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Partial differential equations / Equations aux dérivées partielles

Extending representation formulas for
boundary voltage perturbations of low
volume fraction to very contrasted
conductivity inhomogeneities

Yves Capdeboscq® * * and Shaun Chen Yang Ong”
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Lions (LJLL), F-75006 Paris, France
b Mathematical Institute, University of Oxford, OX2 6GG, UK

E-mails: yves.capdeboscq@u-paris.fr, shaunongc@gmail.com

Abstract. Imposing either Dirichlet or Neumann boundary conditions on the boundary of a smooth bounded
domain Q, we study the perturbation incurred by the voltage potential when the conductivity is modified in
a set of small measure. We consider (y,),en, @ sequence of perturbed conductivity matrices differing from
a smooth yg background conductivity matrix on a measurable set well within the domain, and we assume
(Yn - yg)ygl (n —7v0) — 0 in L1(Q). Adapting the limit measure, we show that the general representation
formula introduced for bounded contrasts in a previous work from 2003 can be extended to unbounded
sequences of matrix valued conductivities.

Manuscript received 16th March 2021, revised 18th September 2021, accepted 21st September 2021.

1. The general framework

Given d = 2, let Q c R be an open, bounded Lipschitz domain. We study the following family

of solutions of perturbed boundary value problems for the conductivity equation. Given g €
1

H?z (0Q), we consider (1) nen € HHQN, a sequence of perturbations of 1y € H' (Q) given by

{—div(yOVuo) =0 in Q {—div(ynVun) =0 in Q,

)
Up =g on 0Q.

Ug =g on 0Q,
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128 Yves Capdeboscq and Shaun Chen Yang Ong

Alternatively, given h € H ~2(3Q) with J3q hda =0, we consider (u,) ,en € H (Q)Y, a sequence of
perturbations of uy € H' (Q) given by

—div(yoVup) =0 in Q, —div(y,Vu,) =0 in Q,
YoVugy-n =h on 00, and YnVu,-n =h on 09Q, 2)
S todo =0, Joq undo =0.

The conductivity coeflicients are assumed to be symmetric positive definite matrix-valued func-
tions with yo € W24 (RYR4*4), y,, € L(Q;R?*4), and they satisfy the ellipticity condition

Mol¢? <ol -¢ < Aol¢l® and Anl{* <yul-¢ < Aulfl?, VeR?,
withO0< A, <A, forall neN.
Definition 1. Given (w,),en a sequence of measurable subsets of Q) whose Lebesgue measures tend
to zero, we define d,, € L°(Q;R%*%), a positive semi-definite matrix valued function by
dn = (Yn+Y0Y5'Y0)lo,-
We make the following assumptions on the conductivities y,, and the sets .

Assumptions. We assume that the following assumptions are satisfied:
(1) There exists K an open subset of Q with C* boundary such that d(0K,0Q) >0 and

J wncKk.

neN

There holds, foralln =1,
Yn=70inQ\wy,.

(2) The perturbation vanishes asymptotically in LY(Q), that is,
ldnll 1) <1 and Jim ldnll 1) =0-
(3) Wewrite
By={xeQ:y,<Aoly}, Apn=wn\Bp
Dp={x€Q:yn=A1s}, Ch=wy\Dy

these inequality being understood in the sense of quadratic forms. One of the following
three properties is satisfied:
(a) There exists p > d and B € R such that

B = stllp “ d"”LP(A,,)‘
(b) Thedimension is d = 2, there exists p > 2 and B € R such that

B= st}ip | dn “Lp(cn) < o00.

(c) Theexists p > 4 BeRandt < ﬁ such that
B =limsup ||d,|| LP(Ay)
n—o00
and
. T
inf{|x—y|:x€ Ap,yeCp} = “dVlHLl(A,,)'
In particular, A, € Dy,.
For f € LP(Q), 1 < p < oo, |Ifllr( is the canonical LP(Q) norm. For U € L?(Q;R%) we use
the notation |Ullrr = IlUl4llLrq) where | -|; denotes the Euclidean norm in R For A €
LP(Q; R %), || All Lp () means ||| Alplp () where | - | is the Frobenius norm, that is, the Euclidean
norm on R4*4,
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Yves Capdeboscq and Shaun Chen Yang Ong 129

Remark 2. Assumption (1) comes from the fact that near the boundary of the domain, the
behaviour of the solution is different, as the imposed boundary condition plays a larger role.

Assumption (2) is sufficient and sharp in general. Example 4 illustrates the fact that for some
inclusions u, # up when |l dp|l 1, 7 0.

Assumption (3) imposes additional integrability properties for d,, only on highly conductive
inclusions. In dimension two, an extra integrability assumption for d,, on the highly insulating
inclusion is also sufficient. Alternatively, if very conductive materials and very insulating ones
are not too finely intertwined, a weaker integrability condition is required. While any of the
conditions listed under (3) is sufficient for our results to hold, it is not clear that an assumption is
necessary.

As far as the authors are aware, this is the first result allowing highly contrasted and anisotropic
materials in general inclusions. The question of large contrast limits has been considered by other
authors. In [18], the authors address the case of diametrically bounded inclusions without (2).
Such a general result does not hold for general inclusions, as Example 4 shows. In [11], the authors
consider thin inhomogeneities, and provide a uniform representation formula valid beyond the
perturbation regime. We only consider the perturbation regime, with no assumption on the shape
or diameter of the inhomogeneities.

For any y € Q, the Green function G(., y) is the weak solution to the boundary value problem
given by
div(yoVG(,y)) =6, in Q
G(-y)=0 on 0Q

where 6, denotes the Dirac measure at the point y, and the Neumann function N(,, y) is the weak
solution to the boundary value problem given by

div(yoVN(, ) =6, in Q

1
VN(,y)-n=—— on 0Q.
YoVN(,y) 50
The main result of this article is that the general representation formula introduced in [8] can be
extended to this context. This result was presented in a preliminary form in [19].

Theorem 3. Letd,, be given by Definition 1. Suppose that Assumptions (1), (2) and (3) hold. Then,

there exists a subsequence also denoted by d,, and a matrix valued function M € L*(Q,R%*%;dy),

where p is the Radon measure generated by the sequence W |dy|F, such that forany y € Q\ K,
LY R(0)]

o ifu, and uy are solutions to (1) there holds

duy . 0G(x,y)
un (¥) = uo (¥) = | dn| 110 fQ Mij (x) 5 () a—xjd”(x) +7a()),
e ifuy, and uy are solutions to (2) there holds
duy _ ON(x,y)
un (¥) = uo (v) = [|dn| 11 0 fQ Mij () 32 () a—xjdu(x) +7,(3),

in which r, € L®(Q\ K) (respectively r), € L°(Q\ K)) satisfies

I 7nll Lo @ \) 0 (r . I ri’1||L°°(Q\K) —»0)
” dn ||L1(Q) “ dn ”Ll(Q)
uniformly in

ge H? (0Q) (resp. heH : (OQ))

C. R. Mathématique — 2022, 360, 127-150



130 Yves Capdeboscq and Shaun Chen Yang Ong

with
”g”H%(aQ) <1 satisfies (resp. "h”H’%(am < 1),
The matrix valued function M € L2(Q,d W) is symmetric. The tensor M can be writtenas M = D—-W,
where W satisfies
0=W(-{<({-{ paeinQQ,

and ify, and y are isotropic,

1
OSW(-CS—d(-( Ha.e.in Q,
whereas D is limit in the sense of measures of
-1
||dn”L1(Q) (Yn —Yl)‘

Definition 10 specifies the matrix valued function W € L2(Q,R4%4; duw). The tensor M is, up to
a factor, the polarisation tensor introduced in [8]. Its properties are briefly discussed in Section 4,
following [10].

To document the sharpness of (2), the following example shows that it may happen that the
asymptotic limit of u,, is different from u for some sequence (y,),en when | dyllf1q) 7~ 0 even
though |w,| — 0.

Example 4. Suppose that Q = B(0,2) [Rd, choose w,, = B(0,1+ %) \B(0,1- %), and g = x;. Then
for yo = I, the unperturbed solution of (1) corresponds to u = x;.
Suppose that y,, is radial and constant on (I;); <1 <4, where

1 1
L=(0,1-—), L=|1--—,1].
n n

1 1
L=|1,1+=|, L=[1+-2],
n n
with values

¥Yn=xnot + 0 + 0Py,
where a, B are real parameters. Then,

f |dn|Fdx = \/E(nafl +n e ph g nfﬁ*l)
Q
and the solution u; of (1) takes the form

4 4

un =y alxyy, (1x)+1xI™* Y bl'xi1y, (1x)),

i=1 i=2

for some constants
(@) <icq and (b)),

As n — oo, then u,, — v pointwise where
vz( lim b{‘)xl for x<1
n—o00
and

1
| 1 n : n —d -
v—(nll_{réoa4)x1+(nll_{réob4)|x| x; for x> 2"
Computing the value of the constants, we find that (limnﬁooa{’) = (limnﬁooai’) =1 and
(limy o b)) = 0 if and only if -1 < @ < 1 and -1 < § < 1. We further note that if we write

6 =min(l+a,1+6,1-a,1-p) >0, u, — x; is of order n~%. Written in a slightly different form,
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Yves Capdeboscq and Shaun Chen Yang Ong 131

there exists a positive constant C depending on «,f and d but independent of n such that for all
n = 1 there holds

[ laulsdes sl and =l gy =C [ [dul s

In this family of examples, the assumption fQ |d,|lrdx — 0 is necessary for the perturbation
regime to exist.

Following the steps in [8], the asymptotic formula that we derive makes use of:

(1) Alimiting Radon measure p which describes the geometry of the limiting set,

(2) Abackground fundamental solution G(x, y),

(3) A limit vector . € [L? (Q,du)]d which describes the variations of the field Vu,, in the
presence of inhomogeneity sets,

(4) A polarisation tensor M, independent of u,, ug, the larger domain Q and the type of
boundary condition, such that .# = MVug in L2(Q, dw).

This will be particularly familiar to readers acquainted to the subsequent article [10] where an
energy-based approach is also used. It turns out that under (1) and (2) only, we can express the
first order expansion in terms of /.

Given uy, uy € H (Q) given by (1) or (2), we define w;, = u, — up € X where X = H(} (Q) for the
Dirichlet problem and X = {¢p € H LQ): ngb dx = 0} for the Neumann problem. Here, w, is the
weak solution of

fyann-V(,bdx:f (Yo—7vn)Vuo-Vedx forall peX. 3)
Q Q

Note that if u, is the background solution of (1) or (2), then by classical regularity results [12,
Theorem 2.1],

ueH' (@nC(K) and Nuolcign=C@gl, o0’
or luplicrgxy = C(Y) ”h"H_?(aﬂ) respectively.

Lemma5. Let d, € L®°(Q;R?*%) be given by Definition 1. Then, the sequence 0 d'fl”"lf converges
LY 2(9)]

up to the possible extraction of a subsequence, in the sense of measures to a positive radon measure

U, that is,

1 _
IW|dn|F(pdx—>fQ(pd,u forall ¢ € CQD. @
n LI(Q)

For each

1

i,jell,..., d?, (Yn=70);;

lnll o1y

converges in the sense of measures to a limit D;j € (L2 (Q,dw)]
f —Yo l](pdx—>f D;jpdu  forall peCQ). 5)
ldnll 11 ) ||L1 (m

Proof. See Appendix A. O

Remark 6. The sequence | d,| 7} @ |d,|r only converges to a given measure after extraction of
a subsequence in general. In the case of an isotropic, constant, conductivity in the inclusions,
IIcinllL1 (Q)ldnlp = lwnla)nl‘l, and this measure does not depend on the values taken by v, or v
on wy.

The quantity d,, appears in the following energy estimate.

C. R. Mathématique — 2022, 360, 127-150



132 Yves Capdeboscq and Shaun Chen Yang Ong

Proposition 7. The weak solution of (3) w, € X satisfies

2
E(wp) = fQYnVWn Vwndx < |[dn 11 g [ Vito | oo iy ©)
As a consequence, there holds
I(rn=v0) Vewnl| 1) = ldnll 120y [ Vito | oo - %
Furthermore, up to the possible extraction of a subsequence, W (Yo—Yn)Vw, converges in the
nlipl Q)
sense of measures to a limit
1
f—(YO—yn)an~‘de—>f7//-‘I’dy, 8)
o ldnlp g Q

where W € [[? (Q,du)]d and p is given by (4).

Remark 8. The upper estimates (6) and (7) are sharp with respect to the order of dependence on
lldnll11(q) as shown in Example 4.

Proof. The proof of Proposition 7 is similar to the moderate contrast case in [8], but with
estimates in terms of ||dyl ;1 q). It is provided in Appendix B. O

An Aubin-Céa-Nitsche estimate is derived in Lemma 15. It allows extreme contrasts and
depends on the L!(Q) norm of d, only. This implies independence with respect to the domain
and the prescribed boundary condition, as stated below (see also [10, Lemma 1]).

Lemma. Suppose that Assumptions (1) and (2) hold. Let Q be any bounded regular open set in
R? such that K < Q with dist(K,0Q) > 0. Let Y be one of the spaces

Hy(Q), H'(Q):= {(p e H'(Q) f ¢pdx = 0}
O\K
or
H#} Q) := {4) € HllOC ([Rd) : f~ $pdx=0 and ¢ Q- periodic},
MK

the latter if Q is a cube. We write the weak solution of (3) wix € X and we set w) to be the unique
weak solution to

f_)/an,{-ngdxzﬁ (Yo=7vn)Vuo-Vedx forall pev, 9
o o

then for any 7 € (0, ﬁ) there exists C > 0 which may depend on 7, Q, K, Ao, Ao and |lyolly2.4.q)
only such that

1 X

|0rn=v0) ¥(w) - wi)

Talien i = Clanlig Vol oy

As a consequence, the measured valued vector #* and 4" obtained from any two of these
variational problems via Proposition 7 are equal.

The proof of this result is provided in Section 2. It now suffices to focus on Dirichlet problem
to establish Theorem 3. To prove polarisability, that is, .4 = MVuy, our argument requires one of
the additional requirements detailed in item 3.

Definition 10. Foreachi=1,...,d, we define the correctors wil € H& (Q) as the weak solutions of

fy,,vbu;',-wdx:f (Yo—7vn)ei-Vodx forall pe Hy(Q). (10)
Q Q

We call W;j € L2(Q, dy) the scalar weak* limit ofm (V wjl “(Yo—1vYn)ej).

C. R. Mathématique — 2022, 360, 127-150
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Remark 11. The connection between this tensor and its parent introduced in [8] is discussed in
Section 4.

Proposition 12. Suppose Assumptions (1), (2) and (3) are satisfied. Given Q' a smooth open subset
of Q containing K such that3d(Q',0Q) > d(K,0Q) and3d(K,0Q') > d(K,0Q), there holds

L(yn—yO)an-in(pdx=fQ(yn—yO)sz-Vug(/)dx+ern-V(pdx

with om

170l 10y = Cllda| ﬁg)) (||Vu0 | oz + | L‘OHLw(aQ'))’

where the positive constants C and n may depend only on Q, K, lyollyz2.aqy, Mo, Ao, and B and p
and t as introduced in Assumption (3).

Proof. The proof of Proposition 12 is the purpose of Section 3. Depending on whether both
insulating and conducting inhomogeneities are present, and whether the dimension is 2 or more,
itis the combined conclusion of Proposition 19, Proposition 25 and Proposition 27. g

We conclude the proof of Theorem 3, but for the properties of the polarisation tensor M, left
for Lemma 30.

End of the proof of Theorem 3. Consider the Dirichlet case. Observing that the weak formula-
tion for the solution w,, = u; — uy reads

f)/oan~ngdx:f (Yo=7vn)(Vw, +Vug) - Vpdx (11)
Q Q

for any ¢ € H; (Q), we choose a sequence ¢, € C¢ (Q) such that ¢, — G in W (Q) and V¢,,, —
V.G in C%(K). Using that w, is smooth away from the set K and that y,, — ¥ is supported in K,
we may insert ¢, into (11) and pass to the limit to conclude that

fQ)foan~VxG(x,y)dx:fg()fo—y,,)(Vuo+Vw,,)-VxG(x,y)dx.

After an integration by parts we obtain

(un—uo)(y) = fQ (Yn—70) (Vwn + Vup) - Vi G(x, y)dx
1

=|d f— —v0) Vg - VG (x,y)dx
” "”L‘(Q) Q||dn||L1(Q) (Yn Yo) 0" Vx ( y)

1
Nallo [ 77— Oro=7a) Vion-¥:G(x.y) dx
o [l dn| 11 g

Using the fact that
- (&)
VyeQ\K and Vxe|J oy,

n=1

we may find a smooth function ¢, € C°(Q) such that
$y(x0) =V,G(x,y) VxeKk,
and thanks to Proposition 12 and Lemma 5 we have

oG (x,
Ot (x‘y)dp(xHrn(y),

(in=0) () = el (5= ) G20 =5

where W € L2(Q,R%*%;dp) is introduced in 10. Note that ¢, is uniformly bounded V (x,y) €
K x Q\ K. Moreover, the remainder estimate from Proposition 12 only depends on

gl 3 o therefore |7,z || dn| 11 q)

C. R. Mathématique — 2022, 360, 127-150



134 Yves Capdeboscq and Shaun Chen Yang Ong

converges to 0 uniformly in y € Q\ K and g in the unit ball of the space H 2 (0Q2). The Neumann
case is similar. O

The rest of paper is structured as follows. In Section 2 we derive a number of a priori estimates,
and prove Lemma 9. Section 3 is devoted to the proof of Proposition 12. In Section 4 we briefly
discuss some of the properties of the tensor M, and prove Lemma 30. Finally in Section 5 we show
with an example that the a priori bounds for M given in Theorem 3 are attained.

2. Proof of Lemma 9 and a priori estimates

Notation. In the sequel, we use the notation a < b to mean a < Cb, where C is a constant,
possibly changing from line to line depending on the parameters announced in the claim we
wish to prove.

Remark 13. We remind the reader that |AU|; < |Alf|Ul,4 a.e. in Q, even though the Frobenius
norm isn’t the subordinate matrix norm associated with the Euclidean distance in R%. From
Definition 1 on w,, there holds

dn=Yn+Y0Yn Yo = (Yn—=70)¥n" (¥n—"70) +270.

Thus d,, is symmetric, non-negative, and bounded below by

dn=yn, dn=2y0 and dp>(Yn—70)Yn" (Yn—="70)-

In particular, d,, = y, —yo and d,, = yo — y». If A is a non-negative symmetric matrix, B is a
symmetric matrix and there holds A = B and A = —B, then |Ar = |B|r. As a consequence, there
holds,

|dnl = |volg

|dnlp 2 |ynlp

ldnlz = |yn=7olp

ldulp = |(ra=70)vn" (Ya—70)|F
We will use these estimates frequently.

a.e.on wy. (12)

Lemma 14. Given Q' a smooth open subset of Q containing K such that d(Q',0Q) > %d (K,0Q)
and d(K,0Q) > 1d(K,00), there holds
el 100y + || Vitn || 1o g0y < C (IV U0l poo k) + 0l 1o 02 )»
lwnll gy + van ||Loo(aQ/) =Cl wn”LZ(Q\K)

where C > 0 depends on Q', K,Q, Ag, Ao and |yol w.dq) only. Furthermore,

lwnll ooy < C(”V”O”LOO(K) * ”OHL""@Q'))' 4

This follows from the maximum principle and standard elliptic regularity theory. The proof
is given in Appendix A. Following the strategy introduced in [8], we now show that the potential
tends to zero faster than the gradient via an Aubin—Céa—-Nitsche argument. The novelty of this
result is that it depends on v, only via on || dy [ 11 (-

Lemmal5. Foranyte(l, %), and given Q' a smooth domain as defined in Proposition 12, there
holds

lwall 2@ = Cldnl g, (I\Vuonpo(m +1 u0||L°°(69’))» 14)
with the constant C may depend ont, Q, K, |yl w2.dQ)» and the a priori bounds Ay and Ay only.
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Proof. Consider the following auxiliary equation
—div(yoVyn)=w, in Q

v,=0 on 0Q. (13

Since yg € Wz'd(Q;IRdXd) we infer from elliptic regularity theory (see e.g. [12]) that for any g = 2,
the solution v, satisfies

“U/n “ W24(Q) S Wyllra@)- (16)
Testing (15) with w,,, and recalling that supp(y, — o) € w, < K, an integration by parts shows

iy = [ Yo¥w- Y, d
:L(YO_YH)VWH'VWndx"‘fQanwmvwndx 17

:fQ(YO_YH)an'an'*"/S;(YO_Yn)VuO'an

Using Cauchy-Schwarz, we find

2

1
fg(y()—yn)an-andxs(fgyann-andx)z([anan-andx ,

and thanks to (6),

fw (Yo=7n) Vwy - Vyndx < | dn] s @ IVuolze=m vyl LK) *

Similarly, using (12),

1
H
fQ(}/O—yn)Vrou/ndxs(fﬂynVuo-Vuodx) (fgngu/n-Vu/ndx

<[ dn|l 11 1V ol o [V | ooy »

and (17) becomes

iZ(Q) <2|dp “Ll(Q) IVl ooy | v‘/’n”Lw(K)- (18)

On the other hand, choosing g = d + € in (16) there holds

lwnl

“ vwn”LOO(Q) f, ||1Vn|| w2d+e(Q) S “ wn||Ld+E(Q) (19)

By interpolation, and using the a priori bound (13) for w,, given in Lemma 14, we find
< lwnll 75 T < w5 (| " 20
lwnllpareqy < lwnl 2(Q) lwnlljooicyy S I wnlng(Q) [ Vo oo + 1ol ooy . (20)

Combining (18), (19), and (20), we have obtained

2(1- 7

2
lwy ||Lz(Q) ) S ”dﬂ”Ll(Q) ||Vu0||L°°(K) (“VUOHLOO(K) +l u0”L°°(6Q’))

T d+e

)Z(I—ﬁ)

S ”dﬂ”Ll(Q) (||Vu0 ||L°°(K) + ol = a0y

)

which is equivalent to (14). O

Remark 16. Note that estimate (14) improves on previous estimates, even in the case of bounded
contrasts (see [8, lemma 1]). It is arbitrarily close to the estimate one obtains for a fixed, scaled
shape with constant scalar conductivity [2].

Corollary 17. Foranyq=2andanyt€|l, %), with the same notations as in Lemma 15, there
holds

lwnllLay < C|ldnl Z @ (“VUO I 1o Tl u0||L00(aQ'))- 21

C. R. Mathématique — 2022, 360, 127-150
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Furthermore, w, solution of (3) satisfies

IVwn | ooy + 1wnll o0y < Clldnl| 7, @ (”Vuo”Loo(K) +1 uo||L°o(aQ'))- (22)
Proof. We write ) )
lwnllps) < lwn IIZZ(Q) I wnllLoo?Q)
and estimate (21) follows from (14) and (13). Estimate (22) follows from Lemmas 14 and 15. [

We now address the independence of the polarisation tensor M from the boundary conditions.

Proof of Lemma 9. Given T = (0, 3 7-7), Following the steps of Lemma 15 starting from (9) and
wY, we find
%
H Wnll 2 (9]

Choose a smooth cut-off function y € C°(Q) such that y = 1 on K. Noting that
le()/n ( -w )) 0 on O,

Le2r
Slenll 2o, (1920l oo + 120001 ) 23)

Caccioppoli’s inequality writes
v (n{ot =) 9 (a{od = i ax= [ (rovaeva) (-
that is,

[ v (il - ) ¥(w - wi)ax < c(@.x) ],

2
LZ(Q)) ’

2
S el (1920 oo + 10l 5000

Y
+ |) w
12(Q) n

This in turn shows, by Cauchy-Schwarz,

6= 1009 1 =02 g = Ut [ 9 =) (o = )

=C(QK) ||dn||il+(r£2) (“VMOHLOO(KJ * ”‘)”L‘”@Q’))

As aresult, )
_ _ Y_ X
”dn“Ll(Q) ” (rn yo)V(wn w") FAN(o)
which implies that the limiting measures resulting from
;( —v0)Vw; and _r (yn—70)Vw) areequal. O
”dn”Ll @ “dﬂ ”LI(Q)

3. Proof of Proposition 12

We use the following corollary to the a priori energy estimate given in Proposition 7.

Corollary (Corollary to Proposition 7). Forany p = 1, there holds
1 1 1
Irevunl sz <d* il ldnlin, 19tz 2

Proof. Using Holder’s inequality, it holds that for any p = 1

N\—‘

1
2

lyaVwal 2 =i (Ewn)?. (25)
PL(Ay) 12P(Ay)
We have 1
1 112P 2
Yn :( f Yn dx) ,
L2P(Ay) An F
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and, using the fact that for d x d symmetric matrix A, |A%|r < |Al% < Vd| A?|p,we find, using (12),
1

1 1 2p 1

" <d:* (f |yn|pdx) =d? ”7"1 “LP(A,Z) sd? ”dn “Ll’(An) (26)

L2P(Ay)

Putting together (6), (25) and (26) the conclusion follows. O

The following error estimate is a key tool for the proof of Proposition 12.
Proposition 18. Forany¢eC L(Q), there holds
f ((yn - yO)an . in) ¢odx = f ((yn - YO)wal 'Vuo) ¢dx +f rn-Vdx 27
Q Q Q

with ry € L (Q). Furthermore for anyt € [1, %), the following estimate holds

er” Vgdx| < C|[ Vo (g (H A (”V”O”LOO(K) + u0”L°°(BQ’)) +5n)’ (28)

The constant C may depends ont, Q, K, ||yoll w2d ) and the a priori bounds Ay and Ay only. The
remainder term €, satisfies the following two a priori estimates

en < | dnl| 1 (n Wl o, + | i . ||Vuo||Lm(K)) (29)
and, forp>d,
1
€< ||dn||§gn IdnlZpa, (||Vuo||LmUO +] uoan(aQ/)). (30)

wheren > 0 depends only on p.
Remark. Note that estimates (29) and (30) imply that e, <0 when A, = @.
Proof. We write Z as a shorthand for || Vug |l 10 (x) + [l 4o | 10 sy - A computation shows that
fQ ((yn=70) Vwn-Vx;)pdx = fQ ((7/0 ) VW - Vuo) ¢pdx+ fQ n-Vodx
where the remainder term r,, € L} (Q) is
n=(¥n="0) (WZVMO - anxi) + WhY VW, — wpynVw),.

Now, write Ty = 1p, (rp - V¢p) and To =y, - Vop — Ty
| 7 ”LI(Q) sz |wn (yanfl)-V(p) dx+fB ‘wﬁl (yann)-V(p‘ dx

+fB |w£l(yn—y0)Vuo-V¢’dx+fB |wn (Yn=7v0) Vxi - V| dx

i

1
E(wy)2

1
7 PR [T (A

1 1
lldnll 21 @ 1Vt oo iy + I1wnll 2y |l @

w
H I2(Q)

Thanks to estimate (6) and (14) (applied to ug = xi for the corrector terms wfl) we find

“ h ”Ll Q) ~ N ” dn”Ll Q) “ v‘/’”LOO(Q)

1+T € [1 2d-1

y54=2)- We now turn to the other term. The triangle

with 7/ € [1,%), so that 7 =
inequality gives

[ TZ”LI(Q) sf |wn (yanfl)-ng) dx+/ |wﬁl (YnVwy) -V¢| dx
An | An 31)
+fA ’wﬁl (yn—yO)Vuo-Wp‘ dx+/A |wn (Yn=7v0) Vxi - V| dx.

n
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Recall that thanks to (12), |y, — yolr < |dnlF. Thus using (24) with p = 1, and (12), we deduce
from (31) that

” T “Ll(g) S ”dﬂ “Ll(Q)(” Wnlleoa,) + ;1 1(4,) ”VuO”LOO(K) ||v¢||L°°(K)’

which corresponds to estimate (29).
Alternatively, applying Holder’s inequality, then the LP bound (24) and the L bound (21) with
the conjugate exponent, we find for any p = 1, and any 8 € [1, ﬁ),

fAn‘wnYnVWfl'WP‘ dx = L%(An [wn| - il( HV(P”LOO(K)
(3~ 2,,)

1 1
<l oIl Frea bty 2199 ] o

Yn

Similarly

(3-25)e

) 1
[ |whyavwn-vo|dr<lidaly g ldul i, lillir Z190] -

Using (12), Holder’s inequality and the L7 bound (21), we write
fA ‘wﬁl (Yn—70) Vuo 'V(/)‘ dx<

1 1
2 2
dn dp

1
NN (R0 W ) P A P

1 1
< lldn “il(An) | ”i”(An) PT (A

(3-55)0

o L N T Y A i 2 Py

Wyl 2 ”vu()”LOO(K) ”V‘P“ Lo(K)
L )

and by the same argument,

T .

’l
f | (Y= 70) Vi V| dx S [ dallZ, o Nl 20

Altogether, for any p = 1,and any 0 € [1 ,%),

(3-55)0

“ T2||L1 @~ < H dn”Ll ) "dn “LP(A,,) ”dn”L] ) ZHV(p”LOO(K)'

For any p > d, pick 8 = E(ﬁ + ﬁ), then

1 d -1
TR
p

2\d-1
and
1
1Tl = Nl Nl a2 1900 1oy
which concludes the proof of estimate (30). O

Proposition 19. Suppose Assumptions (1), (2), and (3a) hold. Given Q' a smooth open subset of Q
containing K such that d(Q',0Q) > %d(K, 0Q) and d(K,0Q") > %d(K, 0Q), there holds

fQ((yn—yo)an-in)(pdx:fg((yn—yO)wal'Vuo)gbdx+fQrn-V(pdx

with

17all iy = Cllall ) (V0 oogre + 10N 2v(a) )

where the positive constants C and 1 may depend only on Q, K, ||yl w2dqy Mo, Ao, and p and B
as introduced in (3).

Proof. This is an immediate consequence of Proposition 18. d
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3.1. The high conductivity inclusion case when d =2

This section addresses the case when (3b) holds. When d = 2, as it is well known, there is a direct
relation between high and low conductivity problem, by means of stream functions (see e.g. [13]).
We use this indirect method to obtain the polarisability result under (3b). We remind the reader
of the following classical result.

Lemma 20 ( [3, Lemma L1]). Let Q be any smooth open set in R?, not necessarily simply
connected, and D be a vector field such that

div(D)=0 on Q, and D-ndo=0
T

on each connected componentT'; of 0Q). Then, there exists a function H such that
D=(-0y,H,0x,H) on Q.

Let (T';)1eqi <~ the connected components of 0Q and let Fb,, and F by the unique solutions of

div(y,VFb,)=0 on Q/,
YnVFby,-n= ﬁ Jr,¥nVun-ndo  oneachT;. (32)
Jo Fbpdx =0.

and
div(yoVFby) = on Y,
YoVEby-n= %f YoVug-ndo oneachT;. (33)
fQ Fb()dx =0.

Then applying Lemma 20 to y,V(u, — Fb,) and yoV(uy — Fby) there exist stream functions
W, wo € H(Q') such that

YnV(un—Fby) = JVyy, and yoV(uo — Fby) = JVy, a.e.in Q'. (34)

where J is the antisymmetric matrix (? |!). As the stream functions may be chosen uniquely up
to an additive constant, we may assume without loss of generality that they satisfy the constraint

fu/ndx:O:wadx.
Q Q

Thus, v, and ¥, are weak solutions of
—div(o,Vy,) =0 in Q'
—div(ogVyp) =0 in Q'
where the conductivity matrices o, and g are defined as
o= ]Ty#] and o0:= ]T)/al].
When then define X, as d,, was with respect to vy and y,.
Definition 21. We set
Zn= (Un + aoaglao)lwn.
Proposition 22. Given Q' a smooth domain as defined in Proposition 12, given v,, and v be the
stream functions defined in (34). The function ¢, = ¥, — ¥ satisfies
—div(0, V) =div((o,—00) Vo) in2' (Q) (35)
and for any T € (0, 3) there holds

2+T

”U”vw”'V”H*%(ag' < Clldn| F21(0)) “g“Hz(aQ' (30

where the constant C may depend only ont, Q, K, |Yolly2.a(q), Ao and Ao.
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Proof. Thanks to (34), since d(0Q), K) >0, on 0Q)/
0nVpn=00Vpy=J"V(uy—Fb,— ug— Fho)
= J'V(wy, + Fby, — Fhy).
Thanks to estimate (22) applied to w;, and to Fb,, and Fb, there holds

Ly
lonVenl| 00 = C“dn”zl @ (”VUOHLOO(K) + u0||L°°(6Q’))‘
which implies (36). O
When considering (35) rather than (3), C, plays the role of A, and D,, plays the role of B,.

The polarisability for ¢, is therefore established from Proposition 19 provided || dyll r(c,) < oo for
some p > 2.

Corollary 23. Suppose that Assumptions (1) and (2) are satisfied. Additionally assume that d = 2
and that there exists p > 2 and C € R such that

C= Slrllp ”Z"”LP(B,,)’

The function ¢, = v, — Wy, weak solution to (35), satisfies

1 . -
Folie (cro—on)V(pndx X NVyodv 37)

in the space of bounded Radon measures where N e [2(Q,R%*%:dv), and v is the Radon measure

generated by the sequence ﬁzn. The convergence is uniform with respect to g € H'/?(0Q)
Ly A(0)]
provided
<
lel,3 00y =1
Proof. This follows directly from Proposition 18 and Lemma 9. U

Lemma 24. The symmetric positive definite matrix X, given by Definition 21 satisfies
p=0,+ 000;100 = ]Tygldnyalj.

As a consequence, denoting v and p to be the Radon measures generated by the sequences

Zn dy,
—— and —7——
”zn”Ll Q) ” dn”Ll Q)

respectively, the Radon-Nikodym derivatives %V u and 3—’; belongs to L>°(Q;du) and L*°(Q;dv)
respectively, and the spaces LP (Q; dp) are equivalent to LP(Q;dv) forany p = 1.

Proof. The formulaX, =7 Tya 1 dnyy 1 is straightforward to verify. It follows that

2 2
|dn|F(m§in7L(y51)) S|Zn|F5|dn|F(m§xA(y51)) . (38)
Since these two quantities are equivalent, the conclusion follows. g

Proposition 25. Suppose assumptions (1), (2) and (3b) are satisfied. Given Q' a smooth domain
as defined in Proposition 12, there holds

fQ((Yn—Yo)an‘in)</>dx=fQ(()/n—yo)Vw,’;-Vu0)<pdx+ern-V<pdx

with

1rall ey = Clldall ) (1Vs0l ooy + N0l ooy

where the positive constants C and 1 may depend only on Q, K, l|yollyy2.4(q), Ao, Ao, p and B.

The proof of this result is given in Appendix C.
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3.2. The non finely intertwined case

The main result of this section is Proposition 12 in the final case, namely when (3c) holds.
Example 26 is an illustration of such a configuration.

Example 26. Suppose that Q c R? is the ball B(0,d) of radius d centred at the origin. Assume
that yo = I;. Given € > 0, for n = 2, we set

_ _ d-1
- - ! ( nd+1+€)x(0,1) ’
n k 3
= :U( +——+—)><(01)"1
wi\n 2n n 4n
and
—((ni_l +d_i)5--) on A _lnnI on B
Yn= d—1 da-1)°1 I=ije n Yn= n d n-
We have w,, < (0, 1)4 = Q. We have
1 1
”d"“L‘(An)O( pd-1+e’ “dn“Ll(B,,)‘x nn’

therefore | dpll;1(q) — 0. The insulating and conductive strips are separated by a distance

1 1
d(A”,Cn)o< E>||dn||zl(An) for TE(O’d—l).

We compute that [|d,ll1r(a,) o< pP-ld+e) 1n particular for p = d > % there holds ||dyllzra,) — 0.
Notice that the conductive strips are narrowed to accomodate the extra integrability, whereas the
insulating one are just chosen to so that || dyll ;1) — 0.

Proposition 27. SupposeAssumptions (1) and (2) are satisfied. Suppose additionally that for some

p> g andBeR andt € (0, (d i) t) there holds

1
B=limsup ldnlZoca,:

and that there exists a sequence of function (Yn)nen € (WH(Q;[0,11)N such that y, = 0 on By,
xn=1on A, and

Il dn ”21(9) IVxn “LOO(Q) <00,
Given Q' a smooth domain as defined in Proposition 12, there holds

[Q((Yn—YO)an‘in)(pdx:fQ((}/n—}/o)Vwil-Vu0)</>dx+f9rn-v¢dx
with

Irall 1) = C|ldn HE(”Q) (||V”0||Loo(1<) +luo ||L°°(aQ’))’

where the positive constants C and 1 may depend only ont, Q, K, ||yol|y2.a.q), Ao and Ao, p, B
and T only.

Proof. This a direct consequence of estimate (29) in Proposition 18 and Lemma 28. O

Lemma 28. Suppose that for some p > g and A € R,there holds

1
2
Slrllp [ d"”LP(A,,) <4,
and that there exists a sequence of function

(Xn) pen € (WH (@;10,1)"
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suchthat y,=0on By, xn=1o0n A, with
I dnnzl(m HVXHHLOO(Q) <A,
for somet < ﬁ. Then there existsn > 0 depending on p and T only such that
“ wn”LOO(A,,) = C”dn ||zl(Q) (“VL‘O “ ooy uO”L"O(aQ’))’
where C depends on K,Q, Ao, Ao, Ivolly2dq), P, A andt only.

Proof. We apply Stampacchia’s truncation method [21]. We denote u — Gy (u) to be the trunca-
tion operator, that is,

u lul<sk
Grw=<k u>k with k>0,
-k u<-k

and we write my = {x € Q : |u,| > k}. We test equation (3) against X%z Uy, with vy, = wy, — Gi(wy,),
and obtain, on one hand

nyann -V (x4v,)dx

=fgxn(Yo—Yn)Vuo-V(xnvn)dx+fonvn(Yo—Yn)Vuo-Vxndx,
and on the other
ny,,anoV(xivn)dxzny,,V()(,,vn)-V(Xnvn)dx—fQ}anxn-Vxnvfldx.

Since v, is supported on my, ¥ is supported on D, and Vy, is supported on B, N D,, we may
simplify the above identities to

nynV()(vn)-V()(vn)dxﬁf |V)(,,|2 v‘:‘ldx+f [(Yo—7vn)Vuo -V (xnvs)|dx
nmy m

kNDn
+f [vn (Yo —7vn) Vo - Vi n| dx.
myNDy

Using Cauchy-Schwarz, we find

1 1
3 z
f |(Yo—vn) VoV (xnvn)|dx < (/ nguo-Vuodx) (f ynV()(vn)-V()(vn)dx)
minDy minNDy Q
1
b

1
2
f |vn(y0—yn)Vu0-Vxn|dx§(f nguo-Vuodx) (f |V)(n|2 vfldx)
mipnNDy m, my

which shows in turn,

/lon|V(xvn)|2dXSfQYnV(XUn)'V(X”n)dx§(fm

Using Holder’s inequality and the fact that |v,| < |w,|,we write

kN Dn

nguo-Vuodx+f |V)(n|2 Vidx).
mi

kNDn

f nguo-Vuodx+f |V)(n|2 vidx
miNDy my

_1 p-1
= ”d””LP(Dn) |W”0“i°°(1<)|mk|l P+ “ wn”iw(m ”vxn”iwm) |mki P

Whereas for any h > k, thanks to the Sobolev embedding H'(Q) — L9(Q) for g = (% + %) if
d>2and =35 +1ifd=2,

2
=kl 5 Dol )5 [ 20l9 Geon) P
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This shows that m = 0, for k large enough, that is,

“Xn Wn ||L°°(Q) (“dn “ LP(Dy) ”V”O ||L°°(K) +llwnllz2r ) ”VX'Z ” L°°(Q))

Thanks to estimate (21), forany { € [1, ﬁ) there holds

lwallgzp ) < “ dn ”Ll ) (” Vg ” om T ” Uo ||L°°(BQ’)) .

Altogether,
tnlzeiay S € Idallfrp,y + 1 gy 190l ) (190l ooy 69
Note that
A2 1
sup ||dn||Lp(Dn) <sup ||dn||Lp(An) L Qr <1
n n 0
write

K= SUP I dn”zl @ IVxn ”L°°(Q) +||dn|| LP(Dy)

and p; = mln( 5 r(d 5 P) + 4 By interpolation between L' (D,,) and L” (D,,) we have

1
” dn ”Lm (Dp) — ”d “Ll(Dn) 91’
with 6, =% >0 and
x| ifim IVl 1oy = a3

with

ezz(i—l)wo.

2py

Estimate (39) with p = p; and { = 7 concludes the proof, with n = min(0,,0-). O

4. Properties of the polarisation tensor M

Thanks to Lemma 9, we may consider alternative definitions for the tensor M. The most conve-
nient is the periodic one, namely, embedding Q in a large cube Q, we set

H;(Q —{gb€ loc Rd f ¢dx=0 and ¢ Q- perlodlc}

and M;; =D;; - W;j € I2(Q, dy) is the scalar weak™ limit of

it (kv o)

where w! is the unique weak solution to
f YuVw! -Vdx = f (Yo—7vn)e;j-Vodxforall¢ € Hy (Q). (40)
Q Q

In [8] another version M of this tensor is introduced, and M a natural extension to this context.
Assuming v, = ((y1 —7Y0)1lw, +Yo)Is for some regular functions y; and yy, then the tensor M
introduced in [8] is defined as the weak* limit in L2(Q, d ) of

|wn‘ (Vw +e; ) e
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To compare both formulas, suppose y; and vy are constant. Then
1 . 1 1 7y

—— ||Vwl, +ei]|- (yn—70)ej|=——=——
s N ROk o b e

thus the two tensors are related by the simple formula

I 7n
=== — -1\, 1)
Vayi+y;

and most properties can be read directly from [10], with the appropriate changes.

(y1-70) (wa,+e,-) -ej,

Lemma 29 ([8, Theorem 1]). The entries of the polarisation tensor M satisfies M;; = M;; p-almost
everywhere in Q.

Lemma 30 (See [10, Lemma 4]). For everyp € CL(Q), ¢ = 0, and every{ € R, there holds

fQ W Cpdp = f d0-{pdx

” dn “ LY(Q)
1

- W min df Yn(Vu—YZI (vn —70)() . (Vu—y;l (Yn —yO)()gbdx+ o(1),
nllp1 @) weH} JQ
with
dy=(Yn=70)Yn' (Yn="70) =dn—2y020.
In particular, the tensor M is positive semi-definite and satisfies
0=sW=sl; paeinQ.

Ify,, andyq are multiples of the identity matrix, that is, the material is isotropic, then
1
0sW=<s—1I; paeinQ.
vd

Proof. The derivation of the identity is, mutatis mutandis, done in [10, Lemma 4]. Choosing
u =0, we find
1

_— m
”dn ”Ll(Q) ue Hy (Q!

1
T d’ pdx,
”dn “LI(Q) u€1111’111(1(12)"f npdx

fYn( =13 (yn=7v0)¢)- (Vu=va" (Y —vo) ¢)pdx

and therefore
f W¢-{pdu=0.
Q

Since the second term is negative, we find

fW{ {¢pdp= lim f(/)d’( (dx.

IILl @
We compute

1 , Ayl - |dnlg dp-¢  |dn|p
= | ¢dy{-¢dx=| ¢ o —dx s [ ¢t ey,
“d””Ll(Q)‘[Q fQ |dn|F ”d””Ll(Q) f |d |F ”dn”Ll(Q)

andif 1; <--- < A, are the eigenvalues of d;, at x,

dn-¢ - in general,

<[P <[P , .
|d;L|F C ZAZ C {\/3 lfllz"'z/ld
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All eigenvalues are equal when y and y,, are isotropic, therefore

f WC-{gdp < lim ] pd ¢ -(dx < CIP f $du,

”L1 Q

with C=1in general and C = d~%in isotropic media. d

5. An example

We revisit an example already considered in [4, 9], namely, elliptic inclusions. In a domain
2 2
X
{(x y) <R 3 yz < 1} )
cosh 2) smh 2
consider heterogeneities in a homogeneous medium located in the set

2 2
Ep=1(x,y) cR?: f + g’ <1lp,
cosh®(n1)  sinh®*(n71)

which collapses to the line segment (-1, 1) x {0} as n — co. Consider an isotropic inhomogeneity,

with conductivity

) 1 xeQ\Q,

X) =

¥ An X€Qp,

where 1,, € (0,1) U (1,00). In this case,

dn=An+A,") I
and || d,| 1) — 0 means max(n~ 11, n_l/lgl) — 0. The solution uil to the equation

~V-(y,Vu)=0 in Q

(Yﬂ n) (42)

u,=x; on 0Q

can be computed explicitly in elliptic coordinates. In particular we find that

1 A, ; )
m(l—yn)axjw,z:E 1+/1% (1—)/”) 1g, (6xjui,—6ij)=6ij€;15n,
with
A 1 A
z;:o(—”) and 43,:—+o(—”) when 1, >1,
n 2 n
1 1
(L:O(?) and éi:o(n/ln) when 0< 1, <1,

00 % 0 Lo
v 0 00

Whereas when A,, — 0, we obtain

_(09) po [z O} o[z °
W‘(oo)’ b= (o | M=={y L)
and both results corresponds extreme cases with respect to the isotropic pointwise bounds
derived in Lemma 30.
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6. Conclusion*

The energy comparison approach we follow in the spirit of arguments originally introduced by
Jacques-Louis Lions. While our results can be extended to the context of linear elasticity, the
extension to oscillatory problems, such as the Helmholtz equation, is much less certain. Recent
developments in cloaking by transformation optics have shown that spurious resonances may
appear [14, 16, 17]. In the context of a single inclusion in two and three dimensions, quasi-
resonance phenomenons and rich variety of asymptotic behaviours can be observed [1,5-7, 15,
20]. This question certainly calls for further developments.
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Appendix A. Additional proofs

Proof of Lemma 14. Let Q" be an open domain such that K < Q" < Q' < Q, with 94(Q",0Q") >
d(K,0Q)
and 9d(K,0Q") > d(K,0Q). Since
—div(yoVw,)=0 on Q"\Q'
and yo € W?%(Q), classical regularity theory shows that
lwnll ., (W) Slwnll 2 - (43)

By Poincaré’s inequality (or Poincaré-Wirtinger’s inequality depending on X) since w,, (or yoVw,-
n) vanishes on 69, there holds

lwnll 2@ < 1Vwall 200k -
On the other hand, using the fact that y,, = yo = 10l on Q\ K, there holds

1

S el 71y 1V 0 oo

S Vuol ooy
where we used (6) for the penultimate inequality and the fact that the sequence || dyll;1q) is
bounded on the last line. Therefore on Q\ Q/, the function w,, satisfies div(yoVw;) = 0 with | wy,|
< |IVugll o) on Q' and satisfies a homogeneous boundary condition on dQ (or periodicity). By
comparison, this implies

lwnll o@vary S VU0 || foo k)

Furthermore, u, = wy + up satisfies |unllcrpq) = lwanlcrgay + luollcreay. Finally, since
div(y,Vup) = 0 on Q', by comparison [[us 1) = lunllce), and lwale@ < lwplre@) +
lwnllzeo@van S VUl oo x) + l o ll oo 90y and the conclusion follows. O

Proof of Lemma 5. The convergence (4) is a direct consequence of the Banach-Alaoglu’s theo-
rem and the continuous eglbedding between L' (Q) — C°%(Q)*, where we have identified the con-
tinuous dual space of C%(Q) as the space of bounded Radon measures on Q2. We know from (12)
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that |[(yo —Yn)ijl < |dnlF, therefore (Y, —v0)ijll 1) = ldnllp1q)- We may extract a subsequence
in which .
*
——— (Yn—70);; ~d%;;
ldnll 110 N
in the space of bounded vector Radon measures.

1
do;; = li f— - .¢d
L¢ Y ”l_r’%o Q ”dn”Ll(Q) (YO Yn)l]‘l’ *

1
< 1imf—|d | pdx
nmeeJa “dn”Ll(Q) e

1

1 3
lim /—|d | -¢p* dx
"ﬁoo( Q ”dn”Ll(Q) "

(fg)(bzdu);,

where we used Cauchy-Schwarz in the penultimate line. It follows that the functional

(/)_’fn(,b'd@ij

IA

may be extended to a bounded linear functional on [L?(Q, du)]¢

Theorem, we may identify

.Hence, by Riesz’s Representation

d@ij = Dijdp

for some function D;; € L2(Q,du), which is our statement. O

Appendix B. Proof of Proposition 7

Proof. We write
dp=(rn=70)¥n" (Yn—70),
and observe that 0 < d), < d,,. Note that w,, is the unique minimiser over X of the functional
J(w) :fﬂyn(Vw+y;1 (yn—yO)Vuo)-(Vw+y;1 ()/n—)/o)Vuo)dx,
Necessarily J(w,) = 0, thus
—f yann-andx+2f yn(anﬂ/;l(yn—yO)Vuo)-andx+f d,Vug-Vugdx =0,
Q Q Q
which shows
/ YuVwy -andxsf d,Vug-Vugdx. (44)
Q Q
Thus, as 1y € C'(K)
LYn(x)an’andXS ||Vu0||iw(K)L|dn|Fdx.

We now turn to the second estimate. Using Cauchy-Schwarz we find

2
dx

_1 1
I(rn =vo) Vwn| 11 q) :_[Q\/‘(YH_YO)YnZertvwn

(45)
= \/f ‘(Yn_YO)Yﬁl (Yn—=70) ‘Fdx\/f YnVwy, -Vwydx
Q Q

= ”dn”Ll(Q) ”VuO”L‘x’(K)'
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Since W(Y" —Y0)Vw, is uniformly bounded in L!(Q), we may extract a subsequence in
nlirlQ)

which
1

ldnll 11

in the space of bounded vector Radon measures. Moreover, for any ¥ € CO(Q;RY),

(Yn—70) Vw,~d.#

f‘P dz = hmf —7y0) Vw, - ¥dx
lanll 1o IILI(Q)

n— oo

1

1 2 2
<lim —fy Vw, -Vw dx) (—f d,vy - ‘de)
( ldull gy Jo™™ " " 1)

3
sC(f I‘I’Izd,u)
Q

thanks to the estimate above. As a consequence of this estimate, it follows that the functional
v — f VY.d#
Q

may be extended to a bounded linear functional on [L?(Q, d)]%. Hence, by Riesz’s Representation
Theorem, we may identify

d.Z = Mdu

for some function . € [L2(Q, d,u)]d, which is our statement. O

Appendix C. Proof of Proposition 25

Remark. Note that if Q' is simply connected, Fb,, = Fby = 0. Remark that

1
—f }/OVMO'ndcr:f YrnVu,-ndo.
IT; Jr; T;
Let I; be the solution of
div(yoVI;))=0 on Q' and I;=1 on T;.

By an integration by parts,

f yOVuo-nda—f ynVun-ndazfyOVuo-Vlidx—fynVun-VIidx.
T T; Q Q
:f glida—f gl;do
Q Q
=0.

Thus Fby = 0 implies Fb,, = 0. Imposing Fby = 0 corresponds to N — 1 constraints in an infinite
dimensional space and therefore is not a loss of generality. We shall make that assumption in the
rest of this section.

Proof. By the inequality in (38), we have

. 2
Ealpe (mgxﬂtd (Yal)) ’
lanlne Ve
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. 1Znl . .
thus taking a convergent subsequence of ; d:IILi(m — ay and a possible further extraction of the
@ _
subsequence ﬁ(an — 00)V¢,, Corollary 23 implies that, if Z € C°(Q,R?) is an arbitrary
Ly A(9)]
vector field,

lim (—
oo ”d””Ll(Q)

|Zn||L1(Q) 1
= (0n—00)Vep,-E|dx
"_'OO'[ (”drl“Ll(Q) ||dﬂ||L1(Q) " "

(0o=0n)Vey- E) dx

(0o—0n)Veyn- E) dx

1
=ay lim (—
nmeeda ||d"“L1(Q)
=aof NVy,-Zdv
Q
:f NV’W()ECI,U
Q
Where N = g g—;ﬁ belongs to L?(Q; dp). Alternatively testing against (J7 yo) = we find
f . (UO_Un)VWn'(]TYo)de
o dﬂ”Ll(Q)
_ 1 T.-1 -1 T T -
_fQ ||dn||L1(Q) (] Yo' (Yn="70)Yn ])(] YnVu,,)~(] Yo)_dx
1
:f ]TY(;I(YO_Yn)Vun']TYode.
”dn”Ll(Q)
—Yn)Vu,-Zdx
f ”d””Ll(Q) e
whereas
—0p VV/O ]TY()
ol ||dn||Ll@ OEE
= —YOY_ Yyo—yn)Vuo-Zdx.
f ldnllpe " "
1
:f —((YO_Vn)+dn)Vuo'de.
”dn”Ll(Q)

We write 2 as the limit limiting tensor corresponding to | dj, 17 d,inL2(Q,d [J)d *d that is,

LY(Q)

d
lim f —"Vuo-dezfQVuo-Edu
n=coJa || dul| 1 g Q

Altogether, we have obtained

nﬁoof W(% Yn)Vw,-Edx = - f@Vuo _d,u+f NVyq- (] Yo)

@
=fQ((Y0])N(Y0/') - )VMO'Ed#

which concludes our proof. O
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