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Abstract: In this paper, global-in-time existence and blow-up results are shown for a reaction-diffusion
equation appearing in the theory of aggregation phenomena (including chemotaxis). Properties of the cor-
responding steady-state problem are also presented. Moreover, the stability around constant equilibria and
the non-existence of nonconstant solutions are studied in certain cases.
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1 Introduction
We consider the following initial boundary value problem:

{{{
{{{
{

∂tu = ∆[(a − bu)u] + (c − du)u in Ω × (0, T),
B[u] = 0 on ∂Ω × (0, T),

u(x, 0) = u0(x) ≥ 0,
(1.1)

where a, b > 0 and c, d ∈ ℝ. Here, Ω is an open bounded domain inℝn, andB[u] denotes a boundary opera-
tor of Neumann or Dirichlet type, i.e.

u|∂Ω = 0, or (a − 2bu)∇u ⋅ γ|∂Ω = 0,

where γ is the outer unit normal vector of ∂Ω. For the sake of simplicity, we take |Ω| = 1.
One of themotivations to study such an equation comes from the structure similarities that exist with the

parabolic-elliptic Keller–Segel models for chemotaxis, i.e.

∂tu − ∇ ⋅ (∇u − u∇V ∗ u) = 0,

where V is the fundamental solution of Poisson equation (or some other given potential in the case of general
diffusion aggregation equations). If formally the interaction potential V is replaced by a the Dirac mass δ0,
then the above equation is reduced to

∂tu − ∇ ⋅ (∇u − u∇u) = 0.
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In [2], the authors propose amicroscopic particlemodelwhich converges at the formal level towards such
a PDE. This microscopic particle model, corresponding to (1.1) with c = d = 0 and Ω = ℝn, is the following:

dXi
t = √2a dBi

t +
1
N ∑j ̸=i
∇Vε(|Xi

t − X
j
t|) dt,

Xi
0 = ξi i.i.d. random variables with distribution u0,

where Vε(x) = ε−nV( xε ) for ε > 0, ∫ℝn V(x) dx = 2b, and B
i
t are i.i.d. Brownian motions.

It is well known (for example in [9, 11] that under suitable assumptions on V, the particle model con-
verges (when N goes to infinity) to the following intermediate (with fixed ε > 0) nonlocal problem:

dX̄i
t = √2a dBi

t + ∫
ℝn

∇Vε(|X̄i
t − y|)u

ε(y, t) dy dt,

X̄i
0 = ξi i.i.d. random variables with distribution u0,

where uε is the distribution of the i.i.d. random processes X̄i
t at time t. By Itô’s formula one can obtain the

following nonlocal partial differential equation for uε:

∂tuε − ∇ ⋅ (a∇uε − uε∇Vε ∗ uε) = 0. (1.2)

Furthermore, in the parabolic regime, i.e. when 0 ≤ u0 < a
2b , it is proved in [2] that the limit of uε satisfies

equation (1.1) with c = d = 0:
∂tu − ∆(au − bu2) = 0. (1.3)

The physical meaning of the unknown u is that of a concentration, therefore one considers only nonnegative
solutions corresponding to nonnegative initial data.

Furthermore (like in the case ofKeller–Segel system), problem (1.1)with c = d = 0 (and thehomogeneous
Neumann boundary condition) possesses the following entropy structure:

d
dt

E(t) := d
dt ∫

Ω

(au(log u − 1) − bu2) dx = −∫
Ω

1
u
(a − 2bu)2|∇u|2 dx ≤ 0.

This entropy is a combination of a positive part from the diffusion and a negative one from the aggregation.
It needs to be pointed out that here the aggregation phenomenon is much stronger than the one appearing
in Keller–Segel systems because of the singular potential that appeared in (1.2)–(1.3).

As for the reaction term, it is considered to be of logistic (mono-stable) type so that (when d > 0) a signif-
icant dampening effect is exercised on the density u at those points where u becomes large.

The arrangement of the paper is the following. In Section 2, global existence and uniqueness of clas-
sical solutions are obtained for initial data such that parabolicity is expected to hold. The rest of the paper
concerns cases inwhich parabolicity is expected to be lost at somepoint, so that blowupmayhappen. Consid-
erations on the possible steady states and their stability as well as direct estimates of blowup are presented.
Section 3 is devoted to the study of the steady states. The non-existence of nontrivial steady states is proved
via Pohozaev’s type arguments. Furthermore, the linear stability of constant steady states is investigated.
Finally, in Section 4, blow-up (in finite time) results are presented. Two different procedures are carried out:
Kaplan’s method is used for the problem with Dirichlet boundary condition on one hand, and the concavity
method is used for the problemwith Neumann boundary condition on the other hand. In the end, we present
an annex where blowup is directly observed in a class of explicit solutions linked to Barenblatt profiles, and
we draw conclusions in a final section.

2 Global Existence
In this section, the global existence and uniqueness of a solution is obtained thanks to Leray–Schauder fixed
point theorem, under the condition that the initial datum belongs to the parabolic region.
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Observing that

∆[(a − bu)u] = −b∆[(u − a
2b)

2
],

and using the notation v := u − a
2b , (1.1) can be rewritten as

{{{{{{
{{{{{{
{

∂tv = −b∆(v2) + (c − d
a
2b − dv)(v +

a
2b) in Ω × (0, T),

B[v + a
2b ] = 0 on ∂Ω × (0, T),

v(x, 0) = v0(x).

(2.1)

It can be expected that global existence holds in the case when the parabolicity can be kept in the evolution
(that is, when for all time v < 0, or equivalently u < a

2b ). At the same time, the logistic term u (c − du) and
the expected nonnegativity of u imply that the estimate 0 ≤ u ≤ c

d should also hold. Therefore, a natural
sufficient condition for getting global existence for equation (1.1) is 0 ≤ u0 < a

2b , together with
c
d <

a
2b . The

theorem below states a precise result in this direction:

Theorem 1 (Global Existence and Uniqueness). Let Ω be a smooth bounded domain inℝn. Assume a, b, d > 0
and a

2b >
c
d . Let also 0 ≤ u0 ∈ C

α(Ω), α ∈ (0, 1) and

max
x∈Ω

u0(x) <
a
2b ,

with compatibility condition B[u0] = 0. Then problem (1.1), together with homogeneous Neumann or homoge-
neous Dirichlet boundary conditionB[u] = 0 has a unique global-in-time classical solution. In addition, it holds
that

0 ≤ u(x, t) < a
2b for all x ∈ Ω, t ≥ 0.

Proof. We first observe that we can take ε0 > 0 small enough in such a way that maxx∈Ω u0(x) ≤
a
2b − ε0 and

c
d ≤

a
2b − ε0. Then we will prove the existence and uniqueness of a solution u of the problem, which satisfies

the estimate
0 ≤ u(x, t) ≤ a

2b − ε0 for all x ∈ Ω, t ≥ 0.

For any fixed T > 0, we will use the Leray–Schauder fixed point theorem to prove the existence. Let

X = {w ∈ Cα,
α
2 (Ω̄ × [0, T]) : 0 ≤ w(x, t) ≤ a

2b − ε0 for all x ∈ Ω, t ≥ 0}.

We define an operator as follows: for given w ∈ X and σ ∈ [0, 1], let u := T(w, σ) be the C2+α,1+ α2 (Ω̄ × [0, T])
solution (see [8, Chapter V, Theorem 7.4] for the existence and uniqueness of the solution) of the following
problem:

{{{
{{{
{

∂tu − (1 − σ)∆u − σ(a − 2bw)∆u + 2σb|∇u|2 = σu(c − du) in Ω × (0, T),
B[u] = 0 on ∂Ω × (0, T),

u(x, 0) = σu0(x).

In order to build up the map T, we have to show that 0 ≤ u(x, t) ≤ a
2b − ε0 for all (x, t) ∈ Ω̄ × [0, T].

For σ = 0, it is obvious that 0 ≤ u ≤ a
2b − ε0, since in that case u satisfies the heat equation.

For σ ∈ (0, 1], we first prove that u ≥ 0. To this end, let ε > 0 be small and let uε be the solution of

{{{
{{{
{

∂tuε − (1 − σ)∆uε − σ(a − 2bw)∆uε + 2σb|∇uε|2 = σuε(c − duε) + ε in Ω × (0, T),
B[uε] = 0 on ∂Ω × (0, T),

uε(x, 0) = σu0(x).

The solution uε ∈ C2+α,1+ α2 (Ω × [0, T]) possesses a uniform in ε estimate ‖uε‖2+α,1+ α2 ≤ C, see [8, Chapter V,
Theorem 7.4]. With u0 ≥ 0, if minΩ̄×[0,T] uε(x, t) < 0, then there exists (x1, t1) ∈ Ω × (0, T] such that

0 = uε(x1, t1) = min
Ω̄

uε(x, t1) with ∂tuε(x1, t1) ≤ 0. (2.2)
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More precisely, we take here t1 ≥ 0 as the last time before the solution takes some negative value. If x1 ∈ Ω,
we have ∇uε(x1, t1) = 0. If x1 ∈ ∂Ω, in the case of the homogeneous Neumann boundary condition, we also
have ∇uε(x1, t1) = 0. Then we get (still in the case of Neumann boundary condition)

0 ≥ (∂tuε − (1 − σ)∆uε − σ(a − 2bw)∆uε + 2σb|∇uε|2)󵄨󵄨󵄨󵄨(x1 ,t1) = σu
ε(c − duε)|(x1 ,t1) + ε > 0,

which is a contradiction. Therefore, uε ≥ 0.
If x1 ∈ ∂Ω (and uε(x, t1) > 0 for all x ∈ Ω), in the case of the homogeneous Dirichlet boundary condition,

we can prove (see the sequel of the proof) that there exists a sequence xn ∈ Ω satisfying xn → x1 and such
that

lim
n→∞

uε(xn , t1) − uε(x1, t1)
|xn − x1|

= lim
n→∞

uε(xn , t1)
|xn − x1|

= 0. (2.3)

This limit, together with the fact that uε is smooth and that the tangential derivative of uε vanishes because
of the homogeneous Dirichlet boundary condition, shows that ∇uε|(x1 ,t1) = 0. Thus we can follow the same
argument as above.

In order to show the limit (2.3), we consider tn = t1 + 1
n a sequence that converges to t1 and xn (n ≥ 2)

one of the minimal points of uε(x, tn) such that xn → x1 (note that if several points x1 ∈ ∂Ω satisfy (2.2), one
at least can be selected in such a way that the construction above makes sense). Then uε(xn , tn)→ uε(x1, t1)
because of the continuity of uε. We get therefore

uε(xn , t1) > 0 and uε(xn , tn) < 0.

Then themean value theorem implies that there exists a sequence t∗n ∈ (t1, tn) such that uε(xn , t∗n) = 0. There-
fore,

lim
n→∞

uε(xn , t1) − uε(x1, t1)
|xn − x1|

= lim
n→∞

uε(xn , t1) − uε(xn , t∗n)
|xn − x1|

= lim
n→∞

1
|xn − x1|

∂uε

∂t
(xn , t∗∗n )(t1 − t∗n)

= lim
n→∞

1
|xn − x1|

(
∂uε

∂t
(xn , t∗∗n ) −

∂uε

∂t
(x1, t∗∗n ))(t1 − t∗n),

where t∗∗n ∈ (t1, t∗n) and the last line comes again from the homogeneous Dirichlet boundary condition. As
a consequence, since we are working with bounded classical solutions, the limit vanishes.

On the other hand, ρε = uε − u satisfies the following linear problem:

{{{
{{{
{

∂tρε − (1 − σ)∆ρε − σ(a − 2bw)∆ρε + 2σb∇(uε + u) ⋅ ∇ρε − σcρε + σd(uε + u)ρε = ε in Ω × (0, T),
B[ρε] = 0 on ∂Ω × (0, T),

ρε(x, 0) = 0,

where all the coefficients are uniformly bounded in ε. Therefore by the maximum principle, we have

‖uε − u‖L∞(Ω×[0,T]) = ‖ρε‖L∞(Ω×[0,T]) ≤ CT ε.
By taking the limit ε → 0 in uε ≥ 0, we obtain that u ≥ 0 in Ω × [0, T].

Next we prove that u ≤ a
2b − ε0 in Ω × [0, T]. Suppose that there exists (x0, t0) ∈ Ω × (0, T] such that

a
2b − ε0 < u(x0, t0) = max

Ω̄×[0,T]
u(x, t).

Then we have ∂tu(x0, t0) ≥ 0, and moreover x0 ∈ Ω if we consider the Dirichlet boundary condition, so that

0 ≤ (∂tu − (1 − σ)∆u − σ(a − 2bw)∆u + 2σb|∇u|2)󵄨󵄨󵄨󵄨(x0 ,t0) = σu(c − du)|(x0 ,t0),

which means
c − du(x0, t0) ≥ 0 󳨐⇒ u(x0, t0) ≤

c
d
.

In the case of the Neumann boundary conditions, x0 might appear on the boundary, but in this case, we still
have ∇u(x0, t0) = 0, therefore the above argument also works. This implies a

2b − ε0 <
c
d , which is a contradic-

tion with the assumption a
2b − ε0 ≥

c
d . Therefore maxΩ̄×[0,T] u(x, t) ≤ a

2b − ε0.
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Thus the map T : X × [0, 1]→ X is well defined. Due to the compact embedding from C2+α,1+ α2 to Cα, α2 ,
we know that T( ⋅ , σ) : X → X is a compact operator.

Next we show that the map T is continuous in w and σ. For all w ∈ X and σ ∈ [0, 1], let wj ∈ X be
a sequence such that ‖wj − w‖Cα, α2 → 0 as j →∞, and let σj ∈ [0, 1] be a sequence such that |σj − σ|→ 0.
Let uj = T(wj , σj), the Schauder estimates show that ‖uj‖2+α,1+ α2 ≤ C uniformly in j. Notice that ρj = uj − u
satisfies the following linear problem:

{{{
{{{
{

∂tρj − (1 − σ)∆ρj − σ(a − 2bw)∆ρj + 2σb∇(uj + u) ⋅ ∇ρj + σduρj − σ(c − duj)ρj = Fj in Ω × (0, T),
B[ρj] = 0 on ∂Ω × (0, T),

ρj(x, 0) = 0,

where

Fj = (σ − σj)∆uj − 2σb(wj − w)∆uj + (σj − σ)(a − 2bwj)∆uj − 2b(σ − σj)|∇uj|2 + (σj − σ)uj(c − duj).

Using Schauder’s theory for linear parabolic equations, we get the estimate

‖uj − u‖2+α,1+ α2 = ‖ρj‖2+α,1+ α2 ≤ C‖Fj‖α, α2 ≤ C(‖wj − w‖α, α2 + |σj − σ|).

Hence, T is continuous in w and σ.
Furthermore, it is obvious that T(w, 0) = 0. Additionally, for any fixed point of T(u, σ) = u, the uniform

estimates for quasilinear parabolic equation show ([8, Chapter V, Theorem7.2]) that there exists a constantM
depending only on a

2b , c, ‖u0‖∞ such that

‖∇u‖L∞ , ‖∂tu‖L∞ ≤ M.

Therefore, by Leray–Schauder’s fixed point theorem, there exists a fixed point to the map T( ⋅ , 1), i.e. u is
a solution of the following problem:

{{{
{{{
{

∂tu − (a − 2b u) ∆u + 2b |∇u|2 = u(c − du) in Ω × (0, T),
B[u] = 0 on ∂Ω × (0, T),

u(x, 0) = u0(x),

which is equivalent to equation (1.1).
The uniqueness of classical solutions follows directly from comparison principles.

3 Steady States
In this section, two results concerning stationary states are given. One of them shows that nontrivial non-
negative solutions do not exist for equation (1.1) with Dirichlet boundary condition. The other one has to do
with the linear instability of constant steady states to equation (1.1) with homogeneous Neumann boundary
condition.

3.1 Non-existence of Nontrivial Steady States for Dirichlet Boundary Conditions

The steady states corresponding to (1.1) satisfy the equation

{
−∆[(a − bu)u] = (c − du)u in Ω,

u = 0 on ∂Ω.
(3.1)

We write down a non-existence result (based on Pohozaev method, see [6]) which works for general elliptic
problems, and explain how to use it specifically in the case of equation (3.1).
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Theorem 2. Let n > 2, let Ω be a star shaped domain ofℝn with respect to the origin and suppose that g, h are
C1 functions defined onℝ+ such that

nF(s) := n
s

∫
0

g(v)h󸀠(v) dv < n − 22 g(s)h(s) for all s > 0 and F(u(x)) ≥ 0 for all x ∈ ∂Ω. (3.2)

Then the problem

{
−∆h(u) = g(u) in Ω,

h(u) = 0 on ∂Ω,
(3.3)

does not have any nontrivial (that is, different from u ≡ 0) classical solution.
As a consequence, considering h(s) := (a − bs)s and g(s) := (c − ds)s, the sufficient condition (3.2) implies

non-existence of (nontrivial, nonnegative, classical) solutions to equation (3.1) as soon as

bds2 + (n − 66 ad − n + 66 bc)s + ac < 0 for all s > 0.

This last condition is satisfied in particular when c and d are negative and 0 < ad(n−6)−bc(n+6) < 12√abcd
or ad(n − 6) − bc(n + 6) < 0. Note also that since h(0) = 0, the homogeneous Dirichlet boundary condition
u = 0 on ∂Ω implies that h(u) = 0 on ∂Ω, so that the first part of Theorem 2 can be applied.

Proof. By testing (3.3) with x ⋅ ∇h(u), we get

− ∫
Ω

(x ⋅ ∇h(u))∆h(u) dx = ∫
Ω

(x ⋅ ∇h(u))g(u) dx. (3.4)

First, notice that

∇ ⋅ [(x ⋅ ∇h(u))∇h(u)] = (x ⋅ ∇h(u))∆h(u) +∑
k
(

∂
∂xk
[h(u)]) ∂

∂xk
(∑

i
xi
∂h(u)
∂xi
)

= (x ⋅ ∇h(u))∆h(u) + |∇[h(u)]|2 + 12∑i
xi

∂
∂xi
|∇h(u)|2.

Integrating over Ω and applying the divergence lemma to the left-hand side, we get

∫
∂Ω

(x ⋅ ∇h(u))(∇h(u) ⋅ ν) dσ = ∫
Ω

(x ⋅ ∇h(u))∆h(u) dx + ∫
Ω

|∇h(u)|2 dx + 12 ∫
Ω

∑
i
xi

∂
∂xi
|∇h(u)|2 dx,

so that using (3.4), we obtain

∫
∂Ω

(x ⋅ ∇h(u))(∇h(u) ⋅ ν) dσ = −∫
Ω

(x ⋅ ∇h(u))g(u) dx + ∫
Ω

|∇h(u)|2 dx + 12 ∫
Ω

∑
i
xi

∂
∂xi
|∇h(u)|2 dx

=: I + II + III. (3.5)

We first compute

I = −∫
Ω

(x ⋅ ∇h(u))g(u) dx = −∫
Ω

g(u)h󸀠(u)∑
i
xiuxi dx = −∫

Ω

∑
i
xi
∂F(u)
∂xi

dx,

where F(u) = ∫u0 g(s)h󸀠(s) ds. Integrating by parts, we get

−∫
Ω

∑
i
xi
∂F(u)
∂xi

dx = n∫
Ω

F(u) dx − ∫
∂Ω

(x ⋅ ν)F(u) dσ,

thus
I = n∫

Ω

F(u) dx − ∫
∂Ω

(x ⋅ ν)F(u) dσ. (3.6)

For the second term, using problem (3.3), we get

II = ∫
Ω

|∇h(u)|2 dx = ∫
Ω

g(u)h(u) dx. (3.7)
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For the last term in (3.5), we compute

∇ ⋅ (
x
2 |∇h(u)|

2) =
n
2 |∇h(u)|

2 +
1
2∑i

xi
∂
∂xi
|∇h(u)|2,

so that

III = ∫
Ω

1
2∑i

xi
∂
∂xi
|∇h(u)|2 dx = ∫

Ω

(div( x2 |∇h(u)|
2) −

n
2 |∇h(u)|

2) dx

=
1
2 ∫
∂Ω

x ⋅ ν|∇h(u)|2 dσ − n2 ∫
Ω

g(u)h(u) dx. (3.8)

Plugging (3.6), (3.7), (3.8) into (3.5), we obtain

∫
∂Ω

(x ⋅ ∇h(u))(∇h(u) ⋅ ν) dσ = I + II + III

= n∫
Ω

F(u) dx − ∫
∂Ω

(x ⋅ ν)F(u) dσ + ∫
Ω

g(u)h(u) dx

+
1
2 ∫
∂Ω

x ⋅ ν|∇h(u)|2 dσ − n2 ∫
Ω

g(u)h(u) dx.

Using the Dirichlet boundary condition, we see that |∇h(u)|∂Ω = |ν ⋅ ∇h(u)|∂Ω, so that on ∂Ω, we have

(x ⋅ ∇[h(u)])(ν ⋅ ∇[h(u)]) = (x ⋅ ν)|∇h(u)|2.

Thus, the above relation becomes

1
2 ∫
∂Ω

(x ⋅ ν)|∇h(u)|2 dσ = ∫
∂Ω

(x ⋅ ∇h(u))(∇h(u) ⋅ ν) dσ − 12 ∫
∂Ω

(x ⋅ ν)|∇h(u)|2 dσ

= n∫
Ω

F(u) dx − ∫
∂Ω

(x ⋅ ν)F(u) dσ − n − 22 ∫
Ω

g(u)h(u) dx,

or 1
2 ∫
∂Ω

(x ⋅ ν)|∇h(u)|2 dσ + ∫
∂Ω

(x ⋅ ν)F(u) dσ = n∫
Ω

F(u) dx − n − 22 ∫
Ω

g(u)h(u) dx. (3.9)

Since Ω is star shaped, there exists α ≥ 0 such that

x ⋅ ν ≥ α ∫
∂Ω

dσ ≥ 0,

and relation (3.9) yields
n∫
Ω

F(u) dx − n − 22 ∫
Ω

g(u)h(u) dx ≥ 0.

Therefore, a sufficient condition for the non-existence of (nontrivial, nonnegative, classical) solutions is

n
s

∫
0

g(v)h󸀠(v) dv < n − 22 g(s)h(s) for all s > 0. (3.10)

Next, if we set h(s) = (a − bs)s, g(s) = (c − ds)s, then

F(u) = bd2 u4 − ad + 2bc3 u3 + ac2 u2

and
g(u)h(u) = bdu4 − (ad + bc)u3 + acu2.
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Using (3.10), we get the sufficient condition of non-existence of nontrivial solutions to the corresponding
steady-state problem, which consists in finding a, b, c, d, n such that

bd s2 + (n − 66 ad − n + 66 bc)s + ac < 0 for all s > 0.

As stated in the theorem, this happenswhen for example, c, d < 0 and ad(n − 6) − bc(n + 6) < 12√abcd.

Remark 3. We obtain (3.10) from (3.9) by neglecting the first boundary term (since Ω is starshaped). Now
we keep this first boundary integral (the second boundary integral in (3.9) is 0 because of the boundary
conditions) and compute

1
2 ∫
∂Ω

(x ⋅ ν)|∇h(u)|2 dσ ≥ α2( ∫
∂Ω

−
∂h(u)
∂ν

dσ)
2
=
α
2(∫

Ω

−∆h(u) dx)
2
=
α
2(∫

Ω

g(u) dx)
2
,

wherewehaveused the geometry of the domain, Cauchy–Schwarz inequality, |∂Ω| = 1, the divergence lemma
and the problem itself. Then relation (3.9) yields

n∫
Ω

F(u) dx − n − 22 ∫
Ω

g(u)h(u) dx ≥ α2(∫
Ω

g(u) dx)
2
.

Therefore, we can get a more precise description for the non-existence of solutions, since now we need to
check the less stringent inequality

n∫
Ω

F(u) dx − n − 22 ∫
Ω

g(u)h(u) dx < α2(∫
Ω

g(u) dx)
2
.

Remark 4. We present here a computation related to the linear stability of steady states for the Neumann
boundary condition. We denote by {λk , ek}∞k=1 the solution of the eigenvalue problem for the Laplacian with
homogeneous Neumann boundary condition, with λk ≥ 0 for k = 1, 2, . . . and 0 = λ1 < λ2 ≤ λ3 ≤ ⋅ ⋅ ⋅ .

We assume that c, d > 0. Then the equilibrium c
d for equation (1.1) with homogeneous Neumann bound-

ary condition is asymptotically linearly stable if and only if c
d ≤

a
2b .

Indeed, we set u = c
d + εw, so that the problem is transformed into

ε∂tw − ∆[(a − b
c
d
− bεw)( cd

+ εw)] = (c − d( cd
+ εw))( cd

+ εw) = −εdw( cd
+ εw).

Thus
∂tw − ∆[(a −

2bc
d )

w] = −cw + O(ε).

By projecting the equation onto the k-th eigenspace (and by using the notation wk(t) := ⟨w(t, ⋅ ), ek⟩), we
obtain

d
dt

wk = ((
2bc
d
− a)λk − c)wk + O(ε).

The condition for linear asymptotic stability of the steady state c
d is therefore, for all k ∈ ℕ,

(
2bc
d
− a)λk − c < 0,

whence the result.

4 Blow-Up Results
In this section, we present blow-up results (for different boundary conditions). Namely, we show that the
solution to equation (1.1) blows up, under appropriate conditions, for bothDirichlet andNeumannboundary
conditions, by using two different classical methods, i.e. Kaplan’s and concavity method.
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4.1 A Sufficient Blow-Up Condition via Kaplan’s Method for Dirichlet Boundary
Conditions

The problem under consideration in this subsection is

{{{
{{{
{

∂tu = ∆[(a − bu)u] + (c − du)u in Ω × (0, T),
u = 0, on ∂Ω × (0, T),

u(x, 0) = u0(x) ≥ 0.
(4.1)

Let (μ, ϕ) be the solution to the eigenvalue problem

−∆ϕ = μϕ,x ∈ Ω, (4.2a)
ϕ = 0, x ∈ ∂Ω, (4.2b)

where μ is the first eigenvalue and Ω is a connected bounded domain. Then μ > 0 and ϕ is strictly positive
and bounded in Ω. For convenience, we also impose the normalization condition ∫Ω ϕ(x) dx = 1. The main
result in this subsection is:

Theorem 5. Assume that Ω is a bounded smooth domain of ℝn and let u0 ∈ L1(Ω;ϕ dx) satisfy

A0 := ∫
Ω

u0 ϕ >
max{μa − c, 0}

μb − d
and μb > d,

where (μ, ϕ) is the solution to (4.2). Then any nonnegative solution to problem (4.1) blows up in finite time
in L1(Ω;ϕdx).

Remark 6. When c = d = 0, the above blow-up condition on the initial data can be roughly translated as
u0 > Cst a

b , which is coherent with our global existence result, and with the assumption of Theorem 7. Note
also that the homogeneous Dirichlet boundary condition u = 0 on ∂Ω could be replaced in the theorem above
by the less stringent condition (a − bu) u = 0 on ∂Ω.

Proof. We begin, motivated by [5], with testing (4.1) with the eigenfunction ϕ, and set

A(t) = ∫
Ω

ϕ(x) u(x, t) dx,

so that

A󸀠(t) = ∫
Ω

ϕ∆[(a − bu)u] dx + ∫
Ω

(c − du)uϕ dx

= −μ∫
Ω

(a − bu)uϕ dx + ∫
Ω

(c − du)uϕ dx

= (c − μa)∫
Ω

uϕ + (μb − d)∫
Ω

u2ϕ,

where we have used problem (4.2). Next we recall that

μb > d.

After applying Jensen’s inequality, we remind that ∫Ω ϕ(x) dx = 1, we get

A󸀠(t) ≥ (c − μa)A(t) + (μb − d)A2(t),

from which the blowup of the solution can be obtained. Namely, by using the change of variables

Ξ(t) = e−(c−μa)tA(t),

we can obtain
Ξ󸀠(t) = −(c − μa)e−(c−μa)tA(t) + e−(c−μa)tA󸀠(t)
≥ (μb − d)e−(c−μa)tA2(t) = (μb − d)e(c−μa)tΞ2(t)
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or (as long as Ξ(t) > 0, remembering that Ξ(0) = A(0) > 0)

(
−1
Ξ )
󸀠
(t) ≥ (μb − d)e(c−μa)t 󳨐⇒ 1

Ξ(t) ≤
1

Ξ(0) −
μb − d
c − μa
(e(c−μa)t − 1).

When c − μa > 0, we see that Ξ−1(t) > 0 cannot remain true for

t ≥ t∗ := (c − μa)−1 log (μb − d)A(0) + (c − μa)
(μb − d)A(0) ,

so that blowup occurs before time t∗. When c − μa < 0, a similar computation shows that a blowup also
occurs, under the extra assumption A0 >

μa−c
μb−d .

4.2 A Sufficient Blow-Up Condition by the Concavity Method for Neumann Boundary
Condition

As has been stated in the beginning of Section 2, after the transformation v = u − a
2b , the equation can be

rewritten into
∂tv = −b∆v2 + (c − d

a
2b − dv)(v +

a
2b).

In this subsection, we consider the followingmore general equationwith homogeneous boundary condition,

{{{{
{{{{
{

∂tv = −b∆vm + h(v), in Ω × (0, T),
∂vm

∂ν
= 0, on ∂Ω × (0, T),

v(x, 0) = v0(x) ≥ 0 in Ω,

(4.3)

and after giving a result about the blowup for the above general problem, we explain how (and under which
conditions) it applies to problem (2.1). We refer the interested reader to [3, 4, 7, 10]. The main result of this
subsection is the following:

Theorem 7. Suppose that m > 1, and that h is a continuous real function such that for all s ≥ 0, one has
smh(s) ≥ 2H(s), where H(s) := ∫s0 mtm−1h(t) dt. We assume that v := v(x, t) is a smooth nonnegative solution
to problem (4.3) on [0, T] such that

b
2 ∫

Ω

|∇v0(x)m|2 dx + ∫
Ω

H(v0(x)) dx > 0. (4.4)

Then there exists t∗ > 0 (depending only on m, b, h and v(0, ⋅ )) such that T < t∗.
In other words, a blowup occurs before t∗. More precisely,

lim
t→t∗

t

∫
0

∫
Ω

vm+1(x, τ) dx dτ = +∞. (4.5)

Remark 8. Note that the function h is not assumed to be nonnegative. Actually, Theorem 7 still holds when h
is negative, or when it changes sign.

Remark 9. When we consider problem (2.1) with homogeneous Neumann boundary condition, we are led
to use m = 2 and h(s) := (c − d a

2b − ds)(s +
a
2b ) in Theorem 7. The condition smh(s) ≥ 2H(s) (for all s ≥ 0)

becomes (remember that a, b > 0, but the sign of c, d is not fixed)

c ≤ min{adb , ad2b }. (4.6)

Coming back to the original unknown u (instead of v), Theorem 7 states that (under assumption (4.6)) the
(smooth) solutions to (2.1) which are such that u ≥ a

2b is pointwise true, cannot exist globally.
Note that a significant limitation of this result is related to the assumption that u ≥ a

2b pointwise. Indeed,
this estimate is propagated at the formal level by the equation only in very special cases in which a, b, c, d
are linked by some equality, like when c = ad

2b ≥ 0.
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Proof. The proof is given by contradiction argument. Assume that the solution is global, and define

Ψ(t) :=
t

∫
0

∫
Ω

vm+1(x, τ) dx dτ ≥ 0.

The idea of the concavity method is to find an α > 0 and a t0 ≥ 0 such that Ψ−α is a concave function
on [t0, +∞[. Then, from the concavity property of Ψ−α written at time t0 in a differential way, we get

Ψ−α(t) ≤ Ψ−α(t0) − αΨ−α−1(t0)Ψ󸀠(t0)(t − t0) for all t ≥ t0.

Using this inequality together with the fact that Ψ󸀠(t) ≥ 0 for all t ≥ 0, we obtain an upper bound t∗ for the
blow-up time (that is, the first time t∗ such that Ψ−α(t∗) = 0)

t∗ ≤ Ψ
−α(t0) + αt0Ψ−α−1(t0)Ψ󸀠(t0)

αΨ−α−1(t0)Ψ󸀠(t0)
=
Ψ(t0) + αt0Ψ󸀠(t0)

αΨ󸀠(t0)
.

To prove this concavity property, we compute

(Ψ−α)󸀠󸀠 = αΨ−α−2((α + 1)(Ψ󸀠)2 − ΨΨ󸀠󸀠),

from which it can be deduced that a sufficient condition for Ψ−α to be concave (on [t0, +∞[) is that

Ψ(t)Ψ󸀠󸀠(t) − (α + 1)(Ψ󸀠(t))2 ≥ 0 for all t ≥ t0.

In fact, we start by computing the derivative of the functional

Ψ󸀠(t) = ∫
Ω

vm+1(x, t) dx =
t

∫
0

∫
Ω

(vm+1)τ dx dτ + ∫
Ω

vm+10 dx,

and its second derivative
Ψ󸀠󸀠(t) = ∫

Ω

(vm+1)t dx = (m + 1)∫
Ω

vmvt dx. (4.7)

Next, we test (4.3) with (m + 1)vm, and get

(m + 1)∫
Ω

vmvt dx = −b(m + 1)∫
Ω

vm∆vm dx + (m + 1)∫
Ω

vmh(v) dx

= b(m + 1)∫
Ω

|∇vm|2 dx + (m + 1)∫
Ω

vmh(v) dx, (4.8)

so that substituting (4.8) into (4.7), we obtain

Ψ󸀠󸀠(t) = b(m + 1)∫
Ω

|∇vm|2 dx + (m + 1)∫
Ω

vmh(v) dx. (4.9)

We now test (4.3) with (vm)t, and get

0 ≤ ∫
Ω

mvm−1(vt)2 dx = −b∫
Ω

(vm)t∆vm dx + ∫
Ω

(vm)th(v) dx

=
d
dt{

b
2 ∫

Ω

|∇vm|2 dx + ∫
Ω

H(v) dx} =: d
dt

E(t), (4.10)

where we recall that

H(v) :=
v

∫
0

msm−1h(s) ds.
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From (4.10), we can also deduce that

E(t) − E(0) =
t

∫
0

∫
Ω

(vm)τvτ dx dτ = m
t

∫
0

∫
Ω

v
m−1
2 vτv

m−1
2 vτ dx dτ = 4

m
(m + 1)2

t

∫
0

∫
Ω

[(v
m+1
2 )τ]2 dx dτ. (4.11)

If the initial energy is strictly positive, namely

E(0) > 0, (4.12)

which is assumption (4.4) in Theorem 7, then we see that for all t ≥ 0, E(t) > 0, thanks to (4.11).
With the help of (4.10), identity (4.9) becomes

Ψ󸀠󸀠(t) = b(m + 1)∫
Ω

|∇vm|2 + (m + 1)∫
Ω

vmh(v) dx

= 2(m + 1)E(t) + (m + 1)∫
Ω

vmh(v) dx − 2(m + 1)∫
Ω

H(v) dx.

At this point, we use the assumption on h, H to obtain

smh(s) ≥ 2H(s) = 2
s

∫
0

mrm−1h(r) dr for all s ≥ 0,

and conclude that
Ψ󸀠󸀠(t) ≥ 2(m + 1)E(t) ≥ 2(m + 1)E(0) > 0 for all t ≥ 0. (4.13)

From the above inequality, we also get that t 󳨃→ Ψ󸀠(t) is strictly increasing. Furthermore,

Ψ󸀠󸀠(t)Ψ(t)
(4.13)
≥ 2(m + 1)E(t)Ψ(t) = 2(m + 1)E(t)

t

∫
0

∫
Ω

(v
m+1
2 )2 dx dτ

(4.11)
= 2(m + 1)(4 m

(m + 1)2

t

∫
0

∫
Ω

[(v
m+1
2 )τ]2 dx dτ + E(0))

t

∫
0

∫
Ω

(v
m+1
2 )2 dx dτ

(4.12)
>

8m
m + 1

t

∫
0

∫
Ω

[(v
m+1
2 )τ]2 dx dτ

t

∫
0

∫
Ω

(v
m+1
2 )2 dx dτ

Cauchy–Schwarz
≥

2m
m + 1(

t

∫
0

∫
Ω

(vm+1)τ dx dτ)
2
=

2m
m + 1(Ψ

󸀠(t) − ∫
Ω

vm+10 dx)
2

=
2m
m + 1 (Ψ

󸀠(t) − Ψ󸀠(0))2.

We now prove that there exists α > 0 and t0 > 0 such that
2m
m + 1 (Ψ

󸀠(t) − Ψ󸀠(0))2 ≥ (α + 1)(Ψ󸀠(t))2 for all t ≥ t0,

or equivalently

[1 − ( (m + 1)(α + 1)2m )
1
2
]Ψ󸀠(t) ≥ Ψ󸀠(0) for all t ≥ t0. (4.14)

In order to do so, we choose 0 < α < m−1
m+1 (remember thatm > 1). Due to the fact that Ψ󸀠(t)→ +∞ as t → +∞

(because of (4.13)), we can indeed choose t0 > 0 large enough for (4.14) to hold.
Therefore, we finally obtain

Ψ󸀠󸀠(t)Ψ(t) ≥ (α + 1)(Ψ󸀠(t))2 for all t ≥ t0.

Asobserved at the beginning of the proof, the above inequality implies thatwe cannot extend the solution
for all times, since (4.5) holds at a some point t∗ > 0.
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5 Annex: Self-Similar Solutions Blowing Up in the Whole Space
In this annex, we provide a few explicit computations concerning problem (1.1) in the case when c = d = 0:

∂tu = ∆[(a − bu)u],

and we still consider only the nonnegative solutions.
We recall that it is equivalent to studying the following problem:

∂tv + b∆v2 = 0, (5.1)

with u ≥ 0 if and only if v ≥ − a
2b .

This equation is a (reverse in time) porous medium equation, for which explicit solutions of Barenblatt
type [1] can be computed (on a given time interval [0, T∗) for the first type given below):

v(x, t) = 1
b(T∗ − t)

((T∗ − t)
2

n+2 − x2

4(n + 2))+
inℝn × [0, T∗),

and
v(x, t) = −1

b(T∗ + t)
((T∗ + t)

2
n+2 − x2

4(n + 2))+
inℝn × [0, +∞).

It is possible to take linear combinations of those solutions and still get solutions, though the equation is
nonlinear, as long as the support of those solutions remain separate (more precisely, when each two solutions
have support with empty intersections during the time of existence of the solutions).

For an initial datum

v0(x) =
A
∑
i=1

1
b Ti
(T

2
n+2
i −
(x − xi)2

4(n + 2) )+
−

A+B
∑

j=A+1

1
b Tj
(T

2
n+2
j −
(x − xj)2

4(n + 2) )+
,

with A, B ∈ ℕ, Tk > 0, xk ∈ ℝn (k = 1, . . . , A + B), the function defined by

v(t, x) =
A
∑
i=1

1
b (Ti − t)

((Ti − t)
2

n+2 − (x − xi)24(n + 2) )+
−

A+B
∑

j=A+1

1
b (t + Tj)

((t + Tj)
2

n+2 − (x − xj)24(n + 2) )+

is a solution to equation (5.1) on the time interval [0, τ[ for

τ := min
i=1,...,A

Ti

(if A = 0, τ = +∞) provided that

(τ + Tj)
1

n+2 + (τ + Tk) 1
n+2 < |xk − xj|

2√n + 2
for all j, k = A + 1, . . . , A + B, j ̸= k,

and
(t + Tj)

1
n+2 + (Tl − t) 1

n+2 < |xl − xj|
2√n + 2

for all j = A + 1, . . . , A + B, l = 1, . . . , A, t ∈ [0, τ]. (5.2)

Condition (5.2) can be rewritten without any direct reference to the time t in the following way:
∙ If Tl − Tj ≤ 0, then

T
1

n+2
j + T

1
n+2
l <
|xl − xj|
2√n + 2

.

∙ If Tl − Tj ≥ 2τ, then
(τ + Tj)

1
n+2 + (Tl − τ) 1

n+2 < |xl − xj|
2√n + 2

.

∙ If Tl − Tj ∈ [0, 2τ[, then
2

n+1
n+2 (Tl + Tj) 1

n+2 < |xl − xj|
2√n + 2

.

Note also that v(t, x) ≥ − b
2a for all t ∈ [0, τ[ and x ∈ ℝ

n as soon as for all j = A + 1, . . . , A + B, Tj > ( a2 )
−1− 2n .
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Figure 1: Explicit solution shown at different times.

The explicit solutions defined above feature in an explicit way the properties of blowup discussed previ-
ously. The value v = 0 (or u = a

2b ) plays a decisive role in the existence or not of a blowup, as can be guessed
from the study of the parabolicity regions of the equation.

Finally, we propose a figure illustrating the computations above. In Figure 1, a solution is drawn, with
one positive bump and two negative ones, with the specific feature that when t = 0 the branches of the bump
coincide and connect. For this solution, we drew three different time instances.

6 Conclusion
This paper is a first attempt to tackle problems of the form

{{{
{{{
{

∂tu = ∆[(a − bu)u] + (c − du)u in Ω × (0, T),
B[u] = 0 on ∂Ω × (0, T),

u(x, 0) = u0(x) ≥ 0,

whose main characteristic is the fact that the quantity inside the Laplacian does not a priori have a fixed
sign, so that global-in-time existence of solutions does not always hold. We proved the global existence and
uniqueness of classical solutions for initial data and parameters such that the problem is of parabolic type.
The non-existence of nontrivial steady states is studied, and some blow-up results using Kaplan’s method on
the one hand, and the concavity method on the other hand, are also presented.
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