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EXTENDING REPRESENTATION FORMULAE FOR BOUNDARY
VOLTAGE PERTURBATIONS OF LOW VOLUME FRACTION TO VERY

CONTRASTED CONDUCTIVITY INHOMOGENEITIES

YVES CAPDEBOSCQ AND SHAUN CHEN YANG ONG

Imposing either Dirichlet or Neumann boundary conditions on the boundary of a smooth
bounded domain Ω, we study the perturbation incurred by the voltage potential when the
conductivity is modified in a set of small measure. We consider (γn)n∈N, a sequence of per-
turbed conductivity matrices differing from a smooth γ0 background conductivity matrix on a
measurable set well within the domain, and we assume (γn − γ0) γ−1

n (γn − γ0) → 0 in L1(Ω).
Adapting the limit measure, we show that the general representation formula introduced for
bounded contrasts in [4] can be extended to unbounded sequences of matrix valued conductiv-
ities.

1. The general framework

Given d ≥ 2, let Ω ⊂ Rd be an open, bounded Lipschitz domain. We study the following
family of solutions of perturbed boundary value problems for the conductivity equation. Given
g ∈ H 1

2 (∂Ω), we consider (un)n∈N ∈ H1 (Ω)N, a sequence of perturbations of u0 ∈ H1 (Ω) given
by

(1.1)

{
− div (γ0∇u0) = 0 in Ω,

u0 = g on ∂Ω,
and

{
− div

(
γn∇un

)
= 0 in Ω,

un = g on ∂Ω.

Alternatively, given h ∈ H− 1
2 (∂Ω) with

∫
∂Ω
hdσ = 0, we consider (un)n∈N ∈ H1 (Ω)N, a sequence

of perturbations of u0 ∈ H1 (Ω) given by

(1.2)


− div (γ0∇u0) = 0 in Ω,

γ0∇u0 · n = h on ∂Ω,∫
∂Ω
u0dσ = 0,

and


− div

(
γn∇un

)
= 0 in Ω,

γn∇un · n = h on ∂Ω,∫
∂Ω
undσ = 0.

The conductivity coefficients are assumed to be symmetric positive definite matrix-valued func-
tions with γ0 ∈ W 2,d

loc

(
Rd;Rd×d), γn ∈ L∞ (Ω;Rd×d), and they satisfy the ellipticity condition

λ0|ζ|2 ≤ γ0ζ · ζ ≤ Λ0|ζ|2 and λn|ζ|2 ≤ γnζ · ζ ≤ Λn|ζ|2, ∀ζ ∈ Rd,

with 0 < λn < Λn for all n ∈ N.

Definition 1. Given (An)n∈N and (Bn)n∈N, two sequences of measurable subsets of Ω whose
Lebesgue measures tend to zero, we define dn ∈ L∞

(
Ω;Rd×d), a positive semi-definite matrix

valued function by
dn =

(
γn + γ0γ

−1
n γ0

)
1An∪Bn .

We make the following assumptions on the inclusion sets.

Assumption. We assume that the following assumptions are satisfied:
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(1) There exists K an open subset of Ω with C∞ boundary such that d(∂K, ∂Ω) > 0 and⋃
n∈N

(An ∪Bn) ⊂ K.

(2) The perturbation vanishes asymptotically in L1 (Ω), that is,

‖dn‖L1(Ω) ≤ 1 and lim
n→∞

‖dn‖L1(Ω) = 0.

(3) There holds, for all n ≥ 1,

γn = γ0 in Ω \ (Bn ∪ An) .

The sets An and Bn are disjoint and

γn ≥ γ0 a.e. in An, γn ≤ γ0 a.e. in Bn

these inequalities being understood in the sense of quadratic forms.
(4) If An 6= ∅ for all n, we assume that one of the following integrability properties are

satisfied:
(a) There exists p > d such that

lim sup
n→∞

‖dn‖Lp(An) <∞.

(b) When d = 2, for some p > 2 there holds

lim sup
n→∞

‖dn‖Lp(Bn) <∞.

(c) There exists p > d
2
such that

lim sup
n→∞

‖dn‖Lp(An) <∞,

and there exists τ < 1
d−1

such that for all n ∈ N,

d (An, Bn) > ‖dn‖τL1(An) .

For f ∈ Lp (Ω), 1 ≤ p ≤ ∞, ‖f‖Lp(Ω) is the canonical LP (Ω) norm. For U ∈ Lp
(
Ω;Rd

)
the notation ‖U‖Lp(Ω) = ‖|U |d‖Lp(Ω) where |·|d denotes the Euclidean norm in Rd. For A ∈
Lp
(
Ω;Rd×d), ‖A‖Lp(Ω) means ‖|A|F‖Lp(Ω) where |·|F is the Frobenius norm, that is, the Euc-

lidean norm on Rd×d. We remind the reader that |AU |d ≤ |A|F |U |d a.e. in Ω, even though
the Frobenius norm isn’t the subordinate matrix norm associated with the Euclidean distance
in Rd. If A and B are non negative symmetric semi-definite matrices such that A ≤ B in the
sense of quadratic forms, then |A|F ≤ |B|F .

Remark 2. Definition 1 implies that on An ∪Bn,

dn = (γn − γ0) γ−1
n (γn − γ0) + 2γ0.

Thus
dn ≥ 2γ0 and dn > (γn − γ0) γ−1

n (γn − γ0) .

For all x ∈ Bn, dn > γ0 ≥ γn ≥ γ0− γn ≥ 0. For all x ∈ An, dn = γn + γ0γ
−1
n γ0 ≥ γn ≥ γn− γ0.

All in all, there holds
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(1.3)


|dn|F ≥ |γ0|F
|dn|F ≥ |γn|F
|dn|F ≥ |γn − γ0|F
|dn|F ≥ |(γn − γ0) γ−1

n (γn − γ0)|F

a.e. on An ∪Bn.

We will use these estimates frequently.

Remark 3. Assumption 1 comes from the fact that near the boundary of the domain, the
behaviour of the solution is different, as the imposed boundary condition plays an increased
role.

Assumption 2 is sufficient and sharp in general. Example 5 illustrates the fact that for some
inclusions un 6→ u0 when ‖dn‖ L1(Ω) 6→ 0.

Assumption 3 imposes a limitation for anisotropic conductivities since An ∩ Bn = ∅ : there
cannot be an anisotropic inclusion which is very large in one direction and very small in another.
In the case of isotropic materials, it is simply means that the inhomogeneities are located in
An and Bn.

Assumption 4 imposes additional integrability properties for dn only on highly conductive
inclusions, not on insulating ones, in general. If An = ∅, assumption 4 is always satisfied. In di-
mension two, in the presence of both insulating and conductive inclusions, if they are arbitrarily
mixed, an extra integrability of either of the two types of inclusions suffices. Alternatively, if
the insulating and conductive inclusions are not too finely intertwined, a weaker integrability
condition is required. While any of the conditions listed under assumption 4 is sufficient for our
results to hold, it is not clear that an assumption is necessary. As far as the authors are aware,
this is the first result allowing both very insulating and very highly conductive inclusions.

For any y ∈ Ω, the Green function G(·, y) is the weak solution to the boundary value problem
given by

div
(
γ0∇G(·, y)

)
= δy in Ω

G(·, y) = 0 on ∂Ω

where δy denotes the Dirac measure at the point y, and the Neumann function N (·, y) is the
weak solution to the boundary value problem given by

div
(
γ0∇N(·, y)

)
= δy in Ω

γ0∇N(·, y) · n =
1

|∂Ω|
on ∂Ω.

The main result of this article is that the general representation formula introduced in [4] can
be extended to this context. This result was presented in a preliminary form in [11].

Theorem 4. Let dn be given by definition 1. Suppose that assumptions 1, 2, 3 and 4 hold. Then,
there exists a subsequence also denoted by dn and a matrix valued functionM ∈ L2

(
Ω,Rd×d; dµ

)
,

where µ is the Radon measure generated by the sequence 1
‖dn‖L1(Ω)

|dn|F , such that for any y ∈

Ω \K,
• if un and u0 are solutions to (1.1) there holds

un (y)− u0 (y) = ‖dn‖L1(Ω)

∫
Ω

Mij (x)
∂u0

∂xi
(x)

∂G (x, y)

∂xj
dµ(x) + rn(y),
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• if un and u0 are solutions to (1.2) there holds

un (y)− u0 (y) = ‖dn‖L1(Ω)

∫
Ω

Mij (x)
∂u0

∂xi
(x)

∂N (x, y)

∂xj
dµ(x) + r′n(y),

in which rn ∈ L∞
(
Ω \K

)
(respectively r′n ∈ L∞

(
Ω \K

)
) satisfies ‖rn‖L∞(Ω\K)

‖dn‖L1(Ω)
→ 0 (resp.

‖r′n‖L∞(Ω\K)

‖dn‖L1(Ω)
→ 0 ) uniformly in g ∈ H 1

2 (∂Ω) (resp. h ∈ H− 1
2 (∂Ω) ) with ‖g‖

H
1
2 (∂Ω)

≤ 1 satisfies
(resp. ‖h‖

H−
1
2 (∂Ω)

≤ 1).
The matrix valued function M ∈ L2 (Ω, dµ) is symmetric. The tensor M can be written as

M = D −W , where W satisfies

0 ≤ Wζ · ζ ≤ ζ · ζ µ a.e. in Ω,

and if γn and γ0 are isotropic,

0 ≤ Wζ · ζ ≤ 1√
d
ζ · ζ µ a.e. in Ω.

whereas D is limit in the sense of measures of ‖dn‖−1
L1(Ω) (γn − γ1) .

Definition 11 specifies the matrix valued function W ∈ L2
(
Ω,Rd×d; dµ

)
. The tensor M is,

up to a factor, the polarisation tensor introduced in [4]. Its properties are briefly discussed in
section §4, following [6].

The question of large contrast limits has been considered by other authors. In [10], the
authors consider the case of diametrically bounded inclusions. In [7], the authors consider thin
inhomogeneities. Unlike what is done in these articles, we do not go beyond the perturbation
regime. On the other hand, in this work no geometric assumption is made on the shape of the
inhomogeneities.

To document the sharpness of assumption 2, the following example shows that it may happen
that the asymptotic limit of un is different from u for some sequence (γn)n∈N when ‖dn‖L1(Ω) 6→ 0

even though |An ∪Bn| → 0.

Example 5. Suppose that Ω = B(0, 2) ⊂ Rd, choose An = B
(
0, 1 + 1

n

)
\ B

(
0, 1− 1

n

)
, and

g = x1. Then for γ0 = Id, the unperturbed solution of (1.1) corresponds to u = x1.
Suppose that γn is radial and constant on (Ii)i≤1≤4, where I1 =

(
0, 1− 1

n

)
, I2 =

(
1− 1

n
, 1
)
.

I3 =
(
1, 1 + 1

n

)
, I4 =

(
1 + 1

n
, 2
)
, with values

γn = χI1∪I4 + nαχI2 + nβχI3 ,

where α, β are real parameters. Then,∫
Ω

|dn|F dx =
√
d
(
nα−1 + n−α−1 + nβ−1 + n−β−1

)
and the solution un of (1.1) takes the form

un =
4∑
i=1

Ani x11Ii (|x|) + |x|−d
4∑
i=2

Bn
i x11Ii (|x|) ,

for some constants (Ani )1≤i≤4 and (Bn
i )2≤i≤4. As n → ∞, then un → v pointwise where

v = (limn→∞A
n
1 )x1 for x < 1 and v = (limn→∞A

n
4 )x1 + (limn→∞B

n
4 ) |x|−d x1 for x > 1

2
.

Computing the value of the constants, we find that (limn→∞A
n
1 ) = (limn→∞A

n
4 ) = 1 and

(limn→∞B
n
4 ) = 0 if and only if −1 < α < 1 and −1 < β < 1. We further note that if we write

δ = min (1 + α, 1 + β, 1− α, 1− β) > 0, un − x1 is of order n−δ. Written in a slightly different
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form, there exists a positive constant C depending on α,β and d but independent of n such
that for all n ≥ 1 there holds

C−1

∫
Ω

|dn|F dx ≤ ‖un − x‖L1(Ω) and ‖un − x‖L∞(Ω) ≤ C

∫
Ω

|dn|F dx.

In this family of examples, the assumption
∫

Ω
|dn|F dx → 0 is necessary for the perturbation

regime to exist.

Following the steps in [4], the asymptotic formula that we derive makes use of
(1) A limiting Radon measure µ which describes the geometry of the limiting set,
(2) A background fundamental solution G(x, y),
(3) A limit vectorM ∈ [L2(Ω, dµ)]

d which describes the variations of the field ∇un in the
presence of inhomogeneity sets,

(4) A polarisation tensor M , independent of un, u0, the larger domain Ω and the type of
boundary condition, such thatM = M∇u0 in L2(Ω, dµ).

This will be particularly familiar to readers acquainted to the subsequent article [6] where an
energy-based approach is also used. It turns out that under assumption 1 and assumption 2
only, we can express the first order expansion in terms ofM.

Given un, u0 ∈ H1 (Ω) given by (1.1) or (1.2), we define wn = un−u0 ∈ X where X = H1
0 (Ω)

for the Dirichlet problem and X =
{
φ ∈ H1 (Ω) :

∫
Ω
φ dx = 0

}
for the Neumann problem. Here,

wn is the weak solution of

(1.4)
∫

Ω

γn∇wn · ∇φdx =

∫
Ω

(γ0 − γn)∇u0 · ∇φdx for all φ ∈ X.

Note that if u0 is the background solution of (1.1) or (1.2), then by classical regularity results
[8, theorem 2.1], u0 ∈ H1 (Ω) ∩ C1(K) and ‖u0‖C1(K) ≤ C (Ω) ‖g‖

H
1
2 (∂Ω)

, or ‖u0‖C1(K) ≤
C (Ω) ‖h‖

H−
1
2 (∂Ω)

respectively.

Lemma 6. Let dn ∈ L∞
(
Ω;Rd×d) be given by definition 1. Then, the sequence |dn|F

‖dn‖L1(Ω)

converges up to the possible extraction of a subsequence, in the sense of measures to a positive
radon measure µ, that is,

(1.5)
∫

Ω

1

‖dn‖L1(Ω)

|dn|F φ dx→
∫

Ω

φ dµ for all φ ∈ C(Ω).

For each i, j ∈ {1, . . . , d}2, 1
‖dn‖L1(Ω)

(γn − γ0)ij converges in the sense of measures to a limit

Dij ∈ [L2(Ω, dµ)]

(1.6)
∫

Ω

1

‖dn‖L1(Ω)

(γn − γ0)ij φ dx→
∫

Ω

Dij φ dµ for all φ ∈ C(Ω).

Proof. See appendix A. �

Remark 7. The sequence ‖dn‖−1
L1(Ω) |dn|F only converges to a given measure after extraction of

a subsequence a priori. In the case of an isotropic, constant, conductivity in the inclusions,
‖dn‖−1

L1(Ω) |dn|F = 1An∪Bn |An ∪Bn|−1, and this measure does not depend on the values taken
by γn or γ0 on An ∪Bn.

The quantity dn appears in the following energy estimate.



6 YVES CAPDEBOSCQ AND SHAUN CHEN YANG ONG

Proposition 8. The weak solution of (1.4) wn ∈ X satisfies

(1.7) E (wn) :=

∫
Ω

γn∇wn · ∇wndx ≤ ‖dn‖L1(Ω) ‖∇u0‖2
L∞(K) .

As a consequence, there holds

(1.8) ‖(γn − γ0)∇wn‖L1(Ω) ≤ ‖dn‖L1(Ω) ‖∇u0‖L∞(K) .

Furthermore, up to the possible extraction of a subsequence, 1
‖dn‖L1(Ω)

(γ0 − γn)∇wn converges
in the sense of measures to a limit

(1.9)
∫

Ω

1

‖dn‖L1(Ω)

(γ0 − γn)∇wn ·Ψ dx→
∫

Ω

W ·Ψ dµ,

where W ∈ [L2(Ω, dµ)]
d and µ is given by (1.5).

Remark 9. The upper estimates (1.7) and (1.8) are sharp with respect to the order of dependence
on ‖dn‖L1(Ω) as shown in example 5.

Proof. The proof of proposition 8 is similar to the moderate contrast case in [4], but with
estimates in terms of ‖dn‖L1(Ω). It is provided in appendix B. �

Under assumption 3 an improved Aubin–Céa–Nitsche estimate can be derived (lemma 14),
which allows to consider extreme contrast and depends on the L1 norm of dn only. This allows
in particular to show independence with respect to the domain and the prescribed boundary
condition, as stated below (see also [6, lemma 1]).

Lemma 10. Suppose that assumptions 1, 2, and 3 hold. Let Ω̃ be any bounded regular open
set such that K ⊂ Ω̃ with dist(K, Ω̃) > 0. Let Y be one of the spaces

H1
0 (Ω̃), H̃1(Ω̃) :=

{
φ ∈ H1

(
Ω̃
)

:

∫
Ω̃\K

φ dx = 0

}
or

H1
#(Ω̃) :=

{
φ ∈ H1

loc

(
Rd
)

:

∫
Ω̃\K

φ dx = 0 and φ Ω̃− periodic
}
,

the latter if Ω̃ is a cube. We write the weak solution of (1.4) wXn ∈ X and we set wYn to be the
unique weak solution to

(1.10)
∫
Q

γn∇wYn · ∇φdx =

∫
Q

(γ0 − γn)∇u0 · ∇φdx for all φ ∈ Y,

then for any τ ∈
(

0, 1
2(d−1)

)
, there exists C > 0 which may depend on τ , Ω, K, Λ0, λ0 and

‖γ0‖W 2,d(Ω) only such that

1

‖dn‖L1(Ω)

‖
(
γn − γ0

)
∇
(
wYn − wXn

)
‖L1(Ω) ≤ C ‖dn‖τL1(Ω) ‖∇u0‖L∞(Ω) .

As a consequence, the measured valued vector MX and MY obtained from any two of these
variational problems via proposition 8 are equal.

The proof of this result is provided in section §2. It now suffices to focus on Dirichlet problem
to establish theorem 4. To prove polarisability, that is, M = M∇u0, our argument requires
one of the additional requirements detailed in assumption 4.



REPRESENTATION FORMULA FOR DEGENERATE INCLUSIONS 7

Definition 11. For each i = 1, . . . , d, we define the correctors win ∈ H1
0 (Ω) as the weak solutions

of

(1.11)
∫

Ω

γn∇win · ∇φ dx =

∫
Ω

(γ0 − γn) ei · ∇φ dx for all φ ∈ H1
0 (Ω) .

We call Wij ∈ L2 (Ω, dµ) the scalar weak∗ limit of 1
‖dn‖L1(Ω)

(∇win · (γ0 − γn) ej) .

Remark. The connection between this tensor and its parent introduced in [4] is discussed in
section §4.

Proposition 12. Suppose assumptions 1, 2, 3 and 4 are satisfied. Given Ω′ a smooth open
subset of Ω containing K such that d (Ω′, ∂Ω) > 1

3
d (K, ∂Ω) and d (K, ∂Ω′) > 1

3
d (K, ∂Ω), there

holds ∫
Ω

(γn − γ0)∇wn · ∇xiφ dx =

∫
Ω

(γn − γ0)∇win · ∇u0φ dx+

∫
Ω

rn · ∇φ dx

with
‖rn‖L1(Ω) ≤ C ‖dn‖1+η

L1(Ω)

(
‖∇u0‖L∞(K) + ‖u0‖L∞(∂Ω′)

)
,

where the positive constants C and η may depend only on τ , Ω, K, ‖γ0‖W 2,d(Ω), Λ0, λ0, and
possibly ‖dn‖Lp(An) or ‖dn‖Lp(Bn) for some p depending on which of the alternatives listed in
assumption 4 is satisfied.

Proof. The proof of proposition 12 is the purpose of section §3. Depending on whether both
insulating and conducting inhomogeneities are present, and whether the dimension is 2 or more,
it is the combined conclusion of proposition 18, proposition 24 and proposition 26. �

We are now in position to conclude the proof of theorem 4, but for the properties of the
polarisation tensor M , left for lemma 29.

End of the proof of theorem 4. Consider the Dirichlet case. Observing that the weak formula-
tion for the solution wn = un − u0 reads

(1.12)
∫

Ω

γ0∇wn · ∇φdx =

∫
Ω

(γ0 − γn) (∇wn +∇u0) · ∇φ dx

for any φ ∈ H1
0 (Ω), we choose a sequence φm ∈ C1

c (Ω) such that φm → Gy in W 1,1
(
Ω
)
and

φm → ∇Gy in C0
(
K). Using the fact that wn is smooth away from the set K and the fact that

γn − γ0 is supported in K, we may insert φm into (1.12) and pass to the limit to conclude that∫
Ω

γ0∇wn · ∇xG(x, y) dx =

∫
Ω

(γ0 − γn) (∇u0 +∇wn) · ∇xG (x, y) dx.

After an integration by parts we obtain

(un − u0) (y) =

∫
Ω

(γn − γ0) (∇wn +∇u0) · ∇xG(x, y) dx

= ‖dn‖L1(Ω)

∫
Ω

1

‖dn‖L1(Ω)

(γn − γ0)∇u0 · ∇xG (x, y) dx

− ‖dn‖L1(Ω)

∫
Ω

1

‖dn‖L1(Ω)

(γ0 − γn)∇wn · ∇xG (x, y) dx

Using the fact that ∀y ∈ Ω \K and ∀x ∈ ∪∞n=1 (An ∪Bn), we may find a smooth function
φy ∈ C0

(
Ω
)
such that

φy(x) = ∇xG (x, y) ∀x ∈ K,
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and thanks to proposition 12, and lemma 6, we have

(un − u0) (y) = ‖dn‖L1(Ω)

∫
Ω

(Dij −Wij)
∂u0

∂xi

∂G (x, y)

∂xj
dµ(x) + rn(y),

where W ∈ L2
(
Ω,Rd×d; dµ

)
is introduced in definition 11. Note that φy is uniformly bounded

∀ (x, y) ∈ K ×Ω \K . Moreover, the remainder estimate from proposition 12 only depends on
‖g‖

H
1
2 (∂Ω)

, therefore ‖rn‖L∞(Ω)/‖dn‖L1(Ω) converges to 0 uniformly in y ∈ Ω \K and g in the

unit ball of the space H
1
2 (∂Ω). The Neumann case is similar. �

The rest of paper is structured as follows. In section §2 we derive a number of a priori
estimates, and prove lemma 10. Section §3 is devoted to the proof of proposition 12. In
section §4 we briefly discuss some of the properties of the tensor M , and prove lemma 29.
Finally in section §5 we show with an example that the a priori bounds forM given in theorem 4
are attained.

2. Proof of lemma 10 and a priori estimates.

Lemma 13. Given Ω′ a smooth domain as defined in proposition 12, there holds

‖un‖L∞(∂Ω′) + ‖∇un‖L∞(∂Ω′) ≤ C
(
‖∇u0‖L∞(K) + ‖u0‖L∞(∂Ω′)

)
,

‖wn‖L∞(∂Ω′) + ‖∇wn‖L∞(∂Ω′) ≤ C ‖wn‖L2(Ω\K)

where C > 0 depends on Ω′, K,Ω, Λ0, λ0 and ‖γ0‖W 2,d(Ω) only. Furthermore,

(2.1) ‖wn‖L∞(K) ≤ C
(
‖∇u0‖L∞(K) + ‖u0‖L∞(∂Ω′)

)
.

Notation. In the sequel, we use the notation a . b to mean a ≤ Cb, where C is a constant,
possibly changing from line to line depending on the parameters announced in the claim we
wish to prove.

Proof. Let Ω′ and Ω′′ be two open domains such thatK ⊂ Ω′′ ⊂ Ω′ ⊂ Ω, with 9d(Ω′′, ∂Ω′) >d(K, ∂Ω)
and 9d(K, ∂Ω′′) > d(K, ∂Ω). Since

− div (γ0∇wn) = 0 on Ω′′ \ Ω′

and γ0 ∈ W 2,d (Ω), classical regularity theory shows that

(2.2) ‖wn‖C1(Ω′\Ω′′) . ‖wn‖L2(Ω\K) .

By Poincaré’s inequality (or Poincaré-Wirtinger’s inequality depending on X) since wn vanishes
on ∂Ω, there holds

‖wn‖L2(Ω\K) . ‖∇wn‖L2(Ω\K) .

On the other hand, using the fact that γn = γ0 ≥ λ0Id on Ω \K, there holds

‖∇wn‖L2(Ω\K) ≤
1√
λ0

(E (wn))
1
2

. ‖dn‖
1
2

L1(Ω) ‖∇u0‖L∞(K)

. ‖∇u0‖L∞(K) ,

where we used (1.7) for the penultimate inequality and the fact that the sequence ‖dn‖L1(Ω)

is bounded on the last line. Therefore on Ω \ Ω′, the function wn satisfies div (γ0∇wn) = 0
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with |wn| . ‖∇u0‖L∞(K) on ∂Ω′ and satisfies a homogeneous boundary condition on ∂Ω (or
periodicity). By comparison, this implies

‖wn‖L∞(Ω\Ω′) . ‖∇u0‖L∞(K) .

Furthermore, un = wn + u0 satisfies ‖un‖C1(∂Ω′) ≤ ‖wn‖C1(∂Ω′) + ‖u0‖C1(∂Ω′). Finally, since
div (γn∇un) = 0 on Ω′, by comparison ‖un‖L∞(Ω′) = ‖un‖C(∂Ω′), and ‖wn‖L∞(Ω) ≤ ‖wn‖L∞(Ω′) +

‖wn‖L∞(Ω\Ω′) . ‖∇u0‖L∞(K) + ‖u0‖L∞(∂Ω′) and the conclusion follows. �

Following the strategy introduced in [4], we now show that the potential tends to zero faster
than the gradient via an Aubin–Céa–Nitsche argument. The novelty of this result is that it
depends on γn only via on ‖dn‖L1(Ω).

Lemma 14. For any τ ∈
[
1, d

d−1

)
, and given Ω′ a smooth domain as defined in proposition 12,

there holds

(2.3) ‖wn‖L2(Ω) ≤ C ‖dn‖
τ
2

L1(Ω)

(
‖∇u0‖L∞(K) + ‖u0‖L∞(∂Ω′)

)
,

with the constant C may depend on τ , Ω, K, ‖γ0‖W 2,d(Ω) , and the a priori bounds Λ0 and λ0

only.

Proof. Consider the following auxiliary equation

− div (γ0∇ψn) = wn in Ω(2.4)
ψn = 0 on ∂Ω.

Since γ0 ∈ W 2,d
(
Ω;Rd×d) we infer from elliptic regularity theory (see e.g. [8]) that for any

q ≥ 2, the solution ψn satisfies

(2.5) ‖ψn‖W 2,q(Ω) + ‖ψn‖W 1,q(Ω) . ‖wn‖Lq(Ω) .

Testing (2.4) with wn, and recalling that supp (γn − γ0) ⊂ (An ∪Bn) ⊂ K, an integration by
parts shows

‖wn‖2
L2(Ω) =

∫
Ω

γ0∇ψn · ∇wn dx

=

∫
Ω

(γ0 − γn)∇wn · ∇ψn dx+

∫
Ω

γn∇ψn · ∇wn dx

=

∫
An∪Bn

(γ0 − γn)∇wn · ∇ψn +

∫
An∪Bn

(γ0 − γn)∇u0 · ∇ψn(2.6)

Using Cauchy–Schwarz, we find∫
An∪Bn

(γ0 − γn)∇wn · ∇ψn dx

≤
(∫

An∪Bn
γn∇wn · ∇wn dx

) 1
2
(∫

Ω

dn∇ψn · ∇ψn dx
) 1

2

,

and thanks to (1.7),∫
An∪Bn

(γ0 − γn)∇wn · ∇ψn dx ≤ ‖dn‖L1(Ω) ‖∇u0‖L∞(K) ‖∇ψn‖L∞(K) .
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Similarly, using (1.3), ∫
An∪Bn

(γ0 − γn)∇u0 · ∇ψn dx

≤
(∫

An∪Bn
γn∇u0 · ∇u0 dx

) 1
2
(∫

Ω

dn∇ψn · ∇ψn dx
) 1

2

≤‖dn‖L1(Ω) ‖∇u0‖L∞(K) ‖∇ψn‖L∞(K) .

and (2.6) becomes

(2.7) ‖wn‖2
L2(Ω) ≤ 2 ‖dn‖L1(Ω) ‖∇u0‖L∞(K) ‖∇ψn‖L∞(K) .

On the other hand, choosing q = d+ ε in (2.5) there holds

(2.8) ‖∇ψn‖L∞(Ω) . ‖ψn‖W 2,d+ε(Ω) . ‖wn‖Ld+ε(Ω)

By interpolation, and using the a priori bound (2.1) for wn given in lemma 13, we find

(2.9) ‖wn‖Ld+ε(Ω) ≤ ‖wn‖
2
d+ε

L2(Ω) ‖wn‖
1− 2

d+ε

L∞(Ω) . ‖wn‖
2
d+ε

L2(Ω)

(
‖∇u0‖L∞(K) + ‖u0‖L∞(∂Ω′)

)1− 2
d+ε

.

Combining (2.7), 2.8, and (2.9), we have obtained

‖wn‖
2(1− 1

d+ε)
L2(Ω) . ‖dn‖L1(Ω) ‖∇u0‖L∞(K)

(
‖∇u0‖L∞(K) + ‖u0‖L∞(∂Ω′)

)1− 2
d+ε

. ‖dn‖L1(Ω)

(
‖∇u0‖L∞(K) + ‖u0‖L∞(∂Ω′)

)2(1− 1
d+ε)

,

which is equivalent to (2.3). �

Remark 15. Note that estimate (2.3) improves on previous estimates, even in the case of
bounded contrasts (see [4, lemma 1]). It is arbitrarily close to the estimate one obtains for
a fixed, scaled shape with constant scalar conductivity [1].

Corollary 16. For any q ≥ 2 and any τ ∈
[
1, d

d−1

)
, with the same notations as in lemma 14,

there holds

(2.10) ‖wn‖Lq(Ω) ≤ C ‖dn‖
τ
q

L1(Ω)

(
‖∇u0‖L∞(K) + ‖u0‖L∞(∂Ω′)

)
.

Furthermore, wn solution of (1.4) satisfies

(2.11) J∇wnKL∞(∂Ω′) + JwnKL∞(∂Ω′) ≤ C ‖dn‖
τ
2

L1(Ω)

(
‖∇u0‖L∞(K) + ‖u0‖L∞(∂Ω′)

)
.

Proof. We write

‖wn‖Ls(Ω) ≤ ‖wn‖
2
q

L2(Ω) ‖wn‖
1− 2

q

L∞(Ω)

and estimate (2.10) follows from (2.3) and (2.1). Estimate (2.11) follows from lemma 13 and
lemma 14. �

We now address the independence of the polarisation tensorM from the boundary conditions.

Proof of lemma 10. . Given τ =
(
0, 1

2
1
d−1

)
, Following the steps of 14 with (1.10) and wYn , we

find

(2.12)
∥∥wYn ∥∥L2(Ω̃) . ‖dn‖

1+2τ
2

L1(Ω)

(
‖∇u0‖L∞(K) + ‖u0‖L∞(∂Ω′)

)
.



REPRESENTATION FORMULA FOR DEGENERATE INCLUSIONS 11

Now, we choose a smooth cut-off function χ ∈ C∞c
(

Ω̃
)
such that χ = 1 on K. Noting that

div
(
γn∇

(
wXn − wYn

))
= 0 on Ω̂, Caccioppoli’s inequality writes∫

Ω̃

γn∇
(
χ
(
wYn − wXn

))
· ∇
(
χ
(
wYn − wXn

))
dx =

∫
Ω̃\K

(γ0∇χ · ∇χ)
(
wYn − wXn

)2 dx,

that is,∫
Ω̃

γn∇
(
wYn − wXn

)
· ∇
(
wYn − wXn

)
dx ≤ C

(
Ω̃, K

)(∥∥wXn ∥∥2

L2(Ω)
+
∥∥wYn ∥∥2

L2(Ω̃)

)
,

. ‖dn‖1+2τ
L1(Ω)

(
‖∇u0‖L∞(K) + ‖u0‖L∞(∂Ω′)

)2

This in turn shows, by Cauchy-Schwarz,

‖
(
γn − γ0

)
∇
(
wYn − wXn

)
‖L1(Ω) ≤ ‖dn‖

1
2

L1(Ω)

(∫
K

γn∇
(
wYn − wXn

)
· ∇
(
wYn − wXn

)
dx

) 1
2

≤ C
(

Ω̃, K
)
‖dn‖1+τ

L1(Ω)

(
‖∇u0‖L∞(K) + ‖u0‖L∞(∂Ω′)

)
As a result, 1

‖dn‖L1(Ω)

∥∥(γn − γ0)∇
(
wYn − wXn

)∥∥
L1(Ω)

→ 0, which implies equivalence that the

limiting measures resulting from 1
‖dn‖L1(Ω)

(γn − γ0)∇wXn and 1
‖dn‖L1(Ω)

(γn − γ0)∇wYn are equal.
�

3. Proof of proposition 12

We use the following corollary to the a priori energy estimate given in proposition 8.

Corollary (Corollary to proposition 8). For any p ≥ 1, there holds

(3.1) ‖γn∇wn‖
L

2p
p+1 (An)

≤ d
1
4 ‖dn‖

1
2

L1(Ω) ‖dn‖
1
2

Lp(An) ‖∇u0‖L∞(K) .

Proof. Using Hölder’s inequality, it holds that for any p ≥ 1

(3.2) ‖γn∇wn‖
L

2p
p+1 (An)

≤
∥∥∥γ 1

2
n

∥∥∥
L2p(An)

(E (wn))
1
2 .

We have ∥∥∥γ 1
2
n

∥∥∥
L2p(An)

=

(∫
An

∣∣∣γ 1
2
n

∣∣∣2p
F
dx
) 1

2p

,

and, using the fact that for d× d symmetric matrix A, |A2|F ≤ |A|
2
F ≤
√
d |A2|F ,we find, using

(1.3),

(3.3)
∥∥∥γ 1

2
n

∥∥∥
L2p(An)

≤ d
1
4

(∫
An

|γn|pF dx
) 1

2p

= d
1
4 ‖γn‖

1
2

Lp(An) ≤ d
1
4 ‖dn‖

1
2

Lp(An) .

Putting together (1.7), (3.2) and (3.3) the conclusion follows. �

The following error estimate is a key tool for the proof of proposition 12
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Proposition 17. For any φ ∈ C1(Ω), there holds∫
Ω

((
γn − γ0

)
∇wn · ∇xi

)
φ dx(3.4)

=

∫
Ω

((
γn − γ0

)
∇win · ∇u0

)
φ dx+

∫
Ω

rn · ∇φ dx

with rn ∈ L1(Ω). Furthermore for any τ ∈
[
1, 2d−1

2d−2

)
, the following estimate holds

(3.5)
∣∣∣∣∫

Ω

rn · ∇φ dx
∣∣∣∣ ≤ C ‖∇φ‖L∞(Ω)

(
‖dn‖τL1(Ω)

(
‖∇u0‖L∞(K) + ‖u0‖L∞(∂Ω′)

)
+ εn

)
,

The constant C may depends on τ , Ω, Ω′, K, ‖γ0‖W 2,d(Ω), and the a priori bounds Λ0 and λ0

only. The remainder term εn satisfies the following two a priori estimates

(3.6) εn ≤ ‖dn‖L1(Ω)

(
‖wn‖L∞(An) +

∥∥win∥∥L∞(An)
‖∇u0‖L∞(K)

)
and, for p > d,

(3.7) εn ≤ ‖dn‖1+η
L1(Ω) ‖dn‖

1
2

Lp(An)

(
‖∇u0‖L∞(K) + ‖u0‖L∞(∂Ω′)

)
.

where η > 0 depends only on p.

Remark. Note that estimates (3.6) and (3.7) imply that εn ≤ 0 when An = ∅.

Proof. We write Z as a shorthand for ‖∇u0‖L∞(K) + ‖u0‖L∞(∂Ω′). A computation shows that∫
Ω

((γn − γ0)∇wn · ∇xi)φ dx =

∫
Ω

(
(γ0 − γn)∇win · ∇u0

)
φ dx+

∫
Ω

rn · ∇φ dx

where the remainder term rn ∈ L1(Ω) is

rn = (γn − γ0)
(
win∇u0 − wn∇xi

)
+ winγn∇wn − wnγn∇win.

Now, write T1 = 1γn≤γ0 (rn · ∇φ) and T2 = rn · ∇φ− T1.

‖T1‖L1(Ω) ≤
∫

Ω∩{γn≤γ0}

∣∣wn (γn∇win) · ∇φ∣∣ dx+

∫
Ω∩{γn≤γ0}

∣∣win (γn∇wn) · ∇φ
∣∣ dx

+

∫
Ω∩{γn≤γ0}

∣∣win (γn − γ0)∇u0 · ∇φ
∣∣ dx+

∫
Ω∩{γn≤γ0}

|wn (γn − γ0)∇xi · ∇φ| dx

≤ ‖∇φ‖L∞(Ω) ‖γ0‖
1
2

L∞(Ω)

(
‖wn‖L2(Ω)E

(
win
) 1

2 +
∥∥win∥∥L2(Ω)

E (wn)
1
2

+
∥∥win∥∥L2(Ω)

‖dn‖
1
2

L1(Ω) ‖∇u0‖L∞(K) + ‖wn‖L2(Ω) ‖dn‖
1
2

L1(Ω)

)
Thanks to estimate (1.7) and (2.3) (applied to u0 = xi for the corrector terms win) we find

‖T1‖L1(Ω) . ‖dn‖
1
2

+ 1
2
τ ′

L1(Ω) ‖∇φ‖L∞(Ω) Z,

with τ ′ ∈
[
1, d

d−1

)
, so that τ = 1+τ ′

2
∈
[
1, 2d−1

2d−2

)
. We now turn to the other term. The triangle

inequality gives

‖T2‖L1(Ω) ≤
∫
An

∣∣wn (γn∇win) · ∇φ∣∣ dx+

∫
An

∣∣win (γn∇wn) · ∇φ
∣∣ dx(3.8)

+

∫
An

∣∣win (γn − γ0)∇u0 · ∇φ
∣∣ dx+

∫
An

|wn (γn − γ0)∇xi · ∇φ| dx.
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Recall that thanks to (1.3), |γn − γ0|F < |dn|F . Thus using (3.1) with p = 1, and (1.3), we
deduce from (3.8) that

‖T2‖L1(Ω) . ‖dn‖L1(Ω)

(
‖wn‖L∞(An) +

∥∥win∥∥L∞(An)
‖∇u0‖L∞(K)

)
‖∇φ‖L∞(K) ,

which corresponds to estimate (3.6).
Alternatively, applying Hölder’s inequality, then the Lp bound (3.1) and the Lq bound (2.10)

with the conjugate exponent, we find for any p ≥ 1, and any θ ∈
[
1, d

d−1

)
,∫

An

∣∣wnγn∇win · ∇φ∣∣ dx
≤
∥∥γn∇win∥∥

L
2p
p+1 (An)

‖wn‖
L

2p
p−1 (An)

‖∇φ‖L∞(K)

. ‖dn‖
1
2

L1(Ω) ‖dn‖
1
2

Lp(An) ‖dn‖
( 1

2
− 1

2p)θ
L1(Ω) Z ‖∇φ‖L∞(K) .

Similarly ∫
An

∣∣winγn∇wn · ∇φ∣∣ dx . ‖dn‖ 1
2

L1(Ω) ‖dn‖
1
2

Lp(An) ‖dn‖
( 1

2
− 1

2p)θ
L1(Ω) Z ‖∇φ‖L∞(K) .

Using (1.3), Hölder’s inequality and the Ls bounds (2.10), we write∫
An

∣∣win (γn − γ0)∇u0 · ∇φ
∣∣ dx ≤ ∥∥∥d 1

2
n

∥∥∥
L2(An)

∥∥∥d 1
2
nw

i
n

∥∥∥
L2(An)

‖∇u0‖L∞(K) ‖∇φ‖L∞(K)

. ‖dn‖
1
2

L1(An) ‖dn‖
1
2

Lp(An)

∥∥win∥∥
L

2p
p−1 (An)

‖∇u0‖L∞(K) ‖∇φ‖L∞(K)

. ‖dn‖
1
2

L1(Ω) ‖dn‖
1
2

Lp(An) ‖dn‖
( 1

2
− 1

2p)θ
L1(Ω) Z ‖∇φ‖L∞(K) ,

and by the same argument,∫
An

|wn (γn − γ0)∇xi · ∇φ| dx . ‖dn‖
1
2

L1(Ω) ‖dn‖
1
2

Lp(An) ‖dn‖
( 1

2
− 1

2p)θ
L1(Ω) Z ‖∇φ‖L∞(K) .

Altogether, for any p ≥ 1, and any θ ∈
[
1, d

d−1

)
,

‖T2‖L1(Ω) . ‖dn‖
1
2

L1(Ω) ‖dn‖
1
2

Lp(An) ‖dn‖
( 1

2
− 1

2p)θ
L1(Ω) Z ‖∇φ‖L∞(K) .

For any p > d, pick θ = 1
2

(
p
p−1

+ d
d−1

)
, then

η =
1

2

(
d

d− 1

p− 1

p
− 1

)
> 0,

and
‖T2‖L1(Ω) ≤ ‖dn‖

1+η
L1(Ω) ‖dn‖

1
2

Lp(An) Z ‖∇φ‖L∞(K) ,

which concludes the proof of estimate (3.7). �

Proposition 18. Suppose assumptions 1, 2, and 3 are satisfied. Additionally assume that either
An = ∅, or assumption 4a holds. Given Ω′ a smooth domain as defined in proposition 12, there
holds ∫

Ω

((
γn − γ0

)
∇wn · ∇xi

)
φ dx =

∫
Ω

((
γn − γ0

)
∇win · ∇u0

)
φ dx+

∫
Ω

rn · ∇φ dx

with
‖rn‖L1(Ω) ≤ C ‖dn‖1+η

L1(Ω)

(
‖∇u0‖L∞(K) + ‖u0‖L∞(∂Ω′)

)
,
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where the positive constants C and η may depend only on τ , Ω, K, ‖γ0‖W 2,d(Ω), Λ0 and λ0 and
‖dn‖Lp(An).

Proof. This is an immediate consequence of proposition 17. �

3.1. The high conductivity inclusion case when d = 2. This section addresses the case
when assumption 4b holds. When d = 2, as it is well known, there is a direct relation between
high and low conductivity problem, by means of stream functions (see e.g. [9]). We use this
indirect method to obtain the polarisability result under assumption 4b. We remind the reader
of the following classical result.

Lemma 19 ([Lemma I.1 2]). Let Ω be any smooth open set in R2, not necessarily simply
connected, and D be a vector field such that

div (D) = 0 on Ω, and
∫

Γi

D · ndσ = 0

on each connected component Γi of ∂Ω. Then, there exists a function H such that

D = (−∂x2H, ∂x1H) on Ω.

Let (Γi)1≤i≤N the connected components of ∂Ω and let Fbn and Fb0 the unique solutions of

(3.9)


div (γn∇Fbn) = 0 on Ω′,

γn∇Fbn · n = 1
|Γi|

∫
Γi
γn∇un · ndσ on each Γi.∫

Ω
Fbndx = 0.

and

(3.10)


div (γ0∇Fb0) = 0 on Ω′,

γ0∇Fb0 · n = 1
|Γi|

∫
Γi
γ0∇u0 · ndσ on each Γi.∫

Ω
Fb0dx = 0.

Then applying lemma 19 to γn∇ (un − Fbn) and γ0∇ (u0 − Fb0) there exist stream functions
ψn, ψ0 ∈ H1 (Ω′) such that

(3.11) γn∇ (un − Fbn) = J∇ψn and γ0∇ (u0 − Fb0) = J∇ψ0 a.e. in Ω′.

where J is the antisymmetric matrix
(

0 −1
1 0

)
. As the stream functions may be chosen

uniquely up to an additive constant, we may assume without loss of generality that they satisfy
the constraint ∫

Ω

ψndx = 0 =

∫
Ω

ψ0dx.

Thus, ψn and ψ0 are weak solutions of

− div (σn∇ψn) = 0 in Ω′

− div (σ0∇ψ0) = 0 in Ω′

where the conductivity matrices σn and σ0 are defined as

σn := JTγ−1
n J and σ0 := JTγ−1

0 J.

When then define Σn as dn was with respect to γ0 and γn,that is

Definition 20. We set
Σn =

(
σn + σ0σ

−1
n σ0

)
1An∪Bn .
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Proposition 21. Given Ω′ a smooth domain as defined in proposition 12, given ψn and ψ0 be
the stream functions defined in (3.11). The function ϕn = ψn − ψ0 satisfies

(3.12) − div (σn∇ϕn) = div ((σn − σ0)∇ψ0) in D′ (Ω′)

and for any τ ∈
(
0, 1

2

)
there holds

(3.13) ‖σn∇ϕn · ν‖H− 1
2 (∂Ω′)

≤ C ‖dn‖
1
2

+τ

L1(Ω) ‖g‖H 1
2 (∂Ω′)

,

where the constant C may depend only on τ , Ω, K, ‖γ0‖W 2,d(Ω) , Λ0 and λ0 .

Proof. Thanks to (3.11), since d (∂Ω′, K) > 0, on ∂Ω′

σn∇ϕn = σ0∇ϕn = JT∇ (un − Fbn − u0 − Fb0)

= JT∇ (wn + Fbn − Fb0) .

Thanks to estimate (2.11) applied to wn and to Fbn and Fb0, there holds

‖σn∇ϕn‖L∞(∂Ω′) ≤ C ‖dn‖
1
2

+τ

L1(Ω)

(
‖∇u0‖L∞(K) + ‖u0‖L∞(∂Ω′)

)
.

which implies (3.13). �

We note that the role of Bn and An are swapped when considering (3.12) rather than (1.4).
The polarisability for ϕn is therefore established from proposition 18 provided ‖dn‖Lp(Bn) <∞
for some p > 2.

Corollary 22. Suppose that Assumptions 1, 2, and 3 are satisfied. Additionally assume that
d = 2 and for some p > 2,

lim sup
n
‖Σn‖Lp(Bn) <∞.

The function ϕn = ψn − ψ0, the weak solution to (3.12), satisfies

(3.14)
1

‖Σn‖L1(Ω)

(
σ0 − σn

)
∇ϕn dx

∗
⇀ Ñ∇ψ0 dν

in the space of bounded Radon measures where Ñ ∈ L2
(
Ω,Rd×d; dν

)
, and ν is the Radon measure

generated by the sequence 1
‖Σn‖L1(Ω)

Σn. The convergence is uniform with respect to g ∈ H1/2 (∂Ω)

provided ‖g‖
H

1
2 (∂Ω)

≤ 1.

Proof. The proof follows directly from proposition 17 and lemma 10. �

Lemma 23. The symmetric positive definite matrix Σn given by definition 20 satisfies

Σn = σn + σ0σ
−1
n σ0 = JTγ−1

0 dnγ
−1
0 J.

As a consequence, denoting ν and µ to be the Radon measures generated by the sequences
Σn

‖Σn‖L1(Ω)
and dn

‖dn‖L1(Ω)
respectively, the Radon-Nikodym derivatives dν

dµ and dµ
dν belongs to L∞ (Ω; dµ)

and L∞ (Ω; dν) respectively, and the spaces Lp (Ω; dµ) are equivalent to Lp (Ω; dν) for any p > 1.

Proof. The formula Σn = JTγ−1
0 dnγ

−1
0 J is straightforward to verify. It follows that

(3.15) |dn|F
(

min
Ω
λ
(
γ−1

0

))2

≤ |Σn|F ≤ |dn|F
(

max
Ω

λ
(
γ−1

0

))2

.

Since these two quantities are equivalent, the conclusion follows. �
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Proposition 24. Suppose Assumptions 1, 2, and 3 are satisfied. Additionally assume that
d = 2 and for some p > 2,

lim sup
n
‖dn‖Lp(Bn) <∞.

Given Ω′ a smooth domain as defined in proposition 12, there holds∫
Ω

((γn − γ0)∇wn · ∇xi)φ dx =

∫
Ω

(
(γn − γ0)∇win · ∇u0

)
φ dx+

∫
Ω

rn · ∇φ dx

with
‖rn‖L1(Ω) ≤ C ‖dn‖1+η

L1(Ω)

(
‖∇u0‖L∞(K) + ‖u0‖L∞(∂Ω′)

)
,

where the positive constants C and η may depend only on τ , Ω, K, ‖γ0‖W 2,d(Ω), Λ0, λ0 and
‖dn‖Lp(An).

The proof of this result is given in appendix C.

3.2. The non finely intertwined case. The main result of this section is the establishes
proposition 12 in the final case, namely when assumption 4c holds. Example 25 is an illustration
of such a configuration.

Example 25. Suppose that Ω ⊂ Rd is the ball B (0, d) of radius d centred at the origin.
Assume that γ0 = Id. Given ε > 0, for n ≥ 2, we set

An =
n⋃
k=1

(
k

n
,
k

n
+

1

nd+1+ε

)
× (0, 1)d−1 , Bn =

n⋃
k=1

(
k

n
+

1

2n
,
k

n
+

3

4n

)
× (0, 1)d−1 ,

and

γn =

((
n
i− 1

d− 1
+
d− i
d− 1

)
δij

)
1≤i,j≤d

on An, γn =
lnn

n
Id on Bn.

We have An ∪ Bn ⊂ (0, 1)d ⊂ Ω. The insulating and conductive strips are separated by a
distance d (An, Bn) ∝ 1

n
. We have

‖dn‖L1(An) ∝
1

nd−1+ε
, ‖dn‖L1(Bn) ∝

1

lnn
,

therefore ‖dn‖L1(Ω) → 0. We have d (An, Bn) > ‖dn‖τL1(An) for τ ∈
(
0, 1

d−1

)
.We compute that

‖dn‖Lp(An) ∝ np−(d+ε) . In particular for p = d > d
2
there holds ‖dn‖Lp(An) → 0. Notice that the

conductive strips are narrowed to accomodate the extra integrability, whereas the insulating
one are just chosen to so that ‖dn‖L1(Ω) → 0.

Proposition 26. Suppose assumptions 1, 2, and 3 are satisfied. Suppose additionally that for
some p > d

2
,

lim sup
n
‖dn‖

1
2

Lp(An) <∞

and that there exists a sequence of function (χn)n∈N ∈ (W 1,∞ (Ω; [0, 1]))
N such that χn ≡ 0 on

Bn, χn = 1 on An and
‖dn‖τL1(Ω) ‖∇χn‖L∞(Ω) <∞,

for some τ < 1
(d−1)

. Given Ω′ a smooth domain as defined in proposition 12, there holds∫
Ω

((
γn − γ0

)
∇wn · ∇xi

)
φ dx =

∫
Ω

((
γn − γ0

)
∇win · ∇u0

)
φ dx+

∫
Ω

rn · ∇φ dx
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with
‖rn‖L1(Ω) ≤ C ‖dn‖1+η

L1(Ω)

(
‖∇u0‖L∞(K) + ‖u0‖L∞(∂Ω′)

)
,

where the positive constants C and η may depend only on τ , Ω, K, ‖γ0‖W 2,d(Ω) , Λ0 and λ0, p
and τ only.

Proof. This a direct consequence of estimate (3.6) in proposition 17 and lemma 27. �

Lemma 27. If for some p > d
2
,

lim sup
n
‖dn‖

1
2

Lp(An) <∞

and if there exists a sequence of function (χn)n∈N ∈ (W 1,∞ (Ω; [0, 1]))
N such that χn ≡ 0 on Bn,

χn = 1 on An and
‖dn‖τL1(Ω) ‖∇χn‖L∞(Ω) <∞,

for some τ < 1
(d−1)

then there exists η > 0 depending on p and τ only such that

‖wn‖L∞(An) ≤ C ‖dn‖ηL1(Ω)

(
‖∇u0‖L∞(K) + ‖u0‖L∞(∂Ω′)

)
,

where C depends on K,Ω, Λ0, λ0 , ‖γ0‖W 2,d(Ω), p and τ only.

Proof. We apply Stampacchia’s truncation method [12]. We denote u→ Gk(u) to be the trun-

cation operator, i.e Gk(u) =


u |u| ≤ k

k u > k

−k u < −k
with k > 0, and we writemk = {x ∈ Ω : |un| > k}.

We test equation (1.4) against χ2
nvn, with vn = wn −Gk (wn), and obtain∫

Ω

γn∇wn · ∇
(
χ2
nvn
)
dx

=

∫
Ω

γn∇ (χnvn) · ∇ (χnvn) dx−
∫

Ω

γn∇χn · ∇χnv2
ndx

=

∫
Ω

χn (γ0 − γn)∇u0 · ∇ (χnvn) dx+

∫
Ω

χnvn (γ0 − γn)∇u0 · ∇χdx

Write γ+
n = max (γn, γ0). Since χ ≡ 0 on Bn, and ∇χ is supported on Ω \ (An ∪Bn) and vn is

supported on mk, we may simplify the above identity to∫
Ω

γ+
n∇ (χvn) · ∇ (χvn) dx =

∫
mk

γ0∇χn · ∇χnv2
ndx−

∫
mk

(
γ0 − γ+

n

)
∇u0 · ∇ (χnvn) dx

Using Cauchy-Schwarz, we find∣∣∣∣∫
mk

(
γ0 − γ+

n

)
∇u0 · ∇ (χnvn) dx

∣∣∣∣ ≤ (∫
mk

dn∇u0 · ∇u0dx
) 1

2
(∫

Ω

γ+
n∇χn · ∇χnv2

ndx
) 1

2

,

which shows that∫
Ω

λ0 |∇ (χvn)|2 dx ≤
∫

Ω

γ+
n∇ (χvn)·∇ (χvn) dx ≤ 2

(∫
mk

d+
n∇u0 · ∇u0dx+

∫
mk

Λ0 |∇χn|2 v2
ndx
)
.
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For any p > d
2
we write using Hölder’s inequality and the fact that |vn| ≤ |wn|∫
mk

d+
n∇u0 · ∇u0dx+

∫
mk

γ0∇χn · ∇χnv2
ndx

≤‖dn‖Lp(An) ‖∇u0‖2
L∞(K) |mk|1−

1
p + ‖wn‖2

L2p(Ω) Λ0 ‖∇χn‖2
L∞(Ω) |mk|

p−1
p ,

Whereas for any h > k, thanks to the Sobolev embeddingH1 (Ω) ↪→ Lq (Ω) for q =
(

p
p−1

+ d
d−2

)
if d > 2 and q = 2p

p−1
+ 1 if d = 2,

λàC (s,Ω) |k − h|2 |mh|
2
q < λqC (s,Ω) ‖χvn‖2

L3+ 2
s (mk)

<

∫
Ω

λ0 |∇ (χvn)|2 dx.

This shows that mk = 0, for k large enough, that is,

‖χnwn‖L∞(Ω) ≤ C
(
‖dn‖

1
2

Lp(An) ‖∇u0‖L∞(K) + ‖wn‖L2p(Ω) ‖∇χn‖L∞(Ω)

)
,

C > 0 depends on s, K,Ω, Λ0 and λ0 only. Thanks to estimate (2.10), for any ζ ∈
[
1, 1

(d−1)

)
there holds

‖wn‖L2p(Ω) ≤ C ‖dn‖
dζ
2p

L1(Ω)

(
‖∇u0‖L∞(K) + ‖u0‖L∞(∂Ω′)

)
,

where C depends on η, Ω′, K,Ω, Λ0 and λ0 and ‖γ0‖W 2,d(Ω). Altogether,

(3.16) ‖wn‖L∞(An) ≤ C
(
‖dn‖

1
2

Lp(An) + ‖dn‖ζL1(Ω) ‖∇χn‖L∞(Ω)

)(
‖∇u0‖L∞(K) + ‖u0‖L∞(∂Ω′)

)
.

Now, given τ < 1
d−1

and p0 >
d
2
such that

lim sup ‖dn‖τL1(Ω) ‖∇χn‖L∞(Ω) + lim sup ‖dn‖Lp0 (An) <∞,

write

κ = sup
n
‖dn‖τL1(Ω) ‖∇χn‖L∞(Ω) + ‖dn‖Lp0 (An) ,

and p1 = 1
2

min
(
d
2

1
τ(d−1)

, p0

)
+ d

4
. By interpolation between L1 (An) and Lp0 (An) we have

‖dn‖
1
2

Lp1 (An) ≤ ‖dn‖
θ1
L1(An) κ

1
2
−θ1 ,

with θ1 = p0−p1

2p1(p0−1)
> 0 and

‖dn‖
dτ
2p1

L1(Ω) ‖∇χn‖L∞(Ω) ≤ ‖dn‖
θ2 κ,

with

θ2 =

(
d

2p1

− 1

)
τ > 0.

Estimate (3.16) with p = p1 and ζ = τ concludes the proof, with η = min (θ1, θ2) . �
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4. Properties of the polarisation tensor M

Thanks to lemma 10, we may consider alternative definitions for the tensor M. The most
convenient is the periodic one, namely, embedding Ω in a large cube C, we set

H1
#(C) :=

{
φ ∈ H1

loc

(
Rd
)

:

∫
C\K

φ dx = 0 and φ C − periodic
}
,

andMij = Dij−Wij ∈ L2 (Ω, dµ) is the scalar weak∗ limit of 1
‖dn‖L1(Ω)

((∇win + ei) · (γn − γ0) ej) ,

where win is be the unique weak solution to

(4.1)
∫
Q

γn∇win · ∇φ dx =

∫
Q

(γ0 − γn) ej · ∇φ dx for all φ ∈ H1
#(C).

In [4] another version M of this tensor is introduced, andM a natural extension to this context.
Assuming γn = ((γ1 − γ0) 1An∪Bn + γ0) Id for some regular functions γ1 and γ0, then the

tensor M introduced in [4] is defined as the weak∗ limit in L2 (Ω, dµ) of

1

|An ∪Bn|
(
∇win + ei

)
· ej

To compare both formulas, suppose γ1 and γ0 are constant. Then

1

‖dn‖L1(Ω)

((
∇win + ei

)
· (γn − γ0) ej

)
=

1

|An ∪Bn|
1√
d

γ1

γ2
1 + γ2

0

(γ1 − γ0)
(
∇win + ei

)
· ej,

thus the two tensors are related by the simple fomula

(4.2) M =
1√
d

γ1

γ2
1 + γ2

0

(γ0 − γ1)M,

and most properties can be read directly from [6] with the appropriate changes.

Lemma 28 ([4, theorem 1]). The entries of the polarisation tensor M satisfies Mij = Mji

µ-almost everywhere in Ω.

Lemma 29 (See [Lemma 4 6]). For every φ ∈ C1
c (C) , φ ≥ 0, and every ζ ∈ Rd, there holds∫

Ω

Wζ · ζφdµ =
1

‖dn‖L1(Ω)

∫
Ω

d′nζ · ζφ dx

− 1

‖dn‖L1(Ω)

min
u∈H1

#(C)d

∫
Ω

γn
(
∇u− γ−1

n (γn − γ0) ζ
)
·
(
∇u− γ−1

n (γn − γ0) ζ
)
φdx+ o (1) ,

with
d′n = (γn − γ0) γ−1

n (γn − γ0) = dn − 2γ0 ≥ 0.

In particular, the tensor M is positive semi-definite and satisfies

0 ≤ W ≤ Id µ a.e. in Ω.

If γn and γ0 are multiples of the identity matrix, that is, the material is isotropic, then

0 ≤ W ≤ 1√
d
Id µ a.e. in Ω.
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Proof. The derivation of the identity is, mutatis mutandis, done in [6, lemma 4]. Choosing
u = 0, we find

1

‖dn‖L1(Ω)

min
u∈H1

#(C)d

∫
Ω

γn
(
∇u− γ−1

n (γn − γ0) ζ
)
·
(
∇u− γ−1

n (γn − γ0) ζ
)
φ dx

≤ 1

‖dn‖L1(Ω)

min
u∈H1

#(C)d

∫
Ω

d′nφ dx,

and therefore ∫
Ω

Wζ · ζφdµ ≥ 0.

Since the second term is negative, we find∫
Ω

Wζ · ζφdµ ≤ lim
n→∞

1

‖dn‖L1(Ω)

∫
Ω

φd′nζ · ζ dx.

We compute

1

‖dn‖L1(Ω)

∫
Ω

φd′nζ · ζ dx =

∫
Ω

φ
d′nζ · ζ
|dn|F

|dn|F
‖dn‖L1(Ω)

dx ≤
∫

Ω

φ
d′nζ · ζ
|d′n|F

|dn|F
‖dn‖L1(Ω)

dx,

and if λ1 ≤ . . . ≤ λd are the eigenvalues of d′n at x,

d′nζ · ζ
|d′n|F

≤ |ζ|2 λd√∑d
i=1 λ

2
i

≤ |ζ|2
{

1 in general,
1√
d

if λ1 = . . . = λd
.

All eigenvalues are equal when γ0 and γn are isotropic, therefore∫
Ω

Wζ · ζφdµ ≤ lim
n→∞

1

‖dn‖L1(Ω)

∫
Ω

φd′nζ · ζ dx ≤ C |ζ|2
∫

Ω

φdµ,

with C = 1 in general and C = d−
1
2 in isotropic media. �

5. An example

We revisit an example already considered in [3, 5], namely, elliptic inclusions. In a domain

Ω =

{
(x, y) ⊂ R2 :

x2

cosh2(2)
+

y2

sinh2(2)
≤ 1

}
,

consider heterogeneities in a homogeneous medium located in the set

En =

{
(x, y) ⊂ R2 :

x2

cosh2 (n−1)
+

y2

sinh2 (n−1)
≤ 1

}
,

which collapses to the line segment (−1, 1)×{0} as n→∞. Consider an isotropic inhomogen-
eity, with conductivity

γn (x) =

{
1 x ∈ Ω \Qn

λn x ∈ Qn,

where λn ∈ (0, 1) ∪ (1,∞). In this case,

dn =
(
λn + λ−1

n

)
I2.
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and ‖dn‖L1(Ω) → 0 means max (n−1λn, n
−1λ−1

n )→ 0. The solution uin to the equation

−∇ ·
(
γn∇uin

)
= 0 in Ω

uin = xi on ∂Ω(5.1)

can be computed explicitly in elliptic coordinates. In particular we find that
1

|dn|F
(1− γn) ∂xjw

i
n =

1√
2

λn
1 + λ2

n

(1− γn) 1En
(
∂xju

i
n − δij

)
= δij`

i
n1En ,

with

`1
n = O

(
λn
n

)
and `2

n =
1√
2

+O

(
λn
n

)
when λn > 1,

`1
n = O

(
1

n2

)
and `2

n = O

(
1

nλn

)
when 0 < λn < 1,

As a consequence, when nλn → 0 with λn →∞

W =

(
0 0
0 1√

2

)
, D =

( 1√
2

0

0 1√
2

)
M =

(
1√
2

0

0 0

)
,

Whereas when λn → 0,we obtain

W =

(
0 0
0 0

)
, D = −

( 1√
2

0

0 1√
2

)
M = −

( 1√
2

0

0 1√
2

)
,

and both results corresponds extreme cases with respect to the isotropic pointwise bounds
derived in lemma 29.
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Appendix A. Additional proofs

Proof of lemma 6. The convergence (1.5) is a direct consequence of the Banach–Alaoglu’s the-
orem and the continuous embedding between L1 (Ω) ↪→ C0

(
Ω
)∗, where we have identified the

continuous dual space of C0
(
Ω
)
as the space of bounded Radon measures on Ω. We know

from (1.3) that
∣∣∣(γ0 − γn)ij

∣∣∣ ≤ |dn|F ,therefore ∥∥∥(γn − γ0)ij

∥∥∥
L1(Ω)

≤ ‖dn‖L1(Ω). We may extract

a subsequence in which
1

‖dn‖L1(Ω)

(γn − γ0)ij
∗
⇀dDij

in the space of bounded vector Radon measures.∫
Ω

φ dDij = lim
n→∞

∫
Ω

1

‖dn‖L1(Ω)

(γ0 − γn)ij φ dx

≤ lim
n→∞

∫
Ω

1

‖dn‖L1(Ω)

|dn|F φ dx

≤ lim
n→∞

(∫
Ω

1

‖dn‖L1(Ω)

|dn|F φ
2 dx

) 1
2

=

(∫
Ω

φ2 dµ
) 1

2

,

where we used Cauchy-Schwarz in the penultimate line. It follows that the functional

φ→
∫

Ω

φ · dDij
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may be extended to a bounded linear functional on [L2(Ω, dµ)]
d. Hence, by Riesz’s Represent-

ation Theorem, we may identify
dDij = Dijdµ

for some function Dij ∈ L2(Ω, dµ), which is our statement. �

Appendix B. Proof of proposition 8

Proof. We write
d′n = (γn − γ0) γ−1

n (γn − γ0) ,

and note that d′n ≤ dn. Note that wn is the unique minimiser over X of the functional

J(w) =

∫
Ω

γn
(
∇w + γ−1

n (γn − γ0)∇u0

)
·
(
∇w + γ−1

n (γn − γ0)∇u0

)
dx,

Clearly, J (wn) ≥ 0, thus

−
∫

Ω

γn∇wn · ∇wn dx+ 2

∫
Ω

γn
(
∇wn + γ−1

n (γn − γ0)∇u0

)
· ∇wndx+

∫
Ω

d′n∇u0 · ∇u0dx ≥ 0,

which shows

(B.1)
∫

Ω

γn∇wn · ∇wn dx ≤
∫

Ω

d′n∇u0 · ∇u0 dx.

Thus, as u0 ∈ C1(K) ∫
Ω

γn(x)∇wn · ∇wn dx ≤ ‖∇u0‖2
L∞(K)

∫
Ω

|dn|F dx.

We now turn to the second estimate. Using Cauchy–Schwarz we find

‖(γn − γ0)∇wn‖L1(Ω)(B.2)

=

∫
Ω

√∣∣∣(γn − γ0) γ
− 1

2
n γ

1
2
n∇wn

∣∣∣2 dx
≤

√∫
Ω

|(γn − γ0) γ−1
n (γn − γ0)|F dx

√∫
Ω

γn∇wn · ∇wndx

≤ ‖dn‖L1(Ω) ‖∇u0‖L∞(K) .

Since 1
‖dn‖L1(Ω)

(γn − γ0)∇wn is uniformly bounded in L1(Ω), we may extract a subsequence in
which

1

‖dn‖L1(Ω)

(γn − γ0)∇wn
∗
⇀dM

in the space of bounded vector Radon measures. Moreover, for any Ψ ∈ C0(Ω;Rd),∫
Ω

Ψ · dM = lim
n→∞

∫
Ω

1

‖dn‖L1(Ω)

(γn − γ0)∇wn ·Ψdx

≤ lim
n

(
1

‖dn‖L1(Ω)

∫
Ω

γn∇wn · ∇wndx

) 1
2
(

1

‖dn‖L1(Ω)

∫
Ω

d′nΨ ·Ψdx

) 1
2

≤ C

(∫
Ω

|Ψ|2 dµ
) 1

2
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thanks to the estimate above. As a consequence of this estimate, it follows that the functional

Ψ→
∫

Ω

Ψ · dM

may be extended to a bounded linear functional on [L2(Ω, dµ)]
d. Hence, by Riesz’s Represent-

ation Theorem, we may identify

dM = Mdµ

for some functionM∈ [L2(Ω, dµ)]
d, which is our statement. �

Appendix C. Proof of Proposition 24

Remark. Note that if Ω′ is simply connected, Fbn = Fb0 = 0. Remark that

1

|Γi|

∫
Γi

γ0∇u0 · ndσ =

∫
Γi

γn∇un · ndσ.

Let Ii be the solution of

div (γ0∇Ii) = 0 on Ω′ and Ii = 1 on Γi.

By an integration by parts,∫
Γi

γ0∇u0 · ndσ −
∫

Γi

γn∇un · ndσ =

∫
Ω

γ0∇u0 · ∇Iidx−
∫

Ω

γn∇un · ∇Iidx.

=

∫
Ω

gIidσ −
∫

Ω

gIidσ

= 0.

Thus, imposing that g ∈ H 1
2 (∂Ω) is such that Fb0 = 0, which corresponds to N−1 contraints in

an infinite dimensional space and therefore is not a loss of generality, this implies that Fbn = 0.
We shall make that assumption in the rest of this section.

Proof. By the inequality in (3.15), we have

‖Σn‖L1(Ω)

‖dn‖L1(Ω)

≤
(

max
Ω

λd
(
γ−1

0

))2

,

thus taking a convergent subsequence of
‖Σn‖L1(Ω)

‖dn‖L1(Ω)
→ a0 and a possible further extraction of the

subsequence 1
‖Σn‖L1(Ω)

(
σn−σ0

)
∇φn, corollary 22 implies that, if Ξ ∈ C0

(
Ω,R2

)
is an arbitrary
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vector field,

lim
n→∞

∫
Ω

(
1

‖dn‖L1(Ω)

(
σ0 − σn

)
∇ϕn · Ξ

)
dx

= lim
n→∞

∫
Ω

(
‖Σn‖L1(Ω)

‖dn‖L1(Ω)

1

‖dn‖L1(Ω)

(
σn − σ0

)
∇ϕn · Ξ

)
dx

= a0 lim
n→∞

∫
Ω

(
1

‖dn‖L1(Ω)

(
σ0 − σn

)
∇ϕn · Ξ

)
dx

= a0

∫
Ω

Ñ∇ψ0 · Ξ dν

=

∫
Ω

N∇ψ0 · Ξ dµ.

Where N = a0
dν
dµÑ belongs to L2(Ω; dµ). Alternatively testing against

(
JTγ0

)
Ξ we find∫

Ω

1

‖dn‖L1(Ω)

(
σ0 − σn

)
∇ψn ·

(
JTγ0

)
Ξ dx

=

∫
Ω

1

‖dn‖L1(Ω)

(
JTγ−1

0

(
γn − γ0

)
γ−1
n J

) (
JTγn∇un

)
·
(
JTγ0

)
Ξ dx

=

∫
Ω

1

‖dn‖L1(Ω)

JTγ−1
0

(
γ0 − γn

)
∇un · JTγ0Ξ dx.

=

∫
Ω

1

‖dn‖L1(Ω)

(
γ0 − γn

)
∇un · Ξ dx

whereas ∫
Ω

1

‖dn‖L1(Ω)

(
σn − σ0

)
∇ψ0 ·

(
JTγ0

)
Ξ dx∫

Ω

1

‖dn‖L1(Ω)

γ0γ
−1
n

(
γ0 − γn

)
∇u0 · Ξ dx.∫

Ω

1

‖dn‖L1(Ω)

((
γ0 − γn

)
+ dn

)
∇u0 · Ξ dx.

We write D as the limit limiting tensor corresponding to ‖dn‖−1
L1(Ω) dn in L2(Ω, dµ)d×d, that is,

lim
n→∞

∫
Ω

dn
‖dn‖L1(Ω)

∇u0 · Ξ dx =

∫
Ω

D∇u0 · Ξ dµ

Altogether, we have obtained

lim
n→∞

∫
Ω

1

‖dn‖L1(Ω)

(
γ0 − γn

)
∇wn · Ξdx = −

∫
Ω

D∇u0 · Ξ dµ+

∫
Ω

N∇ψ0 ·
(
JTγ0

)
Ξ dµ

=

∫
Ω

(
(γ0J)N (γ0J)T −D

)
∇u0 · Ξ dµ

which is concludes our proof. �
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