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Head and neck squamous cell carcinoma (HNSCC) is the sixth most incident cancer
worldwide. More than half of HNSCC patients experience locoregional or distant relapse
to treatment despite aggressive multimodal therapeutic approaches that include surgical
resection, radiation therapy, and adjuvant chemotherapy. Before the arrival of
immunotherapy, systemic chemotherapy was previously employed as the standard
first-line protocol with an association of cisplatin or carboplatin plus 5-fluorouracil plus
cetuximab (anti-EFGR antibody). Unfortunately, acquisition of therapy resistance is
common in patients with HNSCC and often results in local and distant failure. Despite
our better understanding of HNSCC biology, no other molecular-targeted agent has been
approved for HNSCC. In this review, we outline the mechanisms of resistance to the
therapeutic strategies currently used in HNSCC, discuss combination treatment
strategies to overcome them, and summarize the therapeutic regimens that are
presently being evaluated in early- and late-phase clinical trials.

Keywords: head and neck squamous-cell carcinoma, resistance, chemotherapy, cetuximab, immunotherapy,
targeted therapy
INTRODUCTION

Head and neck squamous cell carcinoma (HNSCC) is the sixth most incident cancer worldwide,
responsible for more than 700,000 cases worldwide per year and around 350,000 deaths, making it a
particularly fatal disease (1).

Squamous cell cancers of the oral cavity, the pharynx, and the larynx (the most frequent) are linked
to smoking and alcohol consumption, and squamous cell carcinomas of the oropharynx are most
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commonly associated with human papilloma virus (HPV)
infection, especially for young or nonsmoker patients. The
incidence of the latter is rising, mostly among men (2).
Cigarette- or alcohol-related and HPV-induced cancers are
described by the 2017 World Health Organization (WHO) as
two different clinical entities with different oncogenic pathways and
prognostics (3). Other anatomical localizations of head and neck
cancers include the sinus cavities and nasal fossae, which are rare
and rather linked to professional and environmental exposures.

More than half of HNSCC patients experience locoregional or
distant relapse despite aggressive multimodal therapeutic
approaches that include surgical resection (often with neck
dissection), radiation therapy (exclusive or postoperative), and
adjuvant chemotherapy given as a radiosensitizer (4). After
relapse, treatment options are often limited due to a high risk of
complications (e.g., fistulas, dysphagia, spinal cord myelopathy) if
surgery or reirradiation are attempted. If a salvage surgery (with
R0 resection) or reirradiation is indeed deemed unfeasible, then
systemic treatment options (detailed in this review) are proposed.
Before the arrival of immunotherapy, systemic chemotherapy was
employed as the standard first-line protocol with an association of
cisplatin or carboplatin and 5-fluorouracil plus cetuximab (anti-
EFGR antibody), known as the EXTREME protocol, which
confers a dismal median overall survival (OS) of around 10
months (5).

In this review, we outline the mechanisms of resistance to the
therapeutic strategies currently used in HNSCC, discuss
combination treatment strategies to overcome them, and
summarize the therapeutic regimens that are presently being
evaluated in early- and late-phase clinical trials.
MECHANISMS OF RESISTANCE
TO CHEMOTHERAPY

Chemotherapy is currently used as the therapeutic option for
advanced HNSCC tumors (T3 or T4), concurrent to radiation, if
surgical resection is deferred in the primary setting. For recurrent
or metastatic disease and for cases in which first-line treatment
with immunotherapy is not feasible, first-line systemic
chemotherapy is advised with a protocol that includes cisplatin
or carboplatin plus 5-fluorouracil and cetuximab (5, 6).
Unfortunately, acquisition of chemotherapy resistance is
Abbreviations: EGFR, Epidermal Growth Factor Receptor; PTPRS, The protein
tyrosine phosphatase receptor S (interacts with EGFR and inactivates EGFR);
CTX, cetuximab; TGF-a, transforming growth factor alpha; TGF-ß, transforming
growth factor beta; EGF, Epidermal Growth Factor; HB-EGF, heparin-binding
growth factor; JAK2, Janus kinase 2; MAPK, Mitogen-activated protein kinases;
MET, Mesenchymal Epithelial Transition; HER2 or ERbB2, human epidermal
growth factor receptor 2; HER3 or ERbB3, human epidermal growth factor
receptor 3; ROR2, receptor tyrosine kinase-like orphan receptor 2; IGF-1R,
Insulin growth factor type 1 receptor; VEGFR, vascular endothelial growth
factor receptor; PI3K, Phosphoinositide 3-kinases; mTOR, Mechanistic Target
Of Rapamycin Kinase; SMAD4, Mothers against decapentaplegic homolog 4;
DNA, deoxyribonucleic acid; RNA, ribonucleic acid; EMT, Epithelial-to-
mesenchymal transition; T cells, T lymphocyte; T regs, regulatory T lymphocyte.
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common in patients with HNSCC and often results in local
and distant failure.

Cancer Stem Cells and EMT
Epithelial-to-mesenchymal transition (EMT) is a reversible
embryonic transdifferentiation program that allows partial or
complete transition from an epithelial to a mesenchymal state
(7). Although EMT was initially considered to be involved in
invasion and metastatic spread, its key role in the initiation and
development of primary tumors as well as in resistance to
therapy is also demonstrated (8).

Nasopharyngeal carcinoma (NPC) is a highly invasive head–
neck cancer derived from the nasopharyngeal epithelium.
Preclinical studies in NPC cells demonstrate that resistance to
radiotherapy and adjuvant cisplatin (DDP) chemotherapy is
associated with morphological and molecular marker changes
consistent with EMT. Mechanistically, depletion of NEDD4 in
resistant cells leads to a partial reversion of the EMT phenotype,
suggesting that NEDD4 promotes EMT features and
chemoresistance of NPC in vitro (9). In a subsequent study,
analysis of parental HNE1 and cisplatin-resistant HNE1/DDP
NPC cells reveals that the upregulation of miR-139-5p
expression inhibits proliferation, invasion, migration, and
EMT. In these cells, miR-139-5p expression levels positively
correlate with DDP-induced apoptosis, suggesting that miR-
139-5p is associated with DDP resistance in human NPC by
modulating the EMT (10).

More recently, it was demonstrated that epithelial
mesenchymal crosstalk (EMC), which constitutes the interaction
of the tumor stroma and associated fibroblasts with epithelial
cancer cells, induces a hybrid epithelial–mesenchymal phenotype
in HNSCC cells that is associated with chemotherapy resistance,
via IL-6/STAT3 pathway activation (11). Interestingly,
transcriptome analyses of HNSCC cell lines reveals that STAT1
and STAT3 activation enable aldo-keto reductase family 1
member C1 (AKR1C1)-induced resistance to cisplatin, which
can be overcome by ruxolitinib treatment (12).

Cisplatin-resistant oral squamous cell carcinoma (OSCC)
cells exhibit an enriched putative cancer stem–like signature
with increased expression of CD44 and Oct-4 and enhanced
sphere-forming ability, coupled with the acquisition of an EMT
phenotype. This study also reveals that, irrespective of drug
treatment, cell migration is significantly increased in cisplatin-
resistant cell lines compared with drug-sensitive cells. In line
with these observations, bioinformatic analysis of miRNA–
mRNA networks in cisplatin-resistant OSCC cells reveals the
upregulation of ATP-binding cassette (ABC) transporter genes,
genes associated with inhibition of apoptosis (e.g., BIRC family)
and cancer stem cell (CSC) marker CD44 (13).

A subpopulation of CSCs characterized by high levels of
CD44v3 and aldehyde dehydrogenase-1 (ALDH1) expression
has been identified in HNSCC-derived HSC-3 cells and HNSCC
patient samples. In HSC-3 cells, it is shown that hyaluronan
(HA) stimulates the interaction of CD44v3 with Oct-4-Sox2-
Nanog, which results in the nuclear translocation of these three
CSC transcription factors. Notably, it is demonstrated that Oct-
4-Sox2-Nanog– dependent activation of miR-302 promotes the
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upregulation of the survival proteins cIAP-1, cIAP-2, and XIAP,
leading to self-renewal and cisplatin resistance. In this context,
transfection with an anti-miR-302 inhibitor is shown to
downregulate the expression of these survival proteins and to
abrogate the HA-CD44v3–mediated sphere formation and
chemoresistance (14). It is noteworthy that the histone
methyltransferase DOT1L is also upregulated by HA in CSCs
isolated from HSC-3 cells and results in the overexpression of
RhoGTPases and survival proteins involved in cell invasion and
cisplatin resistance (15).

Inhibition of the aldehyde dehydrogenase 1 family member
A1 (ALDH1A1) in cisplatin-resistant HNSCC cells results in
downregulation of CSC markers that are diminished in
migratory, self-renewal, and tumorigenic potential and
resensitizes HNSCC cells to cisplatin. These observations are
further validated in four ex vivo explants from HNSCC patients
in which combined treatment of cisplatin and NCT-501, a
theophylline-based inhibitor of ALDH1A1, results in a
significant decrease in proliferating cells as compared with
monotherapy (16). In a subsequent study, gene set enrichment
analysis identified enhanced FGF2 expression in cisplatin-
resistant ALDHhigh/CD44high HNSCC cells. Pharmacological
inhibition of FGF signaling using BGJ398 preferentially targeted
the ALDHhigh/CD44high subpopulation, suggesting that FGFR
signaling plays a key role in in vitro stemness and in cisplatin
resistance in HNSCC cells (17).

Of note, preclinical studies show that long noncoding RNA
FOXD2-AS1 regulates therapeutic resistance in laryngeal squamous
cell carcinoma (LSCC) by acting as an upstream activator of
STAT3, which is essential to maintain cancer stemness. In LSCC
patients, FOXD2-AS1 expression was predictive of poor prognosis
in chemotherapy-resistant patients (18).

Overall, these studies show that the acquisition of CSC
properties and the transition to a mesenchymal phenotype
mediate chemotherapy resistance of HNSCC.

DNA Damage
Cisplatin triggers the formation of phosphorylated histone
H2AX (g H2AX)-positive foci at the site of DNA damage (19),
dependent on ATR and via the activation of downstream
CHEK1/2 (20). In HNSCC, as well as in other cancer types,
altered DNA damage response signaling has been associated with
resistance to chemotherapies (21).

Indeed, functional depletion of DDR effectors WDHD1,
DSCC1, CSNK2B, POLR2I, and RAD54L in HNSCC cells
treated with cisplatin results in decreased ATR serine/
threonine kinase (ATR) phosphorylation and reduces cisplatin-
induction of g H2AX foci, suggesting that impaired DDR
signaling is a driving mechanism of cisplatin resistance in
HNSCC in vitro (21). Moreover, gene expression analysis of
pretreatment biopsy specimens from 64 HNSCC patients treated
with 5−FU/cisplatin identified that ERCC1 expression is a
significant predictor of response to chemotherapy, further
indicating that DNA repair is a pivotal mechanism implicated
in response to chemotherapy in HNSCC (22).

At present, clinical trials are evaluating the efficacy of targeting
DNA damage response in HNSCC. ATR acts as a DNA damage
Frontiers in Oncology | www.frontiersin.org 3
sensor, activating cell cycle checkpoint signaling upon DNA stress.
Pharmacological inhibition of ATR using M6620 is currently
being tested in combination with cisplatin and radiation therapy
in the setting of locally advanced HNSCC (NCT02567422).
Similarly, a modular, phase-I/Ib, open-label trial is ongoing to
evaluate the efficacy of ceralasertib (AZD6738, ATR inhibitor) in
combination with carboplatin (NCT02264678).

Along the same lines, because PARP is involved in DNA
repair, inhibition of PARP may enhance the damaging effects of
chemotherapy on tumor DNA. A phase-I/II study recently
reported the safety and efficacy of veliparib, a PARP inhibitor,
in combination with carboplatin-paclitaxel chemotherapy in
patients with locoregionally advanced HNSCC (23). The WEE1
tyrosine kinase maintains genomic stability and regulates G2–M
transition, particularly in p53-deficient tumors, protecting cells
against replication stress and subsequent cell death. A phase-I
clinical trial evaluating the triplet combination of AZD1775
(WEE1 inhibitor), cisplatin and docetaxel reported satisfactory
results in terms of safety and tolerability as well as promising
antitumor efficacy in patients with stage-III/IVB HNSCC (i.e.,
partial response in 5 patients and stable disease in 4
patients) (24).

Epigenetic Modifications
Resistance to cisplatin-based chemotherapy can be also
modulated by epigenetic alterations. Indeed, hypermethylation
of the promoter CpG islands of the neurofilament light
polypeptide (NEFL) gene is associated with resistance to
cisplatin-based chemotherapy in HNSCC cell lines. Functional
analyses showed that NEFL interacts with tuberous sclerosis
complex 1 (TSC1) at the protein level. Because TSC1 is a negative
regulator of the mTOR pathway, it is suggested that NEFL
downregulation results in functional activation of the mTOR
pathway and, thus, cisplatin resistance. Interestingly, in this
study, analysis of more than 50 HNSCC patient samples
evidenced that NEFL promoter hypermethylation predicted
diminished OS and disease-free survival in patients treated
with cisplatin-based chemotherapy (25). A recent clinical trial
evaluated the impact of mTOR pathway inhibition in HNSCC
patients in the neoadjuvant setting. This study reports that
rapamycin treatment was well tolerated, reduced mTOR
signaling (i.e., phosphorylation of S6, AKT, and 4EBP) and
tumor growth, and resulted in significant clinical responses in
4/16 of patients (1 complete response, 3 partial responses, and 12
stable disease) (26).

Histone modifiers are essential for chromatin dynamics and
gene expression, and their dysregulated function may alter gene
regulation in favor of oncogenic growth. Elevated expression of
p21-activated kinase 2 (PAK2), a binding partner of the Rho
GTPases that are implicated in chromatin remodeling, cell
proliferation, and apoptosis, is correlated with chemoresistance
and is associated with the poor clinical outcome of HNSCC
patients. Mechanistically, PAK2 upregulates c-Myc expression,
which, in turn, transcriptionally activates and induces pyruvate
kinase M2 (PKM2) expression, resulting in reduced aerobic
glycolysis, proliferation, and chemotherapeutic resistance of
HNSCC cells (27).
February 2021 | Volume 11 | Article 614332
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Small noncoding RNAs are also key effectors of transcriptional
gene silencing in HNSCC. Analysis of global miRNA expression in
CD44-expressing HNSCC cells reveals that miR-629-3p expression
promotes cell migration and inhibits apoptotic cell death upon
cisplatin treatment. Of note, miR-629-3p-transfected cells display a
significant enrichment of gene sets associated with drug
metabolism and EMT. Interestingly, the role of miR-629-3p in
conferring resistance to cisplatin was also observed in a xenograft
model, and the expression of miR-629-3p was associated with
decreased survival in HNSCC patients, potentially suggesting a
physio-pathological role of miR-629-3p in resistance to cisplatin in
HNSCC (28).

Enhanced expression of miR-96-5p is shown to promote cell
migration but not cell proliferation, in p53-mutant HNSCC cell
lines and to drive resistance to radiotherapy and cisplatin-
based chemotherapy in vitro (29). Of note, this study identified
PTEN, a negative regulator of the intracellular levels of
phosphatidylinositol-3,4,5-trisphosphate as a direct target
of miR-96-5p through the binding to its cognate site on the
3’UTR of PTEN. Interestingly, functional experiments
performed in vitro shows that PTEN depletion recapitulates
the biological effects of miR-96-5p overexpression in HNSCC
cells as they were less prone to cisplatin-induced cell killing (29).

At present, a noninterventional clinical trial (NCT03953443)
is evaluating the impact of expression and epigenetic silencing of
microRNAs for predicting therapeutic response and prognosis of
HPV-negative HNSCC.

Further knowledge on the epigenetic alterations that promote
HNSCC chemoresistance can open the possibility for the
development of therapeutic strategies that can be used as an
adjuvant therapy associated with conventional chemotherapeutic
drugs to enhance treatment effectiveness.

Evasion of apoptosis
The adaptive response to chemotherapy in HNSCC is modulated
by changes in the expression of pro- or anti-apoptotic proteins
and include defects in cellular responses caused by mutations of
tumor suppressor gene TP53 (30, 31).

Survivin (BIRC5), a member of the inhibitor of apoptosis (IAP)
gene family, is shown to be significantly upregulated in HNSCC
primary tumors and cell lines and to be particularly highly
expressed in HPV-negative patients who generally respond poorly
to cisplatin treatment (32). Immunohistochemical and mutational
analyses on HNSCC biopsies from patients displaying high levels of
nuclear survivin (BIRC5) identified the presence of the somatic
mutation c.278T>C (p.Phe93Ser). Functional characterization of
this mutant by ectopic expression and microinjection experiments
revealed that it attenuates the cytoprotective activity of survivin
against chemoradiation-induced apoptosis. Therefore, genetic
inactivation of survivin may promote an increased therapy
response in cancer patients (33).

Interestingly, pharmacological inhibition of survivin using the
small molecule YM155, either as a single agent or in combination
with cisplatin, evidenced a significant dose-dependent decrease
in cell proliferation and the reversion of cisplatin resistance in in
vitro and in vivo models of HNSCC. Mechanistically, YM155
induced a rapid reduction of survivin in the cytoplasm, which is
Frontiers in Oncology | www.frontiersin.org 4
key for its antiapoptotic function (32). Thus, survivin inhibition
might potentially be a novel strategy to enhance the effectiveness
of chemotherapy in HNSCC.

The x-linked inhibitor of apoptosis (XIAP) is an E3 ubiquitin
protein ligase that functions through binding to tumor
necrosis factor receptor–associated factors TRAF1 and TRAF2
to inhibit apoptosis. Analysis of XIAP expression in tumor
samples from 60 patients with advanced HNSCC, before and
after chemotherapy, evidenced that XIAP is a predictor of
cisplatin response and prognosis for patients with advanced
HNSCC. Interestingly, preclinical experiments show that
inhibiting XIAP expression with siRNA in XIAP-high HNSCC
cells markedly increased their sensitivity to cisplatin treatment
(30). Of note, the dual cIAP/XIAP antagonist ASTX660
significantly delays growth of both HPV- and HPV+ human
tumor xenografts in combination with radiotherapy.

Resistance to the activity of TNF-related apoptosis inducing
ligand (TRAIL), an effector of tumor cell–specific apoptosis, is
associated with HPV positivity in HNSCC in vitro. HPV-positive
HNSCC cell lines were sensitized to TRAIL-induced cell death by
bortezomib-mediated proteasome inhibition via the activation of
caspases 8, 9, and 3; increased membrane expression of TRAIL-
R2; and G2/M arrest. Of note, XIAP depletion also augmented
HPV-positive HNSCC cell death in response to TRAIL alone and
in combination with bortezomib (34).

Tumor Microenvironment (TME)
HNSCC tumors are commonly associated with hypoxia,
which is characterized by an acute or chronic decline in
oxygen tension.

Activin receptor–like kinase (ALK)-1 represents a promising
target for antiangiogenic therapy in solid tumors. activin
receptor–like kinase-1 ligand trap (ALK1-Fc) is a chimeric
protein consisting of the ALK1 extracellular domain fused to
the Fc-part of an antibody. ALK1-Fc prevents the binding of
BMP9 and BMP10 to the endothelial ALK1 receptor, which
results in decreasing angiogenic responses (35). Therapeutic
combination of ALK1-Fc with cisplatin is shown to inhibit
tumor growth in HNSCC in vivo models more efficiently than
chemotherapy alone. Treatment of mice with ALK1-Fc strongly
decreased the microvascular density of tumors, increased the
pericyte coverage of the remaining tumor vessels, and decreased
the hypoxia within the tumor (36). Interestingly, results of an
early-phase clinical trial show that the ALK1-Fc displayed
promising antitumor activity in HNSCC patients with advanced
refractory cancer (35).

Signaling via the SDF-1/CXCR4 axis, a chemokine-receptor
pathway, is involved in cancer progression due to its roles in
modulation of dendritic cells, enhanced matrix metalloproteinase
activity, and the induction of TNF-alpha production and
angiogenesis. Analysis of the expression of SDF-1 and CXCR4 in
a cohort of 221 patients with locally advanced HNSCC evidenced
that SDF-1 is associated with resistance to adjuvant radiotherapy
concurrent with cisplatin-based chemotherapy (37). In this study,
neither SDF-1 nor CXCR4 expression were associated with distant
metastasis or with OS. The functional basis of these observations
as well as the potential role of SDF-1/CXCR4 as a therapeutic
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target to overcome treatment resistance in HNSCC remains to
be determined.

In preclinical models of OSCC, combination therapy of cisplatin
and inhibitors of VEGFR (i.e., pazopanib and nintedanib) was more
potent than treatment with chemotherapy alone (38). The efficacy
and toxicity of docetaxel with or without vandetanib, an inhibitor of
VEGFR, RET, and EGFR, was investigated in patients with
advanced recurrent or metastatic HNSCC. This trial shows only a
minor trend toward improved PFS for the combination arm (39).
Of note, a current clinical trial is ongoing to evaluate the
combination of atezolizumab (humanized IgG1 antibody against
PD-L1) and bevacizumab (monoclonal antibody developed against
VEGF) in patients with recurrent or metastatic HNSCC
(ATHENA, NCT03818061).

The TME also constitutes a reservoir of cancer-associated
fibroblasts (CAFs) which, in a close crosstalk with tumor cells,
enhance the production of growth factors, cytokines, chemokines,
and inflammatory mediators to promote tumor growth (40). CAFs
are observed in both primary and metastatic HNSCC, and oral
CAFs are reported to acquire rapid growth and increased
proliferation and viability compared with normal oral fibroblasts
(40). CAF-secreted paracrine factors increase HNSCC migration,
invasion, and proliferation in vitro and promote tumor growth and
metastases in vivo (i.e., orthotopic floor-of-the-mouth tumor
model) (41).

CAFs are also known to mediate resistance to anticancer drugs
in HNSCC. In HNSCC cell lines, culture with conditioned medium
from a tumor cell/CAF coculture induced cisplatin resistance and
increased their colony-formation capacity (11). Interestingly,
exosomal miR-196a released by CAFs targets CDKN1B and
ING5 and, thus, confers cisplatin resistance in vitro (42).
Interestingly, in this context, high levels of plasma exosomal miR-
196a are clinically correlated with poor OS and chemoresistance in
HNSCC patients. In line with these observations, it is demonstrated
that, in OSCC patients, CAFs secrete increased levels of midkine (a
heparin-binding growth factor that promotes carcinogenesis and
chemoresistance) and abrogated cisplatin-induced cell death (43).
Finally, analysis of tumor specimens obtained from 60 OSCC
patients who underwent surgery following 5-fluorouracil-based
chemoradiotherapy revealed that higher numbers of CAFs and
tumor-associated macrophages (TAMs) were significantly
correlated with a poor prognosis, suggesting their potential as
biomarkers for predicting the clinical response to 5-FU-based
chemoradiotherapy (44).

Understanding how CAFs contribute to drug resistance,
proliferation, invasion, and metastasis might open up new
strategies for the diagnosis, prognosis, and therapy of HNSCC.
MECHANISMS OF RESISTANCE
TO CETUXIMAB

Initially described in 1962 by Cohen (45, 46), the epidermal
growth factor receptor (EGFR) is a transmembrane receptor with
tyrosine kinase activity (47). Several ligands bind specifically
EGFR (e.g., epidermal growth factor [EGF], tumor growth
Frontiers in Oncology | www.frontiersin.org 5
factor-alpha [TGF-alpha], and amphiregulin), and others
(betacellulin, heparin-binding growth factor [HB-EGF], and
epiregulin) bind to both EGFR and ErbB4 (48–50). Ligand
binding induces the homo- or hetero-dimerization of EGFR,
which is followed by the activation of downstream signaling,
mainly via the RAS–RAF–MEK–ERK, the PI3K–AKT–mTOR,
and the JAK–STAT cascades (51). These pathways are involved
in the carcinogenesis and invasiveness of many cancer types (52).

Because EGFR is overexpressed in 80%–90% of HNSCC
cases, tumors are often addicted to EGFR signaling for
sustained survival and proliferation, and this overexpression is
correlated with poor prognosis and treatment outcomes (53–55),
therapies targeting EGFR have been widely evaluated for
HNSCC (56–58): first, intravenous anti-EGFR antibodies that
bind to the extracellular domain of the receptor causing its
internalization to prevent its activation by other ligand–
receptor interactions (59) while favoring antibody-dependent
cell-mediated cytotoxicity (i.e., ADCC, which refers to the
linking to innate and adaptive antitumor immune responses
via NK cells and antigen-presenting cells that lead to EGFR-
specific T cells) (60–63) and ii-oral EGFR tyrosine kinase
inhibitors (TKI) binding to the intracellular domain of EGFR
inhibiting its autophosphorylation (blocking of the ATP binding
to the intracellular tyrosine kinase domain of EGFR) and
downstream signaling (56, 64, 65).

Cetuximab (CTX), a monoclonal antibody targeting the
EGFR extracellular domain, is to date the only targeted therapy
that has demonstrated benefits in OS in combination with both
radiotherapy for patients with locally advanced HNSCC (66) and
chemotherapy (platinum, 5-FU, and CTX) as the first-line
treatment of patients with recurrent and/or metastatic HNSCC
(5, 67). Of note, CTX has never proven to be effective
postoperatively (56, 58, 68).

Despite our better understanding of HNSCC biology (51, 69–
71), no other molecular-targeted agent has been approved for
HNSCC (12). Furthermore, CTX has shown limited efficacy in
HNSCC with an overall response rate of 10%–20%, contrasting
with the high rates of EGFR overexpression (51, 72). This
underlines the existence of resistance mechanisms, remaining
unresolved, but for which several hypotheses have been proposed
(48, 56, 64, 67, 73–81) (4, 12, 21, 24, 29–37). The different type of
resistance mechanisms to CTX could be defined as follows:
alterations of the EGFR-ligand binding, alterations of the
EGFR downstream signaling effectors, parallel/bypass pathway
activation, alterations of proteins involved in classic cancer
pathways, EMT, epigenetic alterations and establishment of an
immunosuppressive TME (Figure 1). In this review and for each
CTX resistance mechanism, we report preclinical (based on
HNSCC cell lines/xenograft) and clinical evidence of CTX
resistance as well as ongoing clinical trials of CTX-based
combined therapies to overcome CTX resistance (Table 1).

Alterations in EGFR and Its ligands
Alterations of the antibody–receptor interactions can be induced
by either alteration of the EGFR (82–92) or via competition with
other EGFR ligands (87, 93–98).
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EGFR Alterations
Several EGFR alterations have been reported in preclinical
studies. First, loss of the EGFR phosphatase transmembrane
protein tyrosine phosphatase RPTP sigma (PTPRS), which is
known to directly interact, dephosphorylate, and inactivate
EGFR (99), enhances EGFR-induced transformation and
promotes EGFR/PI3K pathway activation, resulting in
resistance to EGFR inhibition (88). Furthermore, constitutive
activation of the EGFR, such as the EGFR variant III (EGFRvIII,
activating mutation), results in activation of several downstream
modulators (preferentially the PI3K pathway) and participates in
increasing tumorigenicity and CTX resistance (92).

On the other hand, several CTX resistance mechanisms are
based on the perturbation of CTX binding on EGFR. Indeed,
contrary to the classic EGFR located on the plasma membrane,
the nuclear EGFR (translocation mediated by the Src family
kinases) cannot be targeted by CTX and, thus, functions as a
transcription factor for several factors, inducing proliferation
(cyclin D1, iNOS, B-myb, and aurora kinase A) (91). Moreover,
the single nucleotide polymorphism encoding EGFRK521 (K-
allele), which is expressed in >40% of HNSCC cases, has been
shown to reduce stability of the EGFR and, thus, the affinity for
CTX binding (85). Finally, the two concurrent, nonsynonymous
missense G33S and N56K mutations in the extracellular domain
Frontiers in Oncology | www.frontiersin.org 6
of EGFR restrict adoption of a fully closed (tethered) and inactive
EGFR conformation, thus, not permitting binding of CTX to the
EGFR (82, 86).

Besides the preclinical evidence, clinical studies support some
of the previously cited CTX-resistance mechanisms. Based on
analysis of n=31 HNSCC (oral cavity) cases, Morris et al. find
significant PTPRS loss or deletion in 32% of cases (88). They
observed pathway activation (elevated levels of phospho-EGFR
and phospho-AKT) in tumors with PTPRS deletion but not in
tumors lacking PTPRS deletion. Smilek et al. show that a somatic
EGFR mutation located in exon 19 may contribute to the limited
clinical response to therapy with CTX plus radiotherapy (n=2/29
patients with advanced HNSCC) (86). Moreover, the high
EGFRvIII expression, detected in 17%–42% of HNSCC tumors,
was significantly and independently associated with shorter
progression-free survival in patients with recurrent or
metastatic HNSCC treated by CTX + Docetaxel (87, 92). For
some authors, the role of this EGFR polymorphism in CTX
resistance remains limited (100). The EGFR extracellular domain
mutation G465R is reported to confer resistance to CTX by
altering its binding to EGFR in a patient with a regional neck
recurrence of an oral cavity HNSCC (83).

CTX-based combined therapy has been tested in the
preclinical as well as clinical setting to overcome the previously
FIGURE 1 | Molecular mechanisms contributing to Cetuximab resistance, in particular through alterations of the EGFR pathways, activation of bypass pathways and
alterations of downstream signaling effectors. Red lines and arrows show mechanisms contributing to Cetuximab resistance, and green lines and arrows show
mechanisms contributing to Cetuximab sensitivity. (CTX, Cetuximab; EGFR, Epidermal Growth Factor Receptor; RTK, Tyrosine Kinase Receptor; EMT, epithelial-
mesenchymal-transition; uPAR, urokinase-type plasminogen activator receptor; STAT3, signal transducer and activator of transcription 3; PTPRS, Transmembrane
Protein Tyrosine Phosphatase RPTPsigma; PTEN, phosphatase and tensin homolog; AURKA, Aurora Kinase A; AURKB, Aurora Kinase B).
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TABLE 1 | Resistance mechanisms to chemotherapy (left), cetuximab (middle) and immunotherapy (right), described in head and neck squamous cell carcinoma.

CHEMOTHERAPY CETUXIMAB

Target alterations DNA damage EGFR and its ligands EGFR alterations
Loss of PTPRS
EGFR variant III
Nuclear translocation
SNP EGFR-K521

DNA damage response
effectors

EGFR G465R and concurrent EGFR G33S and EGFR N56K

ERCC1 expression Competition with other ligands
ATR, WEE1 and PARP
activation

Aberrant expression of TGF-a, TGF-b, EGF, HB-EGF,
amphiregulin and heregulin

EGFR downstream
effectors

STAT3 activation by EGFR, JAK2 or a Src Kinase
Src kinase activation
RAS/MAPK pathway activation
PI3K/Akt/mTOR pathway activation (e.g. PTEN mutation)

Bypass pathway activation Apoptosis
evasion

Survivin expression RTK activation MET, AXL, HER2, HER3, ROR2, IGF-1R and VEGFR
Increased XIAP and TRAIL
expression

Apoptosis evasion Loss of the tumor suppressor gene TP53

Metabolism Hypoxia (i.e. HIF-1a overexpression)
Epithelial-to-mesenchymal
transition / cancer stem
cells

NEDD4 overexpression Expression of lymphotoxin
miR-139-5p down-regulation EGFR methylation
IL-6/STAT3 pathway activation Secretion of CTX-containing extracellular vesicles
Increased expression of CD44 and Oct-4 Upregulation of EMT-related genes
Upregulation of ABC transporter genes Loss of the tumor suppressor gene SMAD4
Increased ALDH1 expression

Epigenetic modifications Activation of miR-302 Altered expression of growth factor receptors and EMT-related genes by:
Increased FOXD2-AS1 expression DNA methylation
Up-regulation of histone methyltransferase
DOT1L

Histone modifications

NEFL promoter hypermethylation Chromatin remodeling
Elevated expression of PAK2 Noncoding RNAs
miR-629-3p expression

TME Enhanced expression of miR-96-5p
ALK1 activation T regs and MDSC proliferation
SDF-1/CXCR4 expression T cells exhaustion or impairment
Cancer associated fibroblasts (CAF) proliferation Toll-like receptor 4 (TLR4) pathway activation

Cancer associated fibroblasts (CAF) proliferation
Frontiers in Oncology | www.fro
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IMMUNOTHERAPY

Intrinsic resistance Tumor Immunogenicity and Antigen presentation
Selection of subclones lacking the expression of neoantigens
downregulation of MHC class I (MHC-I)
Loss of function of b2-microglobulin
Alterations in STAT1
Oncogenic pathways
MAPK pathway
WNT/b-catenin pathway
PI3K pathway
Soluble molecules
Secretion of pro-tumoral cytokines IL-6, and IL-10
IDO1 overexpression
Secretion of immunosuppressive exosomes containing TGF-b, PD-1 and CTLA4

Extrinsic resistance Inhibitory checkpoint molecules
CTLA-4 expression in Treg TILs
LAG-3
TIM-3
KIR2DL-1, KIR2D-2, KIR2D-3
Stimulatory agonist molecules
Costimulatory agonists: Ox40, 4-1BB, ICOS and CD40
Immunosuppressive cells
Myeloid derived suppressor cells
Tregs
Tumor-associated macrophages
For each resistance mechanism, preclinical and/or clinical evidence of their role in resistance as well as combined therapeutic strategies to overcome it are developed in the manuscript.
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cited resistance mechanisms. Dasatinib (BMS-354825), a
tyrosine kinase inhibitor (TKI), limits the nuclear EGFR
translocation (by blocking the Src family kinases), which leads
to increased EGFR on the plasma membrane and restores
sensitivity to CTX (90). Thus, Dasatinib is currently evaluated
in combination with CTX in patients with recurrent HNSCC
(NCT01488318, phase 2) (84) as well as in combination
with CTX/cisplatin/RT (NCT00882583, phase 1). Interestingly,
in the CTX + Dasatinib combination setting, patients with
low serum IL6 have shown clinical benefit and improved OS
(NCT01488318) (84).

Aberrant Expression of EGFR Ligands
The CTX-EGFR interactions are reduced in the context of
competitive interaction with the overexpression of some
ligands, such as TGF-a, TGF-b, EGF, HB-EGF, amphiregulin,
and the aberrant HER3 ligand heregulin-expression (87, 93–98).
Thus, this autocrine/paracrine growth factor production reduces
CTX effectiveness in several HNSCC cell lines.

Indeed, based on the analysis of tumor biopsies from n=47
recurrent/metastatic HNSCC, the amphiregulin overexpression
(representing 47% of cases) was a statistically significant
prognostic factor of worse OS and progression-free survival
(87). Yonesaka et al. report that n=2/28 HNSCC tumor
samples that presented aberrant heregulin expression
comparable to that of HNSCC CTX-resistant cell lines
(FaDuCR cells) were resistant to CTX (94).

Interestingly, FaDuCR recovered the sensitivity to CTX in
combination with Pertuzumab (anti-HER2 antibody) (94).
Indeed, Pertuzumab prevents the binding of HER2 with its
ligand (heregulin), avoiding the coupling of HER2/HER3, thus,
resulting in the absence of the HER3-AKT pathway activation,
which is responsible for inducing CTX resistance.

Alterations of EGFR Downstream
Signaling Effectors
Activation of downstream signaling effectors, such as STAT3
(signal transducer and activator of transcription 3) (77, 84, 101–
106), Src Kinases (64, 107, 108), RAS/MAPK pathways (86, 96,
109–115), and PI3K/Akt/mTOR pathway (102, 105, 116–127)
could induce CTX resistance independently of the EGFR-
ligand activation.

STAT3 Activation
STAT3, a member of the STAT family of transcription factors, is
considered as an oncogene activated in several cancers, including
HNSCC (128). Its activation could be driven by EGFR as well as
in an independent EGFR way by another growth factor receptor,
the Janus kinase 2 (JAK2) or by the Src kinase family.
Furthermore, loss of the PTPRS tumor suppressor gene that
dephosphorylates STAT3 may lead to permanent activation of
STAT3. Several studies report that hyperactivation of STAT3 is
implicated in CTX treatment resistance.

Indeed, several HNSCC cells lines that develop acquired
resistance to CTX are characterized by increased total STAT3
expression (77). The role of STAT3 in HNSCC cell CTX that
Frontiers in Oncology | www.frontiersin.org 8
acquires resistance is supported by recovering increased
sensitivity to CTX (greater antiproliferative effects and
cytotoxicity) when STAT3 is knocked down (104) or by
blocking JAK2–STAT3 signaling (using miR-204) (101).
Moreover, analysis of n=22 samples from patients with
HNSCC tumors that recurred following CTX treatment finds
increased phosphorylated STAT3 (103).

Regarding CTX-based combinations, guggulsterone, a natural
compound contained in the Commiphora mukul plant resin
used in Indian ayurvedic medicine and considered as an anti-
STAT3 agent, enhances the efficacy of CTX when combined with
CTX (106). Moreover, the combination of CTX + JAK2 inhibitor
(miR-204) inhibits STAT3 activation, resulting in inhibition of
angiogenesis and promotion of in vivo CTX sensitivity (101).
Given that STAT3 may be activated by the Src kinase family,
Dasatinib (SRC inhibitor), which is tested in combination with
CTX in phase-2 (84) and phase-1 clinical trials (NCT01488318
and NCT00882583, respectively), could provide some insight
about the utility of the STAT3 inhibition in overcoming
CTX resistance.

Activation of Src Kinases
Src family kinases are frequently overexpressed and/or activated
in several cancers, including those arising in the head and neck
(85). These nonreceptor protein tyrosine kinases play critical
roles in signaling pathways, regulating cell division, motility,
adhesion, angiogenesis, and survival (129). Thus, activation of
Src kinases could be involved in proliferation/migration/invasion
of cancer cells as well as in treatment resistance.

Based on gene expression profiles of CTX-resistant OSCC
cells as well as of publicly available data sets, Uzawa et al. identify
a 12-gene expression signature of CTX resistance, including the
urokinase-type plasminogen activator receptor (uPAR) (107).
They show that CTX resistance could be mediated by uPAR
upregulation. Indeed, through the uPAR/integrin b1/Src/FAK
signal circuit, the uPAR upregulation activates ERK1/2
phosphorylation to maintain cell proliferation/invasion
resulting in CTX resistance in vitro and in vivo even in the
absence of EGFR overexpression or acquired activating
mutations. Src kinases could also induce CTX resistance by
EGFR-ligand independent transactivation (cell-substratum
adhesion), which phosphorylates ErbB3 to form a heterodimer
complex, inducing proliferation via AKT (108).

Based on previous evidence, the CTX-based combination
with the Src inhibitor-1 or resveratrol (uPAR inhibitor) are
shown to overcome CTX resistance in vitro and in vivo (tumor
growth suppression and uPAR downstream protein
downregulation), respectively.

Activation of the RAS/MAPK Pathway
The family of mitogen-activated protein kinases (MAPK) are a
family of serin-threonin kinases implicated in the regulation of
the majority of physiological cellular processes, including
proliferation, differentiation, and apoptosis in response to
changes in the cellular environment (130). In particular, the
Ras/Raf/MEK/ERK1/2 (extracellular signal-regulated protein
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kinases) cascade is the MAPK signaling cascade most frequently
associated with carcinogenesis of several cancer types (131).
Regarding HNSCC, this signaling cascade can be activated by
several tyrosine kinase receptors, such as EGFR, as well as
independently of them by alterations of the Ras/Raf oncogenes.
This highlights the variety of CTX-resistance mechanisms
involving this signaling cascade.

First, the MAPK signaling pathway activation related to the
HNSCC CTX resistance could involve a RAS-activating
mutation (G12V HRAS) (113). The restored sensitivity to CTX
by silencing H-Ras in H-Ras mutant HNSCC cell lines reinforces
this observation (132). However, activation of the RAS/MAPK
pathway even in the absence of constitutive gene mutations
could lead to CTX resistance (111). Indeed, overexpression the
K-Ras, H-Ras, and N-Ras proteins (96) leads to CTX resistance.
Furthermore, dysregulation of the regulating proteins of the
RAS/MAPK pathway could also contribute to CTX resistance
as supported by the low expression of DUSP5 and DUSP6
(negative regulators of ERK1/2) and upregulation of AURKB
(100) and AURKA (114), which are key regulators in mitosis.

In the clinical setting, Braig et al. show that acquisition of RAS
mutant clones (KRAS G12S, G13C; NRAS Q61K, NRAS A146P;
HRAS G13R) correlates significantly with clinical resistance to
CTX in a cohort of n=20 patients treated by CTX/platinum/5-
fluorouracil treatment with monitoring of the circulating
tumoral DNA (ctDNA) (110). The role of the KRAS
p.Gly12Val mutation in CTX resistance previously found in
vitro, is also demonstrated in only one patient carrying this
mutation (among the n=29 studied) associated with an absence
of response to treatment (86). Rampias et al. confirm that the
HRAS mutation (n=7/50 patients with HNSCC) is associated
with de novo resistance to CTX-based therapy (113). Overall,
Bossi et al.’s observations (cohort of n=40 recurrent/metastatic
HNSCC) are in accordance with others and show that
overactivation of the RAS pathway leads to CTX/platinum
resistance (111).

On the basis of their results, especially the interesting
observation of the crosstalk between the RAS/RAF/MAPK and
PI3K/AKT pathways, Rampias et al. tested the combination of
CTX + a PI3K inhibitor (LY294002) in an H-Ras mutated cell
line and found a marked reduction of their viability (113).
Apigenin, an ERK 1/2 inhibitor, in combination with CTX
resulted in a significant decrease of HNSCC CTX-resistant cell
survival (112). Interestingly, the combination of CTX + tipifarnib
(farnesyltransferase inhibitor) showed enhancement of the
tipifarnib antitumor effect through concomitant ERK
inhibition in vitro and in vivo (109). Finally, a combination of
CTX with inhibition of the ERK upregulators, i.e., aurora kinase
knockdown (siRNA) and inhibitor (the pan aurora kinase
inhibitor R763), showed inhibition of proliferation and
increased apoptosis in HNSCC cells lines (112, 114, 115).

PI3K/Akt/mTOR Pathway
The phosphatidylinositol-3-kinase (PI3K)/Akt and the
mammalian target of rapamycin (mTOR) signaling pathways
are involved in several physiological as well as pathological
Frontiers in Oncology | www.frontiersin.org 9
cellular processes, including proliferation, differentiation,
survival, and motility (133). In HNSCC, PI3K/AKT/mTOR
signaling is active in more than 90% of HNSCC as a result of
EGFR activation, PI3K overexpression, phosphatidylinositol-4,5-
bisphosphate 3-kinase catalytic subunit alpha (PI3KCA)
mutations/amplifications, and PTEN mutation (116, 134).
Activated PI3K/AKT/mTOR signaling is related to
radiotherapy and cytostatic drug resistance, likely through
enhanced DNA-repair mechanisms.

Several genetic alterations causing PI3K/AKT/mTOR
activation, such as activating mutations in the oncogene
PI3KCA or inactivating mutations in the tumor suppressor
protein PTEN, are driving CTX resistance in different HNSCC
cell lines (125, 127). Indeed, Izumi et al. show that loss of PTEN
conferred independence from EGFR activity and resistance to
EGFR inhibition by CTX in terms of downstream signaling,
proliferation, and tumor growth both in vitro and in in vivo
xenograft models (119).

Moreover, Eze et al. recently reported the analysis of PTEN
and PIK3CA expression in samples from patients with recurrent
or metastatic HNSCC enrolled in two trials of cetuximab-based
therapy (n=48 patients in the E5397 trial and n=37 in the NCI-
8070 trial) (117). Patients with low PTEN expression had
significantly worse survival.

Thus, CTX-based combined therapy has been realized using
ATP-competitive PI3K inhibitors as well as mTOR inhibitors
(Rapamycin and analogues). Regarding ATP-competitive PI3K
inhibitors, the CTX combination with Buparlisib or BKM120
demonstrates the highest antiproliferative effect and inhibition of
PI3K/protein kinase B, AKT/mTOR signaling pathways in vitro
(122) and in vivo (121). The BYL719 (PI3Ka specific inhibitor),
namely Alpelisib (123) and the Copanlisib (highly selective, pan-
class I PI3K inhibitors) (120), are shown to improve CTX-
induced tumor inhibition in HNSCC CTX-resistant cell lines
and PDX. Interestingly, the combination of CTX plus the
PKI-587 (PI3K/mTOR inhibitor), namely Gedatolisib, which
restored sensitivity to CTX in resistant HNSCC cell lines and
xenografts (124), is found to have a greater synergistic
enhancement of the CTX effectiveness, especially in basal-like
HNSCC cells with mutated CDKN2A (118). Regarding mTOR
inhibitors, Rapamycin (Rad001) (126) and Temsirolimus (105)
show improving CTX antiproliferative effects in xenografts.

Interestingly, combinations of CTX with PI3K/Akt/mTOR
inhibitors are widely investigated in clinical trials. Regarding
ATP-competitive PI3K inhibitors, there are several phase-1 and
-2 trials enrolling patients with HNSCC to be treated by CTX +
Buparlisib (BKM 120) (NCT01816984, phases 1 and 2), Alpelisib
(BYL719) (NCT01602315, phases 1b and 2) (126), and Copanlisib
(NCT02822482, phases 1b and 2, COPAN-ORL06, specifically for
patients harboring a PI3KCA mutation/amplification and/or a
PTEN loss). PX-866, a noncompetitive PI3K inhibitor, was also
tested in combination with CTX (NCT01252628, phases 1 and 2).
Analogues of the rapamycin, temsirolimus (NCT01256385, phase
2, MAESTRO HN) and everolimus (NCT01637194, phase 1;
NCT01283334, phases 1 and 2) (57) have already brought some
interesting results to overcome CTX resistance.
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Bypass-Pathway Activation
Another resistance mechanism involves the abnormal activation
of parallel signaling pathways to counteract the blockade of the
EGFR signaling by CTX. Thus, cancer cell survival is ensured by
increased expression/activation of alternative receptor tyrosine
kinases (RTK) (50, 77, 79, 123, 135–150), ensuring the activation
of several parallel pathways, including the VEGF pathway (72,
151–153).

Receptor Tyrosine Kinases
Among the growth-factor receptor family, RTK are
transmembrane receptors implicated in several physiological as
well as pathological (oncogenesis) processes (154). The binding
ligand-extracellular domain induces receptor dimerization,
activation of the intrinsic tyrosine-kinase activity of the RTK,
and activation of downstream signaling cascades implicated in
cell proliferation, differentiation, motility, survival, and cell–cell
communication (155). Thus, activation of these RTKs is a
mechanism of resistance to CTX during HNSCC treatment
(50, 77, 79, 123, 135–150).

Indeed, the increased expression and activation of RTK, such
as MET, AXL, HER2, HER3, and ROR2, are reported in several
CTX-resistant cell lines (148) as well as in vivo (PDX). For
example, MET/HGF (146) as well as AXL (123, 139, 148)
overexpression and activation stimulate cell proliferation
despite CTX treatment in vitro and in vivo, especially through
MAPK downstream signaling. Recently, McDaniel et al.
investigated the AXL-mediated CTX-resistance mechanisms in
HNSCC and report that the tyrosine 821 of AXL mediates
resistance to CTX by activation of c-ABL (oncoprotein) (156).

Other ErbB family members, ErbB2 (HER2) (102) and ErbB3
(HER3), could also be implicated in CTX resistance. Indeed,
Yonesaka et al. report the persistence of ERK 1/2 signaling
caused by the permanent activation of ErbB2 signaling
(amplification of the receptor ErbB2 or upregulation of the
ligand heregulin) induces CTX resistance in HNSCC cell lines
(141). The restoration of CTX sensitivity through inhibition of
ErbB2 or disruption of ErbB2/ErbB3 heterodimerization
reinforce their observations. On the other hand, this
heterodimerization also highlights the role of HER3 activation
in resistance to CTX treatment of some HNSCC cell lines (135).
The permanent activation of ErbB3/Akt signaling could be
caused by an autocrine neuregulin expression (autocrine loop)
as well as by aberrant HER3 ligand heregulin expression (94).
Furthermore, increased activity of the IGF1R signaling pathways
has been reported in several CTX-resistant HNSCC cell lines
(136, 137, 143). IGF1R and HER3 activations with partial EGFR
persistent activity are intertwined during CTX resistance as
supported by the ability of a multitarget mAb mixture against
EGFR, HER3, and IGF1R to overcome CTX resistance.

These preclinical observations are supported by clinical
evidence. Indeed, in a retrospective cohort of n=57 patients
with recurrent/metastatic HNSCC, patients who presented
HGF/MET pathway overexpression and activation had worse
prognoses (138). Moreover, Chung et al. report the case of a
patient with recurrent HNSCC who presented an interesting
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response to AMG-479 (a monoclonal antibody against IGF-1R)
after CTX resistance. Tumor sample analysis suggests the
potential benefit of a combined therapy using AMG-479 plus
CTX (142).

To overcome CTX-resistance, several combined therapies
using RTK inhibitors have been tested. The BET inhibitor JQ1,
which binds preferentially to the bromodomains of BRD4,
abrogates the expression of the alternative RTK (HER3 and
AXL), resulting in significantly delayed acquired resistance in
two PDX models of HNSCC (148). Combined with CTX, MET
inhibitor PHA-665752 is also shown to restore CTX sensitivity in
vitro and in vivo, especially by decreasing akt and ERK1/2
phosphorylation (146, 147). Inhibition of the AXL receptor is
explored by using imatinib (which targets c-Abl) in CTX-
resistant HNSCC PDX (156). This led to complete tumor
regression and a prolonged effect (no recurrence up to 3
months after cessation of treatment). Moreover, the Lida et al.
experiment brings general support to the implication of several
ErbB family members in CTX resistance. They find that the pan-
HERmixture of six antibodies targeting EGFR, HER2, and HER3
decreases HER family receptors in acquired CTX-resistant
HNSCC cells lines and overcomes CTX resistance in PDX
(98). More precisely, a dual EGFR/HER2 inhibitor with CTX
plus Afatinib shows significantly improved tumor volume
reduction in CTX-resistant xenografts compared with either
agent alone in monotherapy (140). ErbB3 inhibition has also
been realized in vitro and in vivo using MM-121 (97, 113) as well
as CDX-3379 (ErbB3-specific blocking antibody) (93). These
combinations inhibit proliferation through inhibition of PI3K/
Akt and ERK signaling pathways. When combined with CTX,
the anti-IGF-IR antibody (IMC-A12) A12 provides important
inhibitions of cell proliferation and migration in vitro and in vivo
(regression of tongue cancer cell xenografts) (144). Although the
rationale of dual VEGF and EGFR inhibition is proposed in
several other cancers (157), Argiris et al. show that combined
targeting of EGFR with CTX and VEGF with bevacizumab
enhances growth inhibition both in vitro and in vivo (153).

Given that ErbB3 activation induced by heregulin is
previously described as a CTX-resistance mechanism, the
combination of Patritumab (U3-1287), an anti-HER3
monoclonal antibody, and CTX with platinum-based therapy
was evaluated in a randomized, double-blind, phase-II study of
first-line treatment of patients with recurrent or metastatic
HNSCC (NCT02633800) (158). Although tolerable, the
combination Patritumab + CTX + platinum was not superior
to CTX + platinum. Based on the previous rationale as well as on
a phase-I study (149), Deeken et al. evaluate the combination of
lapatinib (which blocks both EGFR and ErbB2) plus CTX
(NCT01184482) in patients with advanced solid malignant
tumors, including HNSCC. Results were interesting with an
overall response rate of 17% and a clinical benefit rate of 67%.

CDX-3379, an anti-ErbB3 monoclonal antibody, has been
recently reported to inhibit tumor ErbB3 phosphorylation in
HNSCC and induce measurable tumor regression and was well
tolerated (93). Thus, a phase-2 clinical trial (NCT03254927) is
ongoing and aims to determine the clinical benefit, safety, and
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tolerability of combining CDX-3379 and CTX in patients with
advanced HNSCC who have previously received CTX
and progressed.

IGF-1R inhibitors are also widely explored in combination
with CTX for recurrent/metastatic HNSCC. Glisson et al. as well
as Ferrarotto et al. report no improvement of progression-free
survival and OS using the Cixutumumab + CTX compared with
CTX alone (159, 160). The OSI-906, a dual kinase inhibitor of
both IGF-1R and insulin receptor was evaluated in combination
with CTX among patients with HNSCC (NCT01427205, phase
2), but results are not available. More recently, the combination
of CTX plus the anti-IGF-1R antibody A12 (IMC-A12) was
evaluated in the neoadjuvant setting for patients with HNSCC
NCT00957853 (Phase 2).

Finally, VEGF inhibitors combined with CTX have been
also investigated. Although some results are not available
(NCT00906360, phase 1, CTX + Sunitinib), others are
contradictory. Indeed, although some trials report that
bevacizumab + cisplatin + CTX + intensity-modulated
radiation therapy (IMRT) in locally advanced HNSCC is
associated with favorable efficacy outcomes (NCT00968435,
phase 2), Argiris et al. find that adding bevacizumab
increases toxicity without apparent improvement in efficacy
(NCT00703976, phase 2) (151). Thus, the potential clinical
benefit of combined EGFR–VEGF targeting is not clearly
established.

Other Signal Transducers
Several proteins involved in classic cancer pathways, such as
proliferation, apoptosis, invasion, and metastasis, could be
altered and implicated in CTX resistance during HNSCC
treatment (64, 115, 161–165).

Among all somatic genomic alterations in HNSCC, the tumor
suppressor gene TP53 is the most frequent (166), highlighting its
importance in carcinogenesis and progression. Indeed, although
the tumor suppressor protein p53 has a critical role in cell cycle
arrest, apoptosis, and senescence, loss of its function is linked to
disease progression and treatment response (64). Regarding
CTX, comparative analysis of sensitive vs. CTX-resistant
HNSCC cells reveals the central role of the loss of p53 in the
development of acquired resistance to CTX (163).

The precise role of hypoxia in acquired resistance to
cetuximab is not clearly established, and further studies are
needed. Indeed, Boeckx et al. find that the sensitivity to CTX is
not altered but increased in HNSCC cells exposed to prolonged
hypoxia (164). On the other hand, Lu et al. report that HNSCC
cells with acquired CTX resistance express a high level of the
alpha subunit of the hypoxia-inducible factor-1 (HIF-1a) and
are highly glycolytic (aerobic glycolysis, i.e., the Warburg effect).
Furthermore, the experimental overexpression of HIF-1a
confers resistance to CTX as well as abolishes CTX-mediated
radiosensitization in HNSCC cells (161).

These preclinical observations have caused Lu et al. to explore
the inhibition of hypoxia and its relationship with CTX efficacy.
Downregulation of HIF-1a by siRNA or a small molecule
inhibitor (1-methyl 1, 9 PA) enhances response of CTX-
resistant HNSCC cells to CTX plus radiotherapy (161). Finally,
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Lu et al. confirm that CTX inhibits HNSCC cell proliferation
through inhibition of glycolysis and that the combination of
CTX + oxamate (inhibition of LDH-A, an enzyme catalyzing the
conversion of pyruvate to lactate in anaerobic conditions)
improves the therapeutic effect of CTX in cancer cells (162).
As a continuation of their work on the role of hypoxia and
glycolysis during HNSCC treatment, Lu et al. explore the role in
CTX resistance of the mitochondrial enzyme pyruvate
dehydrogenase kinase-1 (PDK1), known to allow the switching
glucose metabolism toward aerobic glycolysis in cancer cells
(165). They found that the combination of CTX plus PDK1
knockdown (siRNA) or with pharmacological inhibition of
PDK1 with dichloroacetic acid (DCA) overcomes CTX-
resistance in vitro and in vivo (xenografts) thanks to the
overproduction of reactive oxygen species (ROS) and the
subsequent apoptosis.

Epithelial-to-Mesenchymal Transition
The importance of EMT in human disease, especially in
carcinogenesis, has been reviewed elsewhere (167). The EMT
can be considered as a continuum of multiple and dynamic
transitional states whereby cells exhibit epithelial, intermediate,
and mesenchymal phenotypes. Regarding HNSCC, acquisition
of an EMT phenotype (modulation of cell polarity and adhesion)
by cancer cells is involved in disease progression as well as in
CTX resistance (168–179).

Indeed, several authors report that HNSCC cells exhibiting a
mesenchymal-like phenotype are resistant to CTX treatment in
vitro and in vivo (xenografts) (174, 176, 177). Several potential
mechanisms implicated in this EMT-induced CTX resistance are
observed, such as (i) expression of lymphotoxin-b; (ii)
methylation of EGFR that promotes the EGFR ligand-binding
ability and dimerization (EGFR persistent activity) (169); (iii)
secretion of CTX-containing extracellular vesicles, which lead to
cancer cell protection (179); (iv) upregulation of EMT-related
genes (133), especially by epigenetic regulation (170, 180); and
(v) loss of the tumor suppressor gene SMAD4, which induces
JNK and MAPK pathway activation (172, 173). Indeed, Ozawa
et al. find that SMAD4 loss is associated with CTX resistance and
poor survival in HPV-negative patients (cohort of n=130 newly
diagnosed and n=43 patients with recurrent HNSCC) (172).
Thus, Ozawa et al. tested the combination of CTX + JNK
inhibitor (SP600125) or MAPK/MEK inhibitor (U0126) and
show that it contributes to overcome CTX resistance in vitro.

Moreover, the development of CTX resistance could also be
accompanied by increasing hedgehog pathway transcription factor
expression in vitro (175). Thus, Keysar et al. tested the
combination of CTX and IPI-926 (hedgehog pathway inhibitor)
in four different PDXmodels. This combination forced tumor cells
into an EGFR-dependent state and blocked tumor recurrences.

Epigenetic Modifications
Epigenetic alterations, including DNA methylation, histone
modifications, chromatin remodeling, and noncoding RNAs,
are frequently involved in head and neck carcinogenesis, tumor
progression, and resistance to therapy (137), especially to
CTX (75).
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As previously described, Kagohara et al. report that
genes associated with CTX resistance in HNSCC cell lines,
including TFAP2A, which regulates growth factor receptors
and EMT, are epigenetically regulated (170). Stein-O’Brien
et al. show that FGFR1 demethylation is associated with CTX
resistance and this type of epigenetic alteration might stabilize
the resistant phenotype (171). Interestingly, Shimizu et al.
recently reported that nicotine (one of the main tobacco
components) contributes to CTX resistance in vitro as well as
in vivo (xenografts) (181). Indeed, they show that nicotine
induces, through the nicotinic acetylcholine receptor, both
EGFR phosphorylation (and the subsequent Akt and mTOR
downstream cascade activation) and nuclear translocation of the
phosphorylated EGFR.

Establishment of an Immunosuppressive
TME
In addition to all the previously cited intrinsic resistance
mechanisms, there are also extrinsic resistance mechanisms, i.e.,
involving the TME (182). These mechanisms encompass, in fact,
the cancer cell–TME crosstalk, contributing to CTX resistance (40,
75). In HNSCC, establishment of an immunosuppressive
microenvironment is an important resistance mechanism to
treatment, especially to CTX (6, 70, 183, 184) (Figure 2).

Regulatory T Cells (Tregs) and Myeloid-Derived
Suppressor Cells (MDSC) Proliferation
Proliferation of immunosuppressive cells, such T regs and
MDSC, in response to CTX treatment is one of the key
resistance mechanisms (185–188). Indeed, several coculture
experiments show that CTX expands CTLA-4+FOXP3+ Tregs
in part by inducing dendritic cell maturation. These Tregs lead to
CTX resistance by suppressing the CTX-mediated ADCC
(cytolytic functions of NK cells) (188). Based on the analysis of
blood samples from CTX-treated patients with locally advanced/
metastatic (stage III/IV) HNSCC (n=22 patients, NCT 00226239
and n=18, NCT 01218048), Jie et al. confirm their in vitro
observations (188). Indeed, they find that CTX increased the
frequency of intratumoral Tregs expressing the inhibitory
checkpoint cytotoxic T-lymphocyte-associated protein 4
(CTLA-4), which is known to inhibit T cell activation (6).
Thus, Tregs suppress the CTX-mediated ADCC. Their
presence is correlated with poor clinical outcomes in these
cohorts. Based on these results, Jie et al. tested CTX in
combination with ipilimumab, a monoclonal antibody that also
induces NK cell–mediated ADCC. Ipilimumab treatment
enhanced the CTX-mediated ADCC by eliminating Tregs
(targeting CTLA-4), allowing effector T cell activation and
restoration of the cytolytic functions of NK cells (n=6 HNSCC
tumors) (188).

Furthermore, Shayan et al. hypothesized that the combination
of CTX plus motolimod, a small-molecule TLR8 agonist that can
activate monocytes, DCs, and NK cells (189), might enhance T
cell stimulation and CTX effects (187). They find that the TLR8
stimulation through motolimod skewed monocytes toward an
Frontiers in Oncology | www.frontiersin.org 12
antitumor M1 phenotype and reversed MDSC suppression of T
cell proliferation. These in vitro observations are confirmed in
patients. Indeed, in a phase-Ib trial (NCT02124850) enrolling
n=14 patients with previously untreated stage-III/IV HNSCC,
Shayan et al. tested the combination of CTX plus motolimod
(formerly VTX-2337) (187). The combination reversed MDSC-
induced immunosuppression and improved antitumor
immunity with increased circulating tumor antigen-specific T
cells (EGFR specific) and increased the number and function of
tumor-infiltrating CD8 T cells. These encouraging results are
confirmed in another phase-Ib study (n=13 patients with
recurrent/metastatic HNSCC, NCT01334177) demonstrating
the significant increasing antitumor activity of this
combination (increased plasma cytokines and activated
circulating NK cells). To finish, the potential benefit of adding
motolimod to the standard EXTREME regimen (CTX +
platinum + fluorouracil) was evaluated in a phase-2 trial
enrolling n=195 patients with recurrent/metastatic HNSCC
(NCT01836029) (185). Ferris et al. find that the combination
fails to prove a benefit for survival when considering the intent-
to-treat population, but significant benefits are observed when
considering only the selected subgroup of patients with HPV-
positive tumors and injection site reactions.

T Cell Exhaustion/Impairment
HNSCCs are among the most immune-infiltrated cancers, and
several mechanisms are implemented by tumor cells to escape to
the host immune defense system (190, 191). The immune-
modulatory effect of CTX treatment, in particular ADCC,
might be inhibited by cancer cells through several mechanisms
inducing T cell exhaustion/impairment and all CTX resistance
(67, 97, 192–204). Indeed, to counteract the antitumor activity of
CTX, tumor cells express TGF-b, which inhibits the expression
of cytotoxic effector molecules in immune cells (Apo2L/TRAIL,
CD95L/FasL, granzyme B, and IFN-g) and suppresses their
ability to induce cetuximab-mediated ADCC (97).

Moreover, in a cohort of n=18 patients with stage-III/IV
HNSCC treated by CTX alone (NCT 01218048), Jie et al. find
that the increased frequency of PD-1+ and TIM-3+ tumor-
infiltrating lymphocytes (TILs) during CTX treatment inversely
correlates with objective response (200). Besides PD-1 and TIM
immune checkpoint (ICP) receptors, KIR, the ICP on NK cells
that modulate their activation, is also indirectly implicated in
CTX resistance. Indeed, Faden et al. report a statistically
significant increase of missense mutations and loss of
heterozygosity in HLA-C (the ligand for KIR) in patients not
responding to CTX compared with responders (196).

In accordance with the previously cited in vitro observations,
several CTX combinations have been tested in the preclinic as
well as clinic setting.

For example, Bedi et al. explored the combined effect of CTX
and TGF-b blocking in vivo (PDX). Although CTX alone forced
the selection of resistant clones, i.e., TGF-b–overexpressing tumor
cells, the combined treatment prevented it and induced complete
tumor regression (97). In the same way, Faden et al. observed
increasedHNSCC cell killing when combining CTX and lirilumab,
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a monoclonal antibody that blocks NK inhibitory KIR signaling
(196). Moreover, the upregulation of CD137 or 4-1BB (a member
of the TNF-receptor superfamily, which is broadly induced and
activated on several effective immune cells) was corelated to
clinical response to neoadjuvant CTX (NCT01218048).
Srivastava et al. tested the effect on several HNSCC cell lines of
the combination CTX plus urelumab (BMS-663513, CD137-
agonist monoclonal antibody) (201). This combination
enhanced the CTX-mediated ADCC as supported by the
increased NK-cell survival, DC maturation, and tumor antigen
cross-presentation. Regarding other ICP inhibitory signals,
Concha-Benavente et al. explored several HNSCC cell lines
and found that the programmed death ligand-1 (PD-L1), which
limits the function of activated T lymphocytes when they
interact with the ICP receptor programmed death-1 (PD-1), is
expressed by tumor cells in an EGFR- and JAK2/STAT1-
dependent manner (159). Thus, they tested the combination of
CTX and JAK2 inhibition. They found that JAK2 inhibition
prevented tumor PD-L1 expression and that the combination
enhanced the CTX NK-mediated killing via ADCC against
PD-L1+ HNSCC cells.

The better comprehension of immune evasion mechanisms as
well as of the immune-modulatory effect of CTX, i.e., CTX-
mediated ADCC, brings evidence to support the evaluation of
combined approaches with ICP inhibitors in both locally
Frontiers in Oncology | www.frontiersin.org 13
advanced and recurrent/metastatic HNSCC (6, 67, 192). Among
the tested agents, inhibition of the PD-1/PD-L1 synapse is widely
explored. The anti PD-1 Nivolumab, for which efficacy and
safety prior to CTX in HNSCC has been recently reported
(CheckMate 141) (205), is actually tested in combination with
CTX in phase-1 and -2 trials for patients with recurrent/
metastatic HNSCC (NCT03370276). Sacco et al. recently
reported some preliminary results of the first trial evaluating
the antitumor activity of anti-PD-1 Pembrolizumab combined
with CTX in n=33 patients with platinum-refractory/ineligible,
recurrent/metastatic HNSCC (NCT03082534, phase 2) (197).
Results are promising with an observed 41% response rate.
Regarding anti PD-L1, Durvalumab combined with CTX and
radiotherapy is currently tested in a phase-I/II clinical trial
(NCT03051906, DUCRO) (193). Based on previous safety
studies (154, 163, 167), several clinical trials are testing the anti
PD-L1 Avelumab in combination with CTX (NCT03494322,
phase 2 EACH) (206) +/- radiotherapy (NCT02999087 phase 3
REACH) or Palbociclib (a selective CDK4/6 inhibitor)
(NCT03498378 phase 1 and NCT02101034 phase 2) (195).
Other interesting combinations involve the 4-1BB agonist
Urelumab (NCT02110082) (201), the anti-CTLA-4 monoclonal
antibody ipilimumab (NCT01935921, phase 1) (202) and
Monalizumab (anti NKG2A receptors expressed on TIL-CD8+
and NK cells) (NCT02643550) (199).
FIGURE 2 | Molecular mechanisms contributing to Cetuximab resistance through the establishment of an immunosuppressive TME. Red lines and arrows show
mechanisms contributing to Cetuximab resistance, and green lines and arrows show mechanisms contributing to Cetuximab sensitivity. (EGFR, Epidermal Growth Factor
Receptor; NK, Natural Killer; PD1, Programmed death 1; PDL1, Programmed Death Ligand 1; KIR, Killer Immunoglobulin-like Receptor; ADCC, Antibody-dependent
cellular cytotoxicity; HLA-C, Human leukocyte antigen-C; TGF, transforming growth factor; Treg, regulatory T-cells; MDSC, Myeloid-derived suppressor cells).
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Toll-Like Receptor 4 (TLR4) Pathway Activation
TLR4 is an innate immune receptor involved in defense against
microbial agents by recognizing inflammation-associated
microbial ligands (such as lipopolysaccharide) and promoting
the activity of innate immune cells (207). TLR4 are also
expressed by tumor cells, and the role of the TLR4 signaling
pathway in the TME has been reviewed elsewhere (208).
Unfortunately, by inducing immunosuppressive cytokines,
apoptosis resistance, and EMT, the TLR4 signaling pathway can
promote cancer cells’ immune escape in several cancer types
(including lung, pancreas, and ovarian cancers, HNSCC) as well
as resistance to therapy (paclitaxel in ovarian cancer) (209–212).

Indeed, Ju et al. recently reported that the crosstalk between
the EGFR and TLR4 pathways could participate in CTX
resistance in vitro and in vivo (xenograft) (213). They found
that EGFR inhibition led to decreased MyD88 degradation, and
thus, MyD88 could activate TLR4 (receptor homodimerization).
TLR4 activation induced activation of NF-kB and MAPK
signaling pathways, resulting in the release of proinflammatory
cytokines (TNF-a, iNOS, COX2, PGE2, NO) favoring EGFR
permanent activation as well as the release of anti-apoptosis
proteins (Bcl-2, Bcl-xl) allowing tumor cell survival. Overall, the
TLR4 signaling pathway leads to CTX-resistance. Thus, Ju et al.
tested the combination of CTX and a TLR4 inhibitor (TAK242).
They find that this combination overcomes acquired CTX
resistance in vivo, in particular by decreasing the secretion of
pro-inflammatory cytokines (TNF-a, PGE2, and NO) (175).

CAF Proliferation
Among the different components of the HNSCC TME, CAFs are
among the most critical elements contributing to proliferation,
invasion, and metastasis (214), in particular by altering the
antitumor immune response (215, 216). Furthermore, CAFs
have been shown to contribute to drug resistance in HNSCC
(e.g., platinum and CTX) (42, 217–219).

Indeed, during CTX treatment, CAFs, especially those
activated by TGF-b (218), participate in resistance by secreting
immunosuppressive factors, such as IL-6, HGF, and
metalloproteinases (219). Thus, co-inhibition of TGF-b and
HNSCC cells by the combination of CTX + SIS3 (an inhibitor
of the TGF-b pathway), delayed tumor progression and lowered
tumor volume/weight (HNSCC PDX) (218). Johansson et al. also
tested the combined effect of CTX + MMP inhibitor III
(inhibiting MMP-1, -2, -3, -7, and -13), which significantly
reduced the protective effect of CAFs (219).
IMMUNOTHERAPY IN HNSCC

HNSCC is among the most inflamed, immune-infiltrated
cancers, especially with CD8+ TILs and NK cells (183). A high
genetic instability and somatic mutation rate is often observed
(220, 221) (about 180 somatic mutations per mega base), in
either HPV positive or negative tumors (222, 223).
Immunogenicity of HNSCC can result from the overexpressed
but nonmutated native proteins that have escaped central
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tolerance, neo-antigens derived from mutated proteins (224),
or HPV-induced viral antigens (e.g., oncogenic drivers E6 and
E7) (225). The microenvironment can also vary in terms of
intensity or constitution depending on carcinogens or
localization (226).

Genetic and epigenetic alterations in cancer cells create a vast
array of neoepitopes potentially recognizable by the immune
system. However, a key feature of malignant cells is their ability
to escape recognition by the immune system, and the
dysregulation of immune checkpoints, such as PD-L1, in
tumors appears to be a major immune-resistance mechanism
affecting T cell response. It was, hence, shown that the reversal of
the anergic state of T lymphocytes is possible via the blockade of
coinhibitory signals (227), and research initially focused mainly
on immune checkpoint inhibitors (ICI) of the PD-L1/PD-1 axis.
These antibodies (Abs) have since completely transformed the
treatment of R/M HNSCC.

The expression of PDL1 is positive in most cases, estimated at
almost 60%–70% with a higher expression in HPV+ compared to
HPV- tumors (228, 229). It results either from an immune-
adaptive phenomenon induced by IFNg or from intrinsic
oncogenic events, such as the mutation/deletion of the PTEN
suppressor gene or the deregulation of the AKT/mTOR, NF-kB
and mitogen-activated protein kinase (MAPK) pathways (230).
PD-1 binding with PD-L1/PD-L2 causes immunosuppression
via reduced t cell receptor (TCR) signaling, reduced cytokine
production, reduced target cell lysis, altered lymphocyte motility,
and metabolic reprogramming (231).

After showing antitumor activity in multiple other tumor
types, nivolumab was the first anti-PD-1 agent to improve OS in
recurrent/metastatic (R/M) HNSCC progressing after a first-line
platinum-based therapy in the Checkmate 141 trial with a 32%
reduction in the risk of death (205, 232). OS was 7.7 months
compared with 5.1 months with chemotherapy. Benefit was
greater in ≥1% PD-L1 positive (PD-L1+) TPS (tumor cell
membrane positivity for PD-L1 or tumor proportion score)
patients with an OS of 8.2 versus 4.7 months. Pembrolizumab
is the other agent to show efficacy in the second line in the
Keynote 0-40 trial (233). Median OS was 8.4 vs 6.9 months with a
hazard ratio (HR) of 0.80. Contrary to the Checkmate 141 essay,
crossover was allowed. Subgroup analysis shows that, for PD-L1
TPS ≥ 50% patients, survival was significantly increased from 7.9
to 11.6 months with immunotherapy, whereas there was no
difference for the PD-L1<50% population.

This same agent is the new standard of front-line therapy in
R/M HNSCC following the results of the Keynote-048 trial
comparing pembrolizumab alone or in combination with
platinum-based and 5FU chemotherapy to the EXTREME
standard of care protocol (cisplatin or carboplatin, 5-
fluorouracile (5FU) and cetuximab) (234). Survival was
significantly increased with pembrolizumab compared with the
EXTREME regimen for PD-L1 ≥20 CPS (expression on both
tumor cells and immune cells in the microenvironment or
combined positive score) patients (14.7 vs. 11 months) and
PD-L1 ≥1 CPS patients (12.3 vs. 10.4 months) but not in the
total population (11.5 vs. 10.7 months). It is important to note
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that the experimental treatment was deleterious for some
patients in the beginning with more deaths occurring in the
first 6 months. Pembrolizumab added to chemotherapy
significantly improved OS in the total population with safety
comparable to the EXTREME arm (13 vs. 10.7 months). The
median durat ion of response was impress ive with
pembrolizumab at 22.6 months (vs. 4.5 for EXTREME).
Tolerance was also far better with immunotherapy. The FDA
approved pembrolizumab for use in combination with platinum
and fluorouracil for all patients and as a single agent for patients
with a CPS ≥1. In Europe, the EMA approved the use of
pembrolizumab alone or in combination for patients with a
CPS ≥1. Unlike PD-L1, blockade of cytotoxic T-lymphocyte
antigen 4 (CTLA4) as monotherapy has not proven beneficial
in HNSCC.

Evidently, monotherapy with ICI seems to be a losing battle
despite providing substantial clinical improvements over the
previous standards of care. The majority of patients do not
respond to treatment, and durable responses are observed only
in a minority (generally less than one third) of patients.

Resistance to Immune Checkpoint
Inhibitors
Resistance to ICI can be primary (never-responder patients)
or secondary (acquired after a certain amount of time of
response). It can also be classified as intrinsic to tumor cells
(cancer cells directly induce immune resistance via various
mechanisms) or extrinsic (other cells or factors mediate
immune resistance).

HNSCC hijacks numerous cellular and molecular
immunomodulatory pathways to evade recognition and
eradication by the immune system. Mechanisms of immune
evasion include direct T cell suppression with surface or
soluble inhibitory factors, decreased immune stimulation, and
the recruitment of immuno-suppressive cell populations (231).
In this section, we review the different types of resistance
reported in HNSCC and present some of the currently studied
strategies to overcome them.

Intrinsic Resistance
Tumor Immunogenicity and Antigen Presentation
HNSCC is one of the cancers with the highest levels of tumor
mutational burden (TMB), accompanying elevated neoantigen
expression (220). These tumoral neoantigens that derive from
nonsynonymous mutations drive (T lymphocytes) TL cytotoxic
response against tumor cells. In that sense, a positive correlation
between response and TMB was found in a recent meta-analysis
(235). Constant interactions between immune and cancer cells
can result in a selection of subclones lacking the expression
of neoantigens, subsequently resulting in poor immunogenicity
and decreasing efficacy of ICI (236). This could explain
how some HNSCC tumors with high TMB are unresponsive
to ICI.

Furthermore, deficiencies in antigen presentation can result
in primary or acquired resistance to ICI as shown in multiple
studies (237, 238). This includes downregulation of MHC class I
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(MHC-I) and loss of function (e.g., truncating mutations) of b2-
microglobulin (238). HNSCC has been shown to alter
neoantigen presentation and processing by altering key genes,
such as signal transducer and activator of signal (STAT) 1 and
other antigen processing machinery components (239, 240).

Combining ICI with radiation therapy is a promising strategy
as radiotherapy leads to an increased rate of neoantigens and
antigen presentation induced by DC activation, increased
cytokine production, and tumor cell death, promoting a TIL
phenotype (241, 242). Chemotherapy increases antigen release
upon cell death and, thus, the priming of cytotoxic TL (243), and
this was the rational in combining platinum-based
chemotherapy with ICI in the Keynote-048 trial that resulted
in added benefit (234).

Emerging novel therapies include oncolytic virus therapy and
cancer vaccines with tumor peptides or DCs (244, 245). Their
aim is to enhance antigen presentation and TL priming.
Oncolytic viruses can also directly infect and induce lysis of
tumor cells. Talimogene laherparepvec (TVEC), which is derived
from herpes simplex virus type 1, is currently under evaluation in
combination with pembrolizumab in the Keynote-137 trial in R/
M HNSCC patients. Other novel therapeutics, such as toll-like
receptor (TLR) agonists (NCT02521870) and adoptive cell
therapy (NCT03247309), are also being evaluated in this
same context.

Oncogenic Pathways
Aberrations in canonical oncogenic pathways can change the
TME by altering cytokine production and immune cell
composition. These include the MAPK (246), WNT/b-catenin
(247), and PI3K pathways (248). The activation of the latter
creates an immunosuppressive TME. Combined inhibition of
PD-1 and PI3K in a preclinical model of HNSCC demonstrates a
synergistic growth inhibitory effect and increased survival of
mice by activating an immunostimulatory transcriptional
program, enhancing T cell cytotoxicity and expression of
proinflammatory cytokines (249).

Soluble Molecules
HNSCC cells can also avoid T cell rejection by secreting
immunosuppressive exosomes containing transforming growth
factor (TGF) b, PD-1, and CTLA4, which impair T and NK cell
functions and upregulate Tregs (250). They can also produce and
secrete protumoral cytokines, including TGF-b, interleukin (IL)-
6, and IL-10 (251). Tumor cells can overexpress Indoleamine 2,3-
dioxygenase 1 (IDO1), a rate-limiting enzyme that converts
tryptophan to kynurenine, leading to an immune suppression
through T cell apoptosis and loss of function. In a study of the
immune microenvironment of HPV-negative OSCC from
never-smoker and never-drinker (NSND) patients, it was
suggested that blockade of IDO1 and PD-1/PD-L1 could
insure a higher clinical benefit. However, a phase-III clinical
trial evaluating Epacadostat, an IDO inhibitor, in combination
with Pembrolizumab was halted after a similar trial in
melanoma revealed no improvement compared with the
control arm (252).
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Extrinsic Resistance
Inhibitory Checkpoint Molecules
Overexpression of alternative immune checkpoints can be a
source of adaptive resistance to ICI. These receptors serve to
limit effector functions of the immune system to prevent
autoimmunity in a normal state. Multiple inhibitory immune
checkpoint receptors with different cell distributions and
expression patterns have been described, including PD-L1,
CTLA4, lymphocyte-activation gene 3 (LAG-3), T-cell
immunoglobulin, mucin domain-3 protein (TIM-3), B and T
lymphocyte attenuator (BTLA), V-domain immunoglobulin-
containing suppressor of T cell activation (VISTA), and T cell
immunoreceptor tyrosine-based inhibition motif domain
(TIGIT) (253, 254).

PD-L1 status has been shown to be partially correlated with
response to ICI in HNSCC, but complete responses have been
observed in PD-L1-negative patients (232–234). CTLA4 is
upregulated in HNSCC tumor cells and enriched on Treg
TILs (255). These cells are a subset of CD4+ T cells with
immunosuppressive effects through various humoral and
cellular mechanisms, such as CTLA4-mediated suppression
of antigen-presenting cells (256). LAG-3 is expressed on
activated CD4+ and CD8+ T cells, NK cells, B cells, and DCs
(257). It binds with major histocompatibility complex class II
(MHCII) and is highly expressed on Tregs. It was shown that
blockade of LAG-3 decreases the inhibitory function of
these cells (257). TIM-3 is expressed on both T and NK cells
and binds with galectin-9 (258). When specifically coexpressed
with PD-1, TIM-3 is the signature of an exhausted T cell
phenotype (259).

Because these alternate coinhibitory receptors induce T-cell
exhaustion (231), they have been identified as a putative strategy
to overcome resistance to PD-1 in previous and many ongoing
studies. Based on these observations, two essays of ICI anti-PD1
and anti-CTLA4 combination in HNSCC have been reported to
date (260). The CONDOR trial compared outcomes of patients
who had low/negative PD-L1 (TPS<25%) tumors and had
progressed after first-line platinum-containing therapy.
Patients were treated with either durvalumab, an anti-PDL1
Ab, or tremelimumab, an anti-CTLA4 Ab, or the combination
(260). Results were deceiving as there was no significant
increase in response rate (RR) (7.8% vs. 9.2%), PFS (2 vs. 1.9
months) or OS (7.6 vs. 6 months) compared with durvalumab
alone. One toxic death from acute respiratory failure was
attributed to the combination regimen. The same combination
failed to improve survival regardless of PD-L1 status in the
EAGLE trial (261). Monotherapy with the anti-CTLA4 agent in
CONDOR appeared clearly inefficient with a 1.6% RR, a 1.9 and
5.5 median PFS and OS, respectively (260). The authors
hypothesize that the lack of efficacy of tremelimumab may be
in part related to its mechanism of action, which, as an IgG2
Ab, does not cause lysis of regulatory T cells through ADCC,
contrary to what is observed with ipilimumab, another anti-
CTLA4 agent (262).

Inhibitors of other checkpoint molecules, such as TIM-3 and
LAG-3, are still in earlier phases of development. For example,
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blockade of TIM-3, whose expression is synonymous to T cell
exhaustion, is efficient in producing an antitumoral T cell
response in a mouse model of HNSCC (263).

Inhibitory checkpoints can also be expressed on the surface of
innate immune cells, such as NK cells. The inhibitory killer
immunoglobulin-like receptor (KIR) 2DL-1, -2, -3 receptors,
which partially control NK cell activation upon binding with
their ligands, primarily human leukocyte antigen-C (HLA-C)
molecules, can be targeted by Lirilumab, a fully human IgG4
monoclonal Ab. PD-1 blocking on T cells can induce the release
of cytokines, such as IL-2, that enhance NK cell function,
whereas blockade of KIR can result in the secretion of IFN-g
that may boost T cell–mediated antitumor responses (264). This
rationale of NK–T cell crosstalk led to the testing of the
combination in phase-1/2 trials (265).

Stimulatory Agonist Molecules
The balance between coinhibitory and costimulatory signals is
what determines the state of the immune response.
Costimulatory agonists include Ox40, 4-1BB, inducible T cell
co-stimulator (ICOS), and CD40. Ox40 is expressed on the
surface of T cells and promotes proliferation and IFN-y
production. It is shown to be present in HNSCC, but
expression of its ligand (Ox40L) is reduced, rendering this
pathway ineffective (266). ICOS is expressed on the same cells,
promoting a Th2 response [62], and 4-1BB, present on the
surface of activated T cells, NK cells, and DCs, is shown to be
downregulated in HNSCC patients (267).

Many promising ongoing trials are evaluating receptor
agonists in order to reverse resistance to ICI and augment
durable responses. For example, agonists of ICOS are being
evaluated in combination with anti-PD-1, anti-CTLA-4, and
chemotherapy in various tumors, including HNSCC
(NCT03693612, NCT02904226). In addition, urelumab (an
agonistic 4-1BB monoclonal antibody), is evaluated in
combination with cetuximab (NCT02110082) in R/M
HNSCC patients.

Immunosuppressive Cells
In addition to all the complex interactions between coinhibitory
and costimulatory pathways, immunosuppressive cells can
modulate the immune response and create a protumoral
environment via multiple diverse mechanisms (268). Their
recruitment to the TME is regulated by HNSCC cells. MDSCs,
Tregs, and TAMs all modulate NK and T cell responses to
various degrees.

MDSCs are an immature myeloid cell population that
promotes HNSCC invasiveness, angiogenesis, and metastasis
(269, 270) by secreting immunosuppressive enzymes, such as
enzymes arginase 1 (Arg-1) and nitric oxide synthase (iNOS)
(251). Their presence correlates with poor outcomes with ICI as
shown in melanoma patients (271). Monoclonal Ab and
small molecule inhibitors that inhibit MSDC functions are
currently investigated in R/M HNSCC patients in various
clinical trials.

Tregs facilitate self-tolerance through direct contact and
inhibitory cytokines, such as IL-10 and TGF-b (272), they also
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play a key role in immune evasion in HNSCC. These cells
preferentially express CCR4 (believed to have a major role in
the recruitment of Tregs to the TME), which is being targeted
with an anti-CCR4 monoclonal antibody, mogamulizumab, in
different tumor types, including HNSCC.

TAMs, particularly M2 macrophages, enhance tumor
angiogenesis, motility, growth, and immune evasion by
secreting protumoral cytokines in the TME [69]. Their
presence in HNSCC is associated with poor prognosis (273).
Antibodies and small molecules that inhibit colony-stimulatory
factor 1 receptor (CSF1R) binding with CSF1, which serves
recruitment to the tumor of M2 TAMs, are currently
underway in various advanced solid tumors, including
HNSCC (NCT02526017).
CONCLUSIONS AND PERSPECTIVES

Treatment of the majority of patients with HNSCC requires
multimodality approaches. Currently, cetuximab is used in the
clinical routine as a radiation sensitizer alone or in combination
with chemotherapy for the treatment of patients with recurrent
or metastatic disease. More recently, pembrolizumab was
approved as a first-line therapy in patients who present with
metastatic disease, and treatment with either pembrolizumab
or nivolumab is used in the setting of cisplatin-refractory
recurrent or metastatic HNSCC. Despite the encouraging
results observed in some patients, tumor responses observed
in most patients are only partial and are systematically
followed by acquired resistance due the reactivation of
oncogenic signaling, leading to tumor regrowth, as discussed in
this review.

Most of the developments toward understanding HNSCC
have fallen short of clinically meaningful discoveries,
highlighting an urgent need for more effective therapies to
improve treatment outcomes. The increasing knowledge on the
genomic driver alterations in HNSCC enables their use as
predictive markers of targeted therapy regimens, currently
evaluated in clinical trials, which are shown to improve
survival and tumor response in subgroups of patients (274,
275). For instance, late-phase clinical trials show that HRAS-
mutant HNSCC patients (8% of HNSCC) treated with tipifarnib,
a selective farnesyltransferase inhibitor, shows promising
outcomes with an overall response rate (ORR) of 42.9% with
a median duration of response of 14.7 months (275). The
Akt/mTOR axis is activated in most HNSCC, particularly in
surrounding normal mucosa, and is associated with recurrences.
In this context, a phase-II trial (NCT01111058) shows significant
improvement in 1-year PFS in patients with locally advanced
HNSCC treated with everolimus (276). More recently,
Xevinapant, an investigational inhibitor of apoptosis protein
(IAP) blocker, showed prolonged OS when added to standard
chemoradiotherapy for locally advanced head and neck
squamous cell carcinoma. Based on these results, Xevinapant
received breakthrough therapy status from the FDA for the first-
line treatment of HNSCC in September 2020.
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The molecular heterogeneity of HNSCC has hampered the
identification of specific targets and, thus, the development of
targeted therapies for this group of tumors (51). Indeed,
much of the difficulty in studying and treating HNSCC lies
in the fact that they are a heterogeneous group of cancers
arising from distinct anatomic subsites that display distinct
molecular features and are associated with diverse risk factors.
However, these diseases are treated uniformly and with
limited success.

Genome-wide expression profiling led to the identification of
four robust molecular classes of HNSCC (277–279). In this
classification, the “classical,” “basal,” and “mesenchymal”
subtypes exhibit canonical genomic alterations, such as nuclear
factor erythroid 2−related factor 2 (NFE2L2) mutations and high
expression of genes in oxidative stress response pathways, high
frequency of HRAS mutations, and upregulation of EMT-related
genes, respectively (278, 279). Of note, multiple findings have led
to increased interest in the mechanisms by which cancer cells
undergoing EMT or oscillating within the EMT spectrum might
contribute to immune escape through various routes. The
“atypical” subtype contains a high proportion of HPV+
tumors, who themselves are very heterogenous and can be
subclassified into HPV-KRT (HPV-keratinocyte differentiation
and oxidative reduction process) or HPV-IMU (HPV-immune
response and mesenchymal cell differentiation) tumors (69).
These different subtypes of HNSCC may harbor different
patterns of sensitivity to oncogenic-driven targeted therapy and
radiotherapy (280, 281); however, the clinical implication of
these subtypes is currently unknown.

More recently, based on the gene expression profiles of
1368 patients with SCC in the Cancer Genome Atlas (TCGA),
Li B et al. (282) proposed six immune subtypes, including an
immune-cold subtype, an immune-hot subtype, a subtype
dominated by M2-polarized macrophages, and three other
immune subtypes with more diverse immunologic features.
Their association with response or resistance to immunotherapy
is unclear.

Complementary strategies to assess the molecular programs
that are specific to each histological subtype or anatomical
location of HNSCC may benefit from comprehensive analyses
of patient samples (283) to identify molecular vulnerabilities and,
thus, enable rapid clinical deployment to guide therapeutic
decisions. Furthermore, single-cell transcriptomics may help
revealing intratumoral heterogeneity (ITH) (284, 285) with
subtypes as well as identifying cell populations that drive drug
resistance. Spatial transcriptomics might also be an informative
approach to enable simultaneous capture of the distribution and
localization of the different components of the TME and, thus,
better understand its interaction in response to treatment.
Finally, the establishment of relevant preclinical models of
HNSCC (ref) that reflect the disease at the genetic, histological,
and functional level may provide a tool to study the molecular
modifiers of response to therapies currently used in the clinical
routine or tested in clinical trials.

Overall, understanding the molecular vulnerabilities of
HNSCC may contribute to identify and therapeutically target
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residual disease and prevent or delay the evolution of acquired
resistance. Of note, acknowledging that drug resistance depends
not only upon cancer cells but also upon the TME might enable
the identification of potential drug targets to limit cancer cell
adaptation to therapy.
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76. López-Verdıń S, Lavalle-Carrasco J, Carreón-Burciaga RG, Serafıń-HigueraN,
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