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Abstract

Question: In vegetation science, the compositional dissimilarity among two or more groups of 

plots is usually tested with dissimilarity-based multivariate analysis of variance (db-MANOVA), 

whereas the compositional characterization of the different groups is performed by means of 

indicator species analysis. Although db-MANOVA and indicator species analysis are apparently 

very far from each other, the question we address here is: can we put both approaches under the 

same methodological umbrella?

Methods: We will show that for a specific class of dissimilarity measures, the partitioning of 

variation used in one-factor db-MANOVA can be additively decomposed into species-level values 

allowing us to identify the species that contribute most to the compositional differences among the A
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groups. The proposed method, for which we provide a simple R function, is illustrated with one 

small data set on Alpine vegetation sampled along a successional gradient.

Conclusion: The species that contribute most to the compositional differences among the groups 

are preferentially concentrated in particular group of plots. Therefore, they can be appropriately 

called indicator species. This connects multivariate analysis of variance with indicator species 

analysis.

Keywords: Dissimilarity-based analysis of variance; Euclidean distance; Randomization test; 

Standardized effect size; Within-group sum of squared dissimilarities.

Introduction

For a set of plots that are grouped according to some external criteria, such as selected 

environmental variables or different experimental treatments, two relevant questions usually asked 

by community ecologists are: ‘Are these groups compositionally different from each other?’ and 

‘Which species contribute most to the compositional differences among the groups?’ These 

questions are generally answered with different tools: the compositional dissimilarity among 

groups of plots is usually tested with dissimilarity-based multivariate analysis of variance (Pillar & 

Orlóci 1996; Anderson 2001), whereas the compositional characterization of the different groups 

is performed by means of indicator species analysis (Dufrêne & Legendre 1997; Chytrý et al. 

2002).

Dissimilarity-based multivariate analysis of variance (or shorter db-MANOVA) is applicable to 

any type of compositional data, irrespective of the number of species sampled and the way they 

are sampled (i.e. presence/absence scores, number of individuals, species cover, etc.) provided that 

a meaningful measure is used to adequately represent the dissimilarity between pairs of plots (or 

relevés, communities, assemblages, quadrats, sites, etc.).

Given a community composition matrix containing the presence/absence or the abundance 

values  of S species  in N plots , let the number of plots in group k sjx  1,2,...,s S  1,2,...,j N

 be  such that  and  be the compositional dissimilarity between  1, 2,...,k K kN
1

K
kk

N N


 ijd

plot i and plot j. In the simplest situation of a single-factor analysis on a set of plots partitioned 

into K groups, the very essence of db-MANOVA is to compare the plot-to-plot dissimilarity 

within groups with the plot-to-plot dissimilarity among groups with an adequate test statistic A
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(Figure 1). The larger the value of between-group dissimilarity compared to within-group 

dissimilarity, the more likely it is that the groups are compositionally different from each other 

(Anderson 2001). For db-MANOVA, hypothesis testing is usually performed with randomization 

tests where the N plots are randomly permuted among the K groups, thus creating a reference 

distribution under the null hypothesis of no compositional difference among the different groups 

of plots.

Once the compositional differences among the groups of plots have been verified, the 

identification of diagnostic species for the different groups is a relevant step for their ecological 

characterization (Dufrêne & Legendre 1997). In vegetation science, the concept of indicator or 

diagnostic species which we use here as synonyms has been usually associated with the species 

concentration in particular groups of plots. According to Chytrý et al. (2002), diagnostic species 

“include species which preferably occur in a single vegetation unit (character species) or in a few 

vegetation units (differential species)”.

Several methods have been developed to identify indicator species, (Dufrêne & Legendre 1997; 

Chytrý et al. 2002; Podani & Csányi 2010; Ricotta et al. 2015). Indicator species are 

fundamentally defined as those species that are more common in a given group of plots than 

expected by chance alone. Therefore, to determine if a given species is significantly associated 

with a target group of plots, most of these methods compare the actual abundance of that species 

in the target group of plots with a reference distribution obtained from a random null model in 

which the species occurrences or abundances are permuted among the N plots. The null hypothesis 

is that all plots have equal probability to host each species, irrespective of the species 

environmental preferences (De Cáceres & Legendre 2009).

Although dissimilarity-based MANOVA and indicator species analysis are apparently 

unrelated, in this paper we will show that for a particular group of dissimilarity measures the 

classical partitioning of variation used for hypothesis testing in one-factor db-MANOVA can be 

additively decomposed into species-level values, thus connecting indicator species analysis with 

multivariate analysis of variance.

Materials and methods

Several test statistics have been proposed for dissimilarity-based MANOVA. For review, see 

Pillar (2013) and references therein. For dissimilarity matrices with Euclidean properties (see 

Gower & Legendre 1986), Pillar & Orlóci (1996) proposed as test criterion the sum of squared A
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dissimilarities between groups. Given a symmetric  dissimilarity matrix whose elements  N N ijd

represent the pairwise dissimilarities between plot i and j such that  and , the ij jid d 0iid 

between-group sum of squared dissimilarities is:

(1)B T WQ Q Q 

where

(2)21 N

T ij
i j

Q d
N 

 

is the total sum of squared dissimilarities. Hence, to calculate we have to add the TQ  1 2N N 

plot-to-plot squared dissimilarities  in the sub-diagonal half of the dissimilarity matrix and then 2
ijd

divide by the total number of plots (N). The term  is the sum of squares within the K groups, WQ

which is obtained as:

(3)
1

K

W Wk
k

Q Q


 

where the sum of squares within group k is:

(4)21 N

Wk ij ijk
i jk

Q d
N




 

The indicator variable  takes the value one if plots i and j are both in group k. Otherwise it is ijk

zero. That is,  is obtained by adding all squared dissimilarities  between all plots that occur WkQ 2
ijd

in group k and then dividing the sum by the number of plots in that group .kN

The sum of squares could be equally computed from deviations of single plots from group 

centroids, as described, among others, by Edgington (1987) or Manly (1991) but using plot-to-plot 

dissimilarities does not require the computation of group centroids. McArdle & Anderson (2001) A
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further showed that this partition of the total sum of squares is also valid for dissimilarity 

coefficients that do not have Euclidean properties, thus making dissimilarity-based MANOVA a 

very flexible component of the ecologist toolbox.

Since the distribution of  under the null hypothesis of no compositional difference among BQ

the different groups of plots is generally unknown, a reference distribution of values of the test-

statistic is then obtained by Mantel randomization of the dissimilarity matrix. For dissimilarity-

based one-way MANOVA, this is equivalent to randomly permuting the N plots among the K 

groups. Note that in one-factor MANOVA, since the total sum of squares  is invariant over TQ

permutations, some test statistics, such as ,  and the Anderson (2001) pseudo-F ratio BQ WQ

 are equivalent in randomization testing. That is, for the same data and permutations they B WQ Q

will lead to identical p-values (Pillar 2013).

A desirable property for a dissimilarity index is its ability to be decomposed into species-level 

values (Ricotta & Podani 2017). In this way, it is possible to see which species contribute most to 

plot-to-plot dissimilarity. In this framework, the advantage of adopting  as a test statistic over WQ

 or  is that it can be decomposed into intuitively simple species-level values, provided BQ B WQ Q

that the squared dissimilarities  are also decomposable in the same way.2
ijd

Take for example the Euclidean distance . It is easily shown that the squared  2

1

S
si sjs

x x




Euclidean distance  is additively decomposable into the species-level  2

1

S
si sjs

x x




contributions  such that . Therefore, in a sum of squares based test,  22
ijs si sjd x x  2 2

1

S
ij ijss

d d


 
if the plot-to-plot compositional dissimilarity is calculated with the Euclidean distance, the within-

group sum of squares becomes:

(5) 2

1 1 1

1S S K N

W Ws si sj ijk
s s k i jk

Q Q x x
N


   

    

where the contribution of single species to overall  is:WQ
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(6) 2

1

1K N

Ws si sj ijk
k i jk

Q x x
N


 

  

Geometrically, a smaller value of  denotes higher within-group concentration and larger WQ

between-group differences (Cai 2006). To test for significant compositional differences among the 

groups, the actual value of can be compared with a reference distribution of null values WQ

obtained by Mantel randomization of the dissimilarity matrix. P-values can be computed as the 

proportion of null values that are as low or lower than the actual value of the test statistic. The 

quantities  can then be used as in classical post-hoc analysis: if the dissimilarity-based WsQ

MANOVA shows significant overall compositional difference among groups, the analysis can 

proceed by exploring differences in single-species occurrences (or abundances) among the groups. 

This can be done by using the same permutation procedures used for testing the significance of 

.WQ

The contribution of a particular species to the compositional differences among the K groups 

can be summarized as standardized effect size (SES; Gotelli & McCabe 2002):

(7)( ) ( )
( )

Obs I Mean ISES
SD I




where is the observed value of a given variable I,  is the mean of the null ( )Obs I ( )Mean I

distribution of the variable in random assemblages, and  is the standard deviation of the null ( )SD I

distribution. For the pros and cons of SES, see Botta-Dukát (2018). Put simply,  represents SES

the departure of the observed variable from the mean of the null distribution, expressed in standard 

deviation units. However, since the observed  values are generally lower than the WsQ

corresponding null values, we typically have: . Therefore, in this paper, the ( ) ( )Ws WsMean Q Obs Q

standardized effect size of species s is formulated in such a way that the resulting values are 

mainly positive:

(8)( ) ( )
( )

Ws Ws
s

Ws

Mean Q Obs QSES
SD Q


A
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Note that in one-factor MANOVA, Eq. 8 (i.e. the standardized effect size of  changed in sign) WsQ

is identical to the standardized effect size of the species-level contribution to the between-group 

sum of squared dissimilarities , with , thus reinforcing the Bs Ts WsQ Q Q  21 N
Ts ijsN i j

Q d


 
generality of the proposed approach. For details, see Appendix S1.

Worked example
Data

We used data on plant communities along a primary succession on the foreland of the Rutor 

Glacier (northern Italy). The data were sampled by Caccianiga et al. (2006) and have been used in 

many previous papers for exploring community assembly rules along ecological gradients (e.g. 

Caccianiga et al. 2006; Ricotta et al. 2016; Ricotta et al. 2018). The data set can be found in 

Appendix S2 and S5 and contains the abundances of 45 Alpine plant species collected in 59 

vegetation plots of approximately 25 m2. All species abundances were measured with a five-point 

ordinal scale transformed to ranks. The plots were divided into three successional stages based on 

the age of the moraine deposits: 17 early-successional plots, 32 mid-successional plots and 10 late-

successional plots. For additional details, see Caccianiga et al. (2006).

Based on the species abundances in each plot, we calculated the Euclidean distance between all 

pairs of plots. Next, using  and as test statistics, we tested for overall and species-wise WQ WsQ

compositional differences among the three successional stages with dissimilarity-based 

MANOVA. All calculations were done with a new R function available in Appendix S3 and S6. 

Significance is computed by randomly permuting the 59 plots (data vectors) among the three 

successional stages with 9999 replicates. For all species that showed significant compositional 

difference among the three groups of plots, we also tested for pairwise differences among all pairs 

of groups (9999 permutations) using the same approach described in Pillar & Orlóci (1996) for 

multivariate contrasts.

Results

The overall compositional differences among the three groups of plots and between all pairs of 

groups proved highly significant with the minimum possible p-value for 9999 randomizations (p = 

0.0001) showing that the three successional stages are compositionally well distinct. The results of A
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the single-species MANOVA are shown in Figure 2, together with the species abundances in each 

group and the contributions of single species to the compositional differences among the groups 

.( )sSES

From a total of 45 species, we identified 32 with a clear preference for certain successional 

stages (P < 0.05). It therefore appears that more than two thirds of the species sampled have rather 

narrow ecological requirements allowing them to colonize only the most ecologically suitable 

habitats along the primary succession. Caccianiga et al. (2006) showed that the establishment of 

the first pioneer species is associated with random dispersal mechanisms that drive the 

colonization of the glacial deposits by early-successional ruderal forbs, such as Cerastium 

uniflorum, Oxyria digyna, or Tussilago farfara, whereas the late successional stages are 

preferentially colonized by stress-tolerant graminoids (sensu Grime 1974), such as Carex curvula, 

or Carex sempervirens. Mid-successional plots include species with intermediate (ruderal/stress-

tolerant) strategies, such as Achillea moschata or Trifolium pallescens, which are among the 

species that contribute most to the compositional differences among the successional stages 

(Figure 2).

Discussion

In this paper, we showed that when we test for compositional differences among two or more 

groups of plots with one-factor db-MANOVA, the within-group sum of squares  can be WQ

additively decomposed into species-level values, provided that the squared dissimilarities  can 2
ijd

be also additively decomposed into their species-level contributions  such that . 2
ijsd 2 2

1

S
ij ijss

d d


 
In the remainder we will call a dissimilarity coefficient  that conforms to this property ‘squared ijd

decomposable’ (S-decomposable).

The species that contribute most to the compositional differences among the groups can be 

appropriately called indicator species as they are preferentially concentrated in particular group of 

plots. Note however that, while classical indicator species analysis usually identifies indicators of 

single groups of plots, with the proposed method some species may be related to more than one 

group. By taking into account combinations of groups of plots and adopting a multiple contrast 

approach (Pillar & Orlóci 1996), this method provides an extra flexibility to model the habitat 

preferences of species with varying niche breadths (De Cáceres et al. 2010). Readers interested in A
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comparing the results of the proposed method with the results of classical indicator species 

analysis using the same data of our worked example are addressed to Ricotta et al. (2020).

A desirable aspect of this method for identifying indicator species is that it is based on the same 

dissimilarity measure used for multivariate analysis of variance (see Pavoine et al. 2013). This 

puts indicator species analysis and multivariate analysis of variance under the same mathematical 

umbrella. Regarding the most appropriate dissimilarity coefficient for db-MANOVA, being S-

decomposable, the Euclidean distance appears to be a natural choice. Likewise, all Euclidean 

distances computed on transformed species abundances, such as the Chord or the Hellinger 

distance may be equally adequate (see Legendre & Gallagher 2001). Note that, according to Pillar 

(2013), a comprehensive evaluation of the power and accuracy of one-factor db-MANOVA 

showed that the Euclidean distance gave better results compared to other dissimilarity coefficients 

in spite of its well-known limitations for summarizing compositional dissimilarity among plots 

(see Orlóci 1978; Legendre & Gallagher 2001).

However, the same species-level decomposition can be also extended to virtually any 

dissimilarity measure of the form  provided that  is additively decomposable (A-ij ij

decomposable) such that . A-decomposable measures include among others the 
1

S
ij ijss

 


 

Manhattan distance , the Canberra distance , or the Bray-Curtis 
1

S
is jss

x x


  1

S is js

s
is js

x x

x x





dissimilarity . Note however that since the Bray-Curtis dissimilarity 
 1

1

S is js
Ss

is jss

x x

x x









summarizes the difference in species abundances between plot i and j compared to the total 

species abundance in both plots (see Ricotta & Podani 2017), the contribution of each species 

depends on the values of other species. This is conceptually distinct from classical indicator 

species analysis which is usually species-specific.

If the square root of an A-decomposable dissimilarity coefficient  is used in one-factor db-ij

MANOVA, we obtain:

(9)
1 1 1 1

1 1K K N S K N

W Wk ij ijk ijs ijk
k k i j s k i jk k

Q Q
N N

   
     

      A
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Therefore, dealing with A-decomposable dissimilarities, Eq. 9 tells us that the within-group 

sum of squares of any dissimilarity measure of the form  can be additively decomposed into ij

species-level values. At the same time, the term  in Eq. 9 can be also interpreted as the within-WQ

group sum of non-squared A-decomposable dissimilarities . As such,  is a special case of ij WQ

the ‘average dissimilarity within groups’ used by Mielke & Berry (2001) in multiresponse 

permutation procedures (MRPP), which is a class of multivariate permutation methods for testing 

for compositional differences among a-priori defined groups of plots. This makes the differences 

between randomization tests based on squared and non-squared dissimilarities much fuzzier than 

one might think. A short overview of MRPP and its relationship with db-MANOVA is shown in 

Appendix S4.

Although randomization tests based on A-decomposable non-squared dissimilarities have been 

rarely used in ecology (partly because they are not included in common statistical packages), they 

can be equally adopted in one-factor designs for testing for compositional differences among a-

priori defined groups of plots and for identifying the indicator species that contribute most to the 

compositional differences among the groups. This allows to expand the number of suitable 

dissimilarities to the whole arsenal of A-decomposable coefficients already available in the 

ecological literature (Legendre & De Cáceres 2013). Also, the partitioning of other test statistics 

could be evaluated, such as the between-groups sum of squares  defined in Eq. 1. In this case, ( )BQ

the proposed approach could be further extended to multi-factor group comparisons (see Pillar & 

Orlóci 1996), when it may be relevant to identify indicator species of each group considering the 

factors separately and their interactions.

Which of these dissimilarities will show the best performance in statistical and biological terms 

(i.e. accuracy and power vs. biological interpretability)? Can the proposed approach be further 

extended to functional and phylogenetic dissimilarities, such as the large class of A-decomposable 

coefficients introduced by Pavoine & Ricotta (2019)? These are relevant questions, and their 

answers can help shed light on the effects of ecological processes on community composition.

A
cc

ep
te

d 
A

rt
ic

le



This article is protected by copyright. All rights reserved

References

Anderson, M.J. 2001. A new method for non-parametric multivariate analysis of variance. Austral 

Ecology 26: 32–46.

Benjamini, Y. & Yekutieli, D. 2001. The control of the false discovery rate in multiple testing 

under dependency. Annals of Statistics 29: 1165–1188.

Botta-Dukát, Z. 2018. Cautionary note on calculating standardized effect size (SES) in 

randomization test. Community Ecology 19: 77–83. doi: 10.1556/168.2018.19.1.8

Caccianiga, M., Luzzaro, A., Pierce, S., Ceriani, R.M. & Cerabolini, B. 2006. The functional basis 

of a primary succession resolved by CSR classification. Oikos 112: 10–20.

Cai, L. 2006. Multi-response permutation procedure as an alternative to the analysis of variance: 

An SPSS implementation. Behavior Research Methods 38: 51-59.

Chytrý, M., Tichý, L., Holt, J. & Botta-Dukát, Z. 2002. Determination of diagnostic species with 

statistical fidelity measures. Journal of Vegetation Science 13: 79–90.

De Cáceres, M. & Legendre, P. 2009. Associations between species and groups of sites: indices 

and statistical inference. Ecology 90: 3566–3574.

De Cáceres, M., Legendre, P. & Moretti, M. 2010. Improving indicator species analysis by 

combining groups of sites. Oikos 119: 1674–1684. doi: 10.1111/j.1600-0706.2010.18334.x

Dufrêne, M. & Legendre, P. 1997. Species assemblages and indicator species: the need for a 

flexible asymmetrical approach. Ecological Monographs 67: 345–366.

Edgington, E.S. 1987. Randomization tests. Marcel Dekker, New York, NY.

Fortin, M.J. & Jacquez, G.M. 2000. Randomization tests and spatially autocorrelated data. Bulletin 

of the Ecological Society of America 81: 201–205.

Gotelli, N.J. & McCabe, D.J. 2002. Species co-occurrence: a meta-analysis of J.M. Diamond’s 

assembly rules model. Ecology 83:2091–2096.

Gower, J.C. & Legendre, P. 1986. Metric and Euclidean properties of dissimilarity coefficients. 

Journal of Classification 3: 5–48.

Grime, J.P. 1974. Vegetation classification by reference to strategies. Nature 250: 26–31.

Legendre, P. & De Cáceres, M. 2013. Beta diversity as the variance of community data: 

Dissimilarity coefficients and partitioning. Ecology Letters 16: 951–963. doi: 

10.1111/ele.12141

Legendre, P. & Gallagher, E.D. 2001. Ecologically meaningful transformations for ordination of 

species data. Oecologia 129: 271–280.A
cc

ep
te

d 
A

rt
ic

le



This article is protected by copyright. All rights reserved

Manly, B.F.J. 1991. Randomization and Monte Carlo methods in biology. Chapman and Hall, 

London.

McArdle, B.H. & Anderson, M.J. 2001. Fitting multivariate models to community data: a 

comment on distance-based redundancy analysis. Ecology 82: 290–297.

Mielke, P.W. & Berry, J.A. 2001. Permutation Methods: A Distance Approach. Springer-Verlag, 

New York.

Orlóci, L. 1978. Multivariate Analysis in Vegetation Research. Junk, The Hague, NL.

Pavoine, S. & Ricotta, C. 2019. Measuring functional dissimilarity among plots: Adapting old 

methods to new questions. Ecological Indicators 97: 67-72. doi: 10.1016/j.ecolind.2018.09.048

Pavoine, S., Gasc, A., Bonsall, M.B. & Mason, N.W.H. 2013. Correlations between phylogenetic 

and functional diversity: mathematical artefacts or true ecological and evolutionary processes? 

Journal of Vegetation Science 24: 781–793. doi: 10.1111/jvs.12051

Pillar, V.D. 2013. How accurate and powerful are randomization tests in multivariate analysis of 

variance? Community Ecology 14: 153-163. doi: 10.1556/ComEc.14.2013.2.5

Pillar, V.D. & Orlóci, L. 1996. On randomization testing in vegetation science: multifactor 

comparisons of relevé groups. Journal of Vegetation Science 7: 585-592.

Podani, J. & Csányi, B. 2010. Detecting indicator species: some extensions of the IndVal measure. 

Ecological Indicators 10: 1119–1124. doi: 10.1016/j.ecolind.2010.03.010

Ricotta, C., Acosta, A.T.R., Caccianiga, M., Cerabolini, B.E.L., Godefroid, S. & Carboni, M. 

2020. From abundance-based to functional-based indicator species, Ecological Indicators 118: 

106761. doi: 10.1016/j.ecolind.2020.106761

Ricotta, C., Bacaro, G., Caccianiga, M., Cerabolini, B. & Pavoine, S. 2018. A new method for 

quantifying the phylogenetic redundancy of biological communities. Oecologia 186: 339–346. 

doi: 10.1007/s00442-017-4026-x

Ricotta, C., Carboni, M. & Acosta, A.T.R. 2015. Let the concept of indicator species be 

functional! Journal of Vegetation Science 26: 839–847. doi: 10.1111/jvs.12291

Ricotta, C., de Bello, F., Moretti, M., Caccianiga, M., Cerabolini, B. & Pavoine, S. 2016. 

Measuring the functional redundancy of biological communities: a quantitative guide. Methods 

in Ecology and Evolution 7: 1386–1395. doi: 10.1111/2041-210X.12604

Ricotta, C. & Podani, J. 2017. On some properties of the Bray-Curtis dissimilarity and their 

ecological meaning. Ecological Complexity 31: 201–205. doi: 10.1016/j.ecocom.2017.07.003A
cc

ep
te

d 
A

rt
ic

le



This article is protected by copyright. All rights reserved

Supplementary Material

Appendix S1. On the relationship between  and ( )WsSES Q ( )BsSES Q

Appendix S2. Community composition matrix of the Alpine vegetation used in the worked 

example

Appendix S3. R scripts

Appendix S4. Overview of MRPP and its relationship with db-MANOVA

Appendix S5. Community composition matrix of the Alpine vegetation in text format

Appendix S6. R scripts in text format

Authors contribution statement. CR conceived the idea. CR, SP and VP developed the 

methodology. CR, SP and BC analyzed the data. SP wrote the R script. CR took the lead in writing 

the main text; all authors revised the manuscript critically and approved the final version.

Funding. This research received no external funding.

Conflicts of Interest. The authors declare no conflict of interest.

Data accessibility statement. Data on the Alpine vegetation used in the worked example are 

available in Appendix S2 and S5; the R scripts for the dissimilarity-based MANOVA 

decomposition are available in Appendix S3 and S6.

Figure Captions

Figure 1. Schematic example of a semimatrix of pairwise dissimilarities among 9 plots clustered 

into two groups. The very essence of dissimilarity-based MANOVA is to compare the within-

group dissimilarity with the between-group dissimilarity with an adequate test statistic. The larger 

the value of between-group dissimilarity compared to within-group dissimilarity, the more likely it 

is that the groups are compositionally different from each other.A
cc

ep
te

d 
A

rt
ic

le



This article is protected by copyright. All rights reserved

Figure 2. Results of the distance-based MANOVA for the 45 species of the Rutor data set. The 

species abundances in each group of plots on a five-point ordinal scale and the contribution of 

each species to the compositional differences among the groups ( ) are also shown. The sSES

species showing significant compositional differences among the three groups of plots (P < 0.05; 

9999 permutations) are marked with an asterisk. For those species, we also tested for significant 

pairwise differences among all pairs of groups. For each species, letters indicate individually 

significant tests (P < 0.05; 9999 permutations) after correction for multiple tests according to 

Benjamini and Yekutieli (2001).
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