutic targets[END_REF][START_REF] Nault | Clinical impact of genomic diversity from early to advanced hepatocellular carcinoma[END_REF] Detailed clinical characteristics and sequencing details for each sample are provided in Supporting Table S1.

The Cancer Genome Atlas Liver Hepatocellular Carcinoma (TCGA-LIHC) [START_REF]Comprehensive and integrative genomic characterization of hepatocellular carcinoma[END_REF] and genomic predictors and oncogenic drivers in HCC (HEPTROMIC) [START_REF] Villanueva | DNA methylation-based prognosis and epidrivers in hepatocellular carcinoma[END_REF] cohorts are described in the Supporting Methods.

DNA methylation arrays

We analyzed the 274 samples from the LICA-FR cohort using Illumina Infinium HumanMethylation450 BeadChip arrays. Microarray experiments were performed by Integragen SA (Evry, France). In brief, genomic DNA was bisulfite-converted using the EZ-96 DNA
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This article is protected by copyright. All rights reserved Methylation Kit (Zymo Research, Irvine, CA, USA), whole-genome amplified, enzymatically fragmented, and hybridized to the BeadChip arrays in accordance with the manufacturer's instructions. The beta value (bval) DNA methylation scores for each locus were extracted together with detection P values from Illumina GenomeStudio software. The bval gives an estimate of the methylation level of each CpG locus using the ratio of intensities between methylated and unmethylated probes. We removed CpGs with "NA (not available)" values or a detection P value >0.05 in more than 20% of the samples, leaving 351,509 probes for analysis.

The two other cohorts (TCGA-LIHC and HEPTROMIC) were analyzed with the same methylation array. We retrieved the bval and detection P value matrices for these two data sets and selected reliable CpGs as we did for the LICA-FR cohort.

RNA-seq data processing

RNA-seq read counts per gene were obtained for the LICA-FR cohort, as described, [START_REF] Bayard | Cyclin A2/E1 activation defines a hepatocellular carcinoma subclass with a rearrangement signature of replication stress[END_REF] and directly from TCGA website for TCGA-LIHC cohort. We then applied the same pipeline to the raw counts of the two series to obtain normalized fragments per kilobase of exon per million reads mapped (FPKM) and variance stabilizing transformation (VST) matrices. We used DESeq2 [START_REF] Love | Moderated estimation of fold change and dispersion for RNAseq data with DESeq2[END_REF] to import raw read counts into R statistical software and apply VST to the raw count matrix. FPKM scores were calculated by normalizing the count matrix for the library size and the coding length of each gene.

ICA

We restricted each data set to the 200,000 most variant CpGs based on their standard deviation. We computed 20 independent methylation components (MCs) in each cohort using the FastICA algorithm, [START_REF] Hyvärinen | Fast and robust fixed-point algorithms for independent component analysis[END_REF] as implemented in the sklearn.decomposition Python library, with a first step of whitening of the matrix, the function of approximation to neg-entropy logcosh, and parallel algorithm. Because the FastICA algorithm involves random initialization, we performed 100 iterations and kept the results from the most stable iteration. A component was considered "stable" when a similar component (Pearson correlation of CpG contribution >0.9) was identified in 50% or more of the iterations. We selected the iteration giving the highest number of stable components and the highest average Pearson correlation score among stable components.
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We next compared the results obtained for the three data sets. The similarity of two components from two different data sets was determined by calculating the absolute value of the Pearson correlation coefficient from the contribution of their common CpGs. For further analysis, we selected the 13 most reliable components found in at least two of the three HCC data sets with a Pearson correlation score >0.45.

Association between MCs and (epi)genomic features

To better understand the preferential activity of each component toward specific regions, we analyzed the enrichment of their most contributing CpG sites across diverse types of (epi)genomic features. We selected the most representative CpG (MRCpG) sites of each MC by thresholding their absolute projections onto the MC: abs(projection) >0.005. We next estimated the enrichment of these MRCpGs across diverse (epi)genomic features (see the description of features and their sources in the Supporting Methods). To do so, we calculated an enrichment score (ES) for each feature corresponding to the ratio between the proportion of the most contributing CpGs being located within the feature and the proportion of the 200,000 analyzed CpGs being located within 

Association between MCs and clinico-molecular annotations

We analyzed the association of each MC with more than 50 clinical and molecular features. For this part, we chose to focus on the LICA-FR and TCGA-LIHC cohorts, for which extensive clinical and molecular data were available. The full list of clinical and molecular features included in the analysis is provided in the Supporting Methods. We first used linear models to identify features significantly correlated with sample contributions, using the lm function in R statistical software: lm(sample contribution ~ annotation). Only positive associations were considered (i.e., features associated with an increased activity of a component). For example, mutation of a given
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This article is protected by copyright. All rights reserved driver gene was considered to be associated with a component only if mutated cases displayed a higher activity of the MC, to favor the identification of causal factors rather than indirect associations. This step was done separately in the LICA-FR and TCGA-LIHC cohorts. Clinicomolecular features that were significant (P value <0.005) in both cohorts were then included in multivariate analyses also using the lm function: lm(sample contribution ~ all selected annotations). We defined the most contributing features of each MC as those that remained significant (P value <0.05) in multivariate analysis in both cohorts.

Data availability

The DNA methylation data generated for this study (274 tumor and NT liver tissues analyzed with Illumina Infinium HumanMethylation450 BeadChip arrays) have been deposited to the Gene Expression Omnibus database (accession number: GSE157341).

MethICA is an open-source collaborative initiative available in the GitHub repository

FunGeST/MethICA.
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RESULTS

Independent component analysis of liver cancer methylomes

To unravel the diverse epigenetic processes remodeling liver cancer methylomes, we analyzed three independent data sets (LICA-FR, n = 274; TCGA-LIHC, [START_REF]Comprehensive and integrative genomic characterization of hepatocellular carcinoma[END_REF] n = 325; HEPTROMIC, [START_REF] Villanueva | DNA methylation-based prognosis and epidrivers in hepatocellular carcinoma[END_REF] n = 243) totaling 738 HCC and 104 non-tumor (NT) liver samples, all profiled with Illumina Infinium HumanMethylation450 BeadChip arrays (Supporting Table S1). We first performed ICA within each cohort to decompose the DNA methylation matrix as a mixture of 20 independent methylation components (MCs), each characterized by a specific pattern of activation across samples and across CpG sites (Fig. 1A). To evaluate the reproducibility of the results, we quantified the correlation of MCs across the three data sets based on the contributions of CpG sites. A total of 13 components (MC1-MC13) were highly reproducible and shared by at least two data sets (Pearson correlation >0.45), 11 of which were identified in the three data sets (Supporting Fig. S1).

Then, we identified for each component a set of most representative CpG sites (MRCpGs, i.e., CpGs with the strongest contribution to the component), and we examined the DNA methylation changes across these MRCpGs in the 5% of tumors with the strongest deviation from NT liver tissues (Fig. 1B). MC1-MC3 were dominated by hypermethylation, MC10-MC13 were dominated by hypomethylation, and MC4-MC9 showed a combination of hyper-and hypomethylation. The range of methylation changes also varied strongly across components. MC10 and MC11 involved hypomethylation of CpG sites that are highly methylated in NT liver (median bval >0.87), whereas MC12 and MC13 involved hypomethylation of CpG sites with intermediate methylation levels (median bval ~0.7). MC1 and MC2 both involved hypermethylation of CpG sites with low methylation in NT liver (median bval = 0.14), but the median methylation increase was only 0.36 in MC1 versus 0.52 in MC2. Thus, each component displays its own dynamics of methylation changes.

Methylation components are preferentially active in specific chromatin states and sequence contexts

We next examined whether the MRCpGs of each component were preferentially located within specific CGI-based features (island, shore, shelf, or outside CGI), gene-based features (transcription start site [TSS] ± 500 bases, gene body, or intergenic), or chromatin states (Fig. 2A Accepted Article

This article is protected by copyright. All rights reserved and Supporting Fig. S2). Chromatin states were defined by the Roadmap consortium based on the chromatin immunoprecipitation (ChIP)-seq analysis of six different histone modifications in normal liver tissue. [START_REF] Kundaje | Roadmap Epigenomics Consortium. Integrative analysis of 111 reference human epigenomes[END_REF] Although histone marks are altered in cancer cells, we observed a good agreement between chromatin states defined in normal liver tissue and in the liver cancer cell line HepG2 (Supporting Fig. S3). Thus, normal liver chromatin states likely reflect reasonably well the actual chromatin state at the time DNA methylation changes occur. We also investigated the methylation domains and sequence contexts of the MRCpGs of each component (Fig. 2B). We first used normal liver whole-genome bisulfite sequencing (WGBS) data [START_REF] Salhab | A comprehensive analysis of 195 DNA methylomes reveals shared and cell-specific features of partially methylated domains[END_REF] to identify CpGs located in large (megabase-scale) partially methylated domains (PMDs) [START_REF] Lister | Human DNA methylomes at base resolution show widespread epigenomic differences[END_REF] and highly methylated domains (HMDs) or in short (hundreds to thousands of base pairs [bps]) lowly methylated regions (LMRs) and unmethylated regions (UMRs). LMRs and UMRs correspond respectively to distal and proximal regulatory elements. [START_REF] Stadler | DNA-binding factors shape the mouse methylome at distal regulatory regions[END_REF] We then classified the sequence context around each CpG dyad into 12 categories as described by Zhou et al., [START_REF] Zhou | DNA methylation loss in late-replicating domains is linked to mitotic cell division[END_REF] taking into account the local CpG density (number of CpG sites within 35 bps on each side of the dyad) and the nucleotides directly flanking the CpG (S = C or G; W = A or T).

The MRCpGs of hypermethylation components (MC1-MC3) were preferentially located in CGIs, TSSs, and UMRs but displayed different chromatin state enrichment patterns: mostly bivalent and Polycomb-repressed chromatin for MC2, active TSS for MC3, and a mixture for MC1 (Fig. 2A).

Hypomethylation components (MC10-MC13) were associated with inactive chromatin domains (Fig. 2A) but with different methylation contexts: MC10 and MC11 were mostly active in HMDs and MC12 and MC13 in PMDs (Fig. 2B). MC4-MC8, characterized by a more balanced combination of hyper-and hypomethylation events, were enriched in enhancer regions and LMRs.

These components had the greatest transcriptional impact with, on average, 20% of their MRCpGs linked with the expression of a gene versus 8.6% among hypermethylation components MC1 and MC2 and 5.6% among hypomethylation components MC10-MC13 (Supporting Fig. S4). The enrichment patterns of MCs within chromatin states and CpG sequence contexts were reproducible across the three cohorts (Supporting Figs. S5 andS6), suggesting that MCs correspond to genuine biological processes preferentially active in specific epigenomic contexts.

Gender-and age-related components
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This article is protected by copyright. All rights reserved To unravel the origin of each process, we analyzed the activity of components across tumor samples in two independent series (LICA-FR and TCGA-LIHC cohorts) for which extensive clinical and molecular data were available. We performed univariate (Fig. 3A; Supporting Table S2) and multivariate (Fig. 3B; Supporting Table S3) linear regression analyses to identify the main contributing features.

Several components were associated with general patient characteristics, such as gender and age.

MC3 was perfectly associated with gender (P = 5.0 × 10 -64 ; Fig. 4A). Of its MRCpGs, 96% were located within active TSS regions (Fig. 2A) of X chromosome genes (Fig. 4B). These CpGs were unmethylated in males and hemi-methylated in females (Fig. 4C). Thus, MC3 corresponds to the signature of X chromosome inactivation in females, illustrating the ability of MethICA to extract signatures of well-defined epigenetic processes, even when they involve a limited number of CpG sites.

Hypermethylation component MC1 involved CpG-dense islands enriched at bivalent promoters and enhancers (Fig. 2). These regions display a coexistence of active (monomethylation of histone H3 at lysine 4 [H3K4Me1] and/or trimethylation (H3K4Me3) and inactive (trimethylation of histone H3 on lysine 27 [H3K27Me3]) histone marks and have been shown to be prone to hypermethylation in cancer [START_REF] Schlesinger | Polycomb-Accepted Article This article is protected by copyright. All rights reserved mediated methylation on Lys27 of histone H3 pre-marks genes for de novo methylation in cancer[END_REF][START_REF] Easwaran | A DNA hypermethylation module for the stem/progenitor cell signature of cancer[END_REF] and aging. [START_REF] Rakyan | Human agingassociated DNA hypermethylation occurs preferentially at bivalent chromatin domains[END_REF][START_REF] Teschendorff | Age-dependent DNA methylation of genes that are suppressed in stem cells is a hallmark of cancer[END_REF] Consistently, the most contributing CpG sites of MC1 were progressively hypermethylated with age, both in HCC and NT liver (Fig. 4D).

However, the gain of methylation at these CpG sites was considerably faster in tumors (+0.32% per year on average) than in NT liver (+0.024% per year), and this observation was validated in cancers from several other tissues (Supporting Fig. S7). Thus, MC1 reflects the progressive hypermethylation of bivalent chromatin domains that occurs naturally with age but is sharply increased in tumors.

Hypomethylation components MC12 and MC13 also increased linearly with age in both LICA-FR and TCGA-LIHC series (Fig. 4D). These components were particularly active in late-replicated PMDs, known to be prone to hypomethylation in cancer and aging, [START_REF] Zhou | DNA methylation loss in late-replicating domains is linked to mitotic cell division[END_REF][START_REF] Berman | Regions of focal DNA hypermethylation and long-range hypomethylation in colorectal cancer coincide with nuclear lamina-associated domains[END_REF] but displayed different sequence context preferences (Fig. 5A). MC13 was more active in CpG-dense sequences, whereas MC12 was more active in sequences of low CpG density, particularly in the "solo-WCGW" context (CpG dyads surrounded by A/T and with no other CpG within 35 bps) prone to
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This article is protected by copyright. All rights reserved methylation loss along cell divisions. [START_REF] Zhou | DNA methylation loss in late-replicating domains is linked to mitotic cell division[END_REF] Thus, MC12 and MC13 suggest the existence of two distinct processes associated with the loss of methylation in late-replicated PMDs in liver cancer, operative in different sequence contexts. CTNNB1 mutation is a major modulator of DNA methylation in HCC Among HCC driver genes, CTNNB1 showed the greatest impact on methylation, being significantly associated with four distinct components (Fig. 3).

First, age-related hypermethylation (MC1) and hypomethylation (MC12 and MC13) components were markedly increased in CTNNB1-mutated tumors. This observation is partly explained by the fact that CTNNB1-mutated cases tend to be older (mean age, 66 years versus 61 for non-mutated cases; P = 0.017). However, these associations remained significant independently from age, CTNNB1 mutation being the most significant feature in multivariate analysis for MC12 and MC13 (Fig. 5B). As a result, CTNNB1-mutated tumors display a massive hypomethylation of PMDs as compared with other HCCs (Fig. 5A), with an average methylation in these regions of 45% versus 53% in other HCCs and 71% in NT liver.

In addition to age-related processes, MC8 was the most strongly associated with CTNNB1 activating mutations (P = 1.5 × 10 -21 ). In addition, different types of CTNNB1 mutations activate ß-catenin with different strengths, [START_REF] Rebouissou | Genotypephenotype correlation of CTNNB1 mutations reveals different ß-catenin activity associated with liver tumor progression[END_REF] and the activity of MC8 followed this gradient of activation (Fig. 6A). The most contributing CpG sites, preferentially located in active enhancers, were strongly correlated to the expression of adjacent genes (Fig. 6B) enriched in Wnt/ß-catenin target genes (Fig. 6C). Motif analysis revealed an enrichment of transcription factor 7 (TCF7)-binding sites in the vicinity of MC8 MRCpGs (Fig. 6D). TCF7 is a member of the TCF/lymphoid enhancer-binding factor (LEF) family of transcription factors, the main downstream effectors of Wnt signaling pathway. Thus, MC8 reveals a coordinated hypomethylation of enhancers bound by TCF7 in CTNNB1-mutated HCC, associated with the up-regulation of Wnt/ß-catenin pathway genes. A representative example is shown in Fig. 6E,F where the hypomethylation of a cluster of CpG sites, overlapping intragenic H3K27Ac and TCF7 ChIP-seq peaks, accompanies the overexpression of AXIN2 in CTNNB1-mutated tumors. These methylation changes likely play an active role in tumorigenesis by stabilizing the transcriptional changes induced by CTNNB1 mutations.
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This article is protected by copyright. All rights reserved Hypomethylation of HMD is a signature of cyclin-activated HCC with intense replication stress Unexpectedly, hypomethylation components MC10 and MC11 were enriched in early replicated, CpG-dense regions within HMDs (Fig. 5A), which have been shown to be hypomethylationresistant in previous studies. These components were strongly associated with the cyclin (CCN)-HCC subgroup of highly proliferative tumors, driven by cyclin A2/E1 (CCNA2/E1) activation (Fig. 5B). In these tumors, CCNA2 or CCNE1 activation by viral insertion, gene fusion, or enhancer hijacking leads to premature S phase entry and intense replication stress. [START_REF] Bayard | Cyclin A2/E1 activation defines a hepatocellular carcinoma subclass with a rearrangement signature of replication stress[END_REF] We hypothesize that, in CCN-HCC, cancer cells are pushed to replicate so fast that even early replicated HMDs become hypomethylated. As a result, this subgroup displays a striking hypomethylator phenotype involving all chromatin domains and sequence contexts (Fig. 5A). MC4, characterized by hypermethylation of partially methylated CpGs in early replicated regions, was also associated with CCN-HCC and may be another consequence of replication stress.

Altogether, our data indicate that several epigenetic processes are involved in the loss of DNA methylation in liver cancer cells. These processes are modulated by oncogenic alterations and lead to more or less extended hypomethylation patterns between molecular subgroups (Fig. 5A). CpG sites within PMDs are hypomethylated in all HCCs, but the methylation decrease is particularly strong in CTNNB1-mutated tumors. By contrast, CpG sites within HMD seem resistant to demethylation, except in CCN-HCC that are highly proliferative and subject to intense replication stress.

Methylation signatures related to cellular differentiation

MC2 and MC7 were encountered in tumors with a progenitor phenotype (Fig. 3), associated with diverse molecular features.

MC7 was significantly associated with ARID1A mutations in both the LICA-FR (P = 0.0012) and TCGA-LIHC (P = 1.2 × 10 -5 ) cohorts (Fig. 7A). ARID1A, a member of the SWltch/Sucrose Non-Fermentable (SWI/SNF) chromatin remodeling complex, is recurrently mutated in HCC (13%, the fourth most frequently altered gene [START_REF] Schulze | Exome sequencing of hepatocellular carcinomas identifies new mutational signatures and potential therapeutic targets[END_REF] ). In mice, Arid1a interacts with several transcription factors that repress proliferation and maintain liver differentiation (CCAAT enhancer-binding protein
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This article is protected by copyright. All rights reserved alpha [CEBPA], hepatocyte nuclear factor 4 alpha [Hnf4a], and forkhead box A2 [Foxa2]), and these pathways are down-regulated in Arid1a-deficient cells. [START_REF] Sun | Suppression of the SWI/SNF component Arid1a promotes mammalian regeneration[END_REF] Consistently, MC7 was characterized by a hypermethylation of enhancers enriched in several transcription factor binding motifs (Fig. 7B), including CEBPA, FOXA2, and HNF4A, but also nuclear factor I A (NFIA) implicated in the differentiation of several cell types. [START_REF] Piper | NFIA controls telencephalic progenitor cell differentiation through repression of the Notch effector Hes1[END_REF][START_REF] Hiraike | NFIA co-localizes with PPARγ and transcriptionally controls the brown fat gene program[END_REF][START_REF] Singh | NFIA and GATA3 are crucial regulators of embryonic articular cartilage differentiation[END_REF][START_REF] Chen | Transcription factors NFIA and NFIB induce cellular differentiation in high-grade astrocytoma[END_REF] In addition, genes paired with hypermethylated CpGs related to MC7 were enriched in liver-specific genes (Gene Set Enrichment Analysis [GSEA]; P < 2.2 × 10 -16 ; normalized enrichment score [NES] = 4.0). This methylation signature suggests that ARID1A deficiency impairs the DNA binding of several transcription factors and promotes the dedifferentiation of liver cancer cells.

MC2 was characterized by the hypermethylation of CGIs and CpG shores in chromatin regions repressed by Polycomb proteins (marked by the repressive H3K27Me3 histone mark only), in addition to bivalent TSS and enhancers (Fig. 2). Contrary to MC1, MC2 was not active in all HCCs but essentially in the G1 transcriptional subgroup (P = 8.1 × 10 -8 ; Fig. 7C,D). This subgroup, enriched in young patients of African origin, is characterized by a progenitor phenotype with an overexpression of fetal liver genes. [START_REF] Boyault | Transcriptome classification of HCC is related to gene alterations and to new therapeutic targets[END_REF][START_REF] Calderaro | Histological subtypes of hepatocellular carcinoma are related to gene mutations and molecular tumour classification[END_REF] G1 tumors display frequent alterations in AXIN1, ribosomal protein S6 kinase A3 (RPS6KA3), and BRCA1-associated protein 1 (BAP1) genes, all of which were significantly associated with MC2, but not independently from G1 subgroup (Fig. 7C). The specific hypermethylation signature of G1 tumors may thus reflect the epigenetic state of a progenitor cell of origin or the consequence of driver alterations enriched in this molecular subtype.

DNA methylation-based classification of HCC reflects the combination of several components

We next explored the relationships between MCs and methylation-based HCC classifications. 
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This article is protected by copyright. All Thus, MCs capture variations that are either widespread in the data set (e.g., MC1), restricted to a precise cluster (e.g., MC2), or dispersed across tumors belonging to distinct clusters (e.g., MC3), as clearly illustrated in t-distributed stochastic neighbor embedding (t-SNE) plots (Supporting Fig. S8). For example, ARID1A-mutated tumors are not enriched in a particular cluster, but MethICA was able to extract their common signature within MC7. Thus, ICA reveals individual sources of variation that are intermingled in cancer methylomes and highlights subtle methylation signatures beyond the main methylation clusters that reflect the activity of a few dominant processes.

Methylation components reveal pre-neoplastic changes in cirrhotic liver

We next examined the methylation profiles of 35 NT liver tissues of the LICA-FR cohort, comprising 5 non-fibrotic (METAVIR F0-F1), 14 chronic hepatitis (F2-F3), and 16 cirrhotic (F4) livers. Hierarchical clustering revealed four homogeneous subgroups strongly associated with fibrosis stage (P = 1.6 × 10 -6 ). The two main groups corresponded to cirrhotic and non-cirrhotic livers. Non-cirrhotic livers were further divided in three subgroups distinguishing F0-F1 from F2-F3 samples (Supporting Fig. S9A). To identify methylation changes accompanying cirrhosis, we compared the intensity of our 13 MCs between different fibrosis stages. MC6 and MC7 were significantly more active in cirrhotic liver (Supporting Fig. S9B), which was validated in TCGA-LIHC cohort (Supporting Fig. S9C).
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This article is protected by copyright. All rights reserved MC6 increased progressively in F2-F3 and F4 livers. This component was correlated with the level of immune infiltration estimated from gene expression data (Fig. 3) and with the immunemediated cancer field (ICF) signature, a signature of deregulated immune response associated with risk of HCC development in patients with cirrhosis. [START_REF] Moeini | An immune gene[END_REF] (Supporting Fig. S9D,E) DNA methylation changes related to MC6 involve two anti-correlated sets of CpGs. On one side, CpG sites located within hepato-specific enhancers, enriched in hepatocyte nuclear factor-binding motifs, are hypermethylated in samples with a stronger immune infiltrate (Supporting Fig. S9F). On the other side, CpG sites located within immune cell-specific enhancers, enriched in JUN/FOS-binding motifs, are demethylated in more infiltrated samples (Supporting Fig. S9G). Thus, MC6 is an epigenetic signature of the immune response that occurs in fibrotic / cirrhotic liver and promotes carcinogenesis. [START_REF] Moeini | An immune gene[END_REF] In addition, ARID1A-associated MC7 was activated in cirrhotic liver although to a lesser extent than in HCC (Supporting Fig. S9B,C). Interestingly, ultra-deep sequencing revealed ARID1A mutations in cirrhotic nodules, and Arid1a depletion was shown to promote clonal expansion and regeneration in chronic liver disease. (48) In agreement with these findings, our results suggest that the coordinated hypermethylation of enhancers implicated in liver differentiation may drive hepatocytes to a more proliferative state, favoring the clonal expansion of cirrhotic nodules.
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DISCUSSION

Independent component analysis of the largest HCC series analyzed so far revealed 13 different methylation components operative with different strengths across HCC and NT liver tissues. This represents a much greater diversity of signatures than identified in previous methylation studies.

Early reports described global changes in HCC as compared with NT liver tissue, including hypermethylation of CpG islands enriched in Polycomb-repressive complex 2 (PRC2) target genes, and a widespread hypomethylation in open sea regions. [START_REF] Zhang | CpG island methylator phenotype association with elevated serum alpha-fetoprotein level in hepatocellular carcinoma[END_REF][START_REF] Stefanska | Definition of the landscape of promoter DNA hypomethylation in liver cancer[END_REF][START_REF] Neumann | Methylome analysis and integrative profiling of human HCCs identify novel protumorigenic factors[END_REF][START_REF] Shen | Genome-wide DNA methylation profiles in hepatocellular carcinoma[END_REF] Previous unsupervised classifications revealed between three and seven HCC subgroups. [START_REF]Comprehensive and integrative genomic characterization of hepatocellular carcinoma[END_REF][START_REF] Mah | Methylation profiles reveal distinct subgroup of hepatocellular carcinoma patients with poor prognosis[END_REF][START_REF] Cheng | Integrative analysis of DNA methylation and gene expression reveals hepatocellular carcinoma-specific diagnostic biomarkers. Genome Accepted Article This article is protected by copyright[END_REF] In particular, TCGA described four tumor subgroups based on hypermethylated probes and three subgroups (largely overlapping) based on hypomethylated probes. These subgroups, strongly associated with our consensus clusters (Fig. 8D), display varying levels of hyper-and hypomethylation with respect to NT samples. However, ICA allowed us to define more DNA methylation signatures, related to precise biological processes, and to disentangle age-and gender-related processes from changes associated with specific tumor subgroups and driver alterations.

MC1 captured the hypermethylation of CGIs located in bivalent chromatin domains, known to occur naturally with aging. This component increases with age in both NT liver and HCC, but the slope of this increase is much sharper in tumors. By contrast, MC2 is associated with the G1 transcriptomic subgroup and defines a strongly hypermethylated HCC entity. Further studies are required to determine whether this methylation signature reflects a different cell of origin for this subgroup or is acquired during tumorigenesis.

Global loss of DNA methylation has been described in most cancer types, (49) including HCC, (50) but the mechanisms by which this hypomethylation occurs remain incompletely understood. We show here that four independent processes are involved in this process. MC12 and MC13 are preferentially active in late-replicated PMD, known to be prone to hypomethylation along cell divisions. [START_REF] Zhou | DNA methylation loss in late-replicating domains is linked to mitotic cell division[END_REF] Hypomethylation of MC12 and MC13 MRCpGs was correlated with age in HCC but, surprisingly, not in NT liver (Fig. 4D). We hypothesize that the loss of methylation in PMD occurs stochastically at different CpG sites in each normal cell and is thus barely detectable in NT tissue.

By contrast, clonal expansion amplifies the hypomethylation pattern of the cell of origin that becomes visible in the tumor, just like somatic mutations. In addition, these components were significantly more active in CTNNB1-mutated HCC. This might reflect differences in terms of cell
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The two other hypomethylation components (MC10 and MC11) affect HMDs and are particularly active in the CCN-HCC subgroup, driven by CCNA2/E1 activation. We previously found that, in CCN-HCC, replication stress induces a massive accumulation of structural rearrangements, preferentially located in early replicated regions. [START_REF] Bayard | Cyclin A2/E1 activation defines a hepatocellular carcinoma subclass with a rearrangement signature of replication stress[END_REF] Here we show that replication stress also impacts the methylome of these tumors, presumably because cells enter S phase prematurely, before the newly synthesized strand has been properly methylated.

Finally, we identified five MCs (MC4-MC8) of coordinated enhancer methylation reprogramming. These components have been missed in previous studies, possibly because they involve fewer CpG sites and can be dispersed across the main DNA methylation subgroups. However, they have the strongest transcriptional impact and constitute valuable markers of transcriptional network activity. MC8 reflects the precise level of activation of the Wnt/ß-catenin pathway induced by diverse CTNNB1 mutations. [START_REF] Rebouissou | Genotypephenotype correlation of CTNNB1 mutations reveals different ß-catenin activity associated with liver tumor progression[END_REF] To our knowledge, MC7 is the first methylation signature associated with ARID1A mutations. Motif analysis shed light on the transcription factors impacted by ARID1A deficiency, including several key regulators of liver differentiation.

Although our approach was not primarily designed for biomarker identification, several components may have therapeutic implications. First, a high activity of MC10 and MC11 indicates highly proliferative tumors with replication stress, who might benefit from ATR pathway inhibitors. [START_REF] Bayard | Cyclin A2/E1 activation defines a hepatocellular carcinoma subclass with a rearrangement signature of replication stress[END_REF] Second, MC6 provides a precise estimation of the level of immune infiltration in the tumor. A high activity of MC6 may thus highlight good candidates for immunotherapy. Future studies are required to determine if MCs constitute valuable biomarkers for treatment response.

Overall, ICA appears as a powerful tool for the analysis of DNA methylation signatures. All the utilities we developed for extracting and interpreting MCs are included in the MethICA package, applicable to both microarray and bisulfite sequencing data. S3.
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  indicates the number of most contributing CpGs located within the feature;, the 𝑁 𝑐𝑜𝑛𝑡𝑟𝑖𝑏 𝑓𝑒𝑎𝑡𝑢𝑟𝑒 𝑁 𝑐𝑜𝑛𝑡𝑟𝑖𝑏 number of most contributing CpGs; and , the number of CpGs located within the feature 𝑁 𝑎𝑙𝑙 𝑓𝑒𝑎𝑡𝑢𝑟𝑒 among the 200,000 analyzed CpGs.

  Consensus clustering revealed relatively stable partitions of both LICA-FR and TCGA-LIHC cohorts into eight tumor clusters. These clusters, highly consistent in the two series, defined seven
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 123 FIG. 1. Identification of 13 stable methylation components in liver cancers. (A) MethICA workflow. Three independent HCC data sets analyzed with the same methylation array are included in this study. ICA is used to decompose the methylation bval matrix X of dimension n  200,000 (n samples and 200,000 most variant CpGs) as the product of a matrix A (size n  20 MCs) giving the contributions of the samples to each MC (or activities of the MC in the n samples) and a matrix S (size 20  200,000) giving the projections of the CpGs onto each MC. CpGs having the largest projection onto a component (providing the greatest contribution) are the most strongly influenced by the epigenetic process underlying the MC. To unravel the biological meaning of each component, we analyzed the clinical and molecular annotations of the most contributing samples and the (epi)genomic features of the most contributing CpGs. (B) Major DNA methylation changes associated with each component in the LICA-FR cohort. For each MC, the most contributing CpG sites were selected and their methylation compared between NT samples and the 5% of tumors with the strongest methylation changes. Abbreviations: bval, beta value; CGI, CpG island; HCC, hepatocellular carcinoma; ICA, independent component analysis; LICA-FR, Liver Cancer (France); MC, methylation component; MethICA, methylation signature analysis with independent component analysis; T, tumor; NT, non-tumor; RNA-seq, RNA sequencing; TCGA-LIHC, The Cancer Genome Atlas Liver Hepatocellular Carcinoma; WES, whole-exome sequencing; WGS, whole-genome sequencing.
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 45678 FIG. 4. Gender-and age-related MCs. This figure describes MCs associated with gender (MC3) and age (MC1, MC12 and MC13). (A) Sample contribution to MC3 allows to perfectly split males and females. (B) Enrichment of MC3 most contributing CpG sites in sexual chromosomes. (C) Average methylation of MC3 most contributing CpG sites in males (x axis) and females (y axis). (D) Correlation of hypermethylation component MC1 and hypomethylation components MC12 and MC13 with age in cancerous (HCC) and NT liver tissue. Abbreviations: ChrX, chromosome Accepted Article
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