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Abstract

The amino acids synthesis from elementary precursors in abiotic conditions is tra-

ditionally described according to the Strecker reaction, thoroughly invoked to justify

the observation of amino acids in extraterrestrial samples, and their emergence in the

primordial Earth. To this day, however, a quantitative microscopic description of the

mechanism, thermodynamics and kinetics of the multi-step Strecker reaction is still

lacking. In the present work we tackle this study by adopting a state-of-the-art ab

initio computational approach, combining an efficient scheme of exploration of the rel-

evant chemical networks with a rigorous determination of the underlying free energy

and transition states. We determine the step-by-step chemical pathway from ”Strecker

precursors” to glycine in solution, and calculate the corresponding full free energy

landscape. Our results agree well with the scarce available experimental data, and

complete them, thus providing the first end-to-end study of this complex reaction, a

crucial bottleneck for the emergence of life.

Keywords : Strecker reaction, free energy landscape, ab initio molecular dynamics,

glycine, prebiotic synthesis
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Understanding the prebiotic appearance of amino acids in the primordial Earth has re-

ceived enormous attention since the Miller experiments in the 1950’s,1,2 becoming one of

the major issues in prebiotic chemistry and origin of life studies3. However, the variety of

geochemical environments in which amino acids may have appeared, also including extrater-

restrial ones, makes the identification of accurate and realistic synthetic pathways for their

formation extremely challenging. Amino acids formation environments may have included

for instance meteorites, water vapour-rich volcanic eruptions, interstellar media, meteorites,

or high-velocity cometary impacts4–11 . This complexity is enhanced by the number of molec-

ular species, possibly present in the early Earth, which could have been precursors in amino

acid synthesis, including (but not restricted to) water, ammonia, hydrogen cyanide, carbon

dioxide, molecular nitrogen, carbon monoxide, methane, molecular hydrogen.

Ever since the seminal Miller experiment, the observed spark-discharge-driven synthesis

of amino acids was preceded by the appearance, in the aqueous solution in contact with

the gas phase, of reaction intermediates such as aldehydes and cyanide.1 This observation

led to interpret Miller experiments, and in general the prebiotic synthesis of amino acids, in

terms of the “Strecker-cyanohydrin” multi-component reaction12 (see figure 1). This synthe-

sis involves water, formaldehyde, cyanide and one catalytic ammonia to lead to glycine, the

simplest amino acid, but also larger amino acids starting from larger aldehydes. Miller studies

further supported the Strecker mechanism hypothesis,2 and gave, to some extent, thermo-

dynamics and kinetics experimental data to benchmark the Strecker synthesis of glycine.13

However, recent crucial analysis of meteorite content and experimental work stressed that (i)

β- and γ- amino acids are found in meteorites, while Strecker mechanism can explain only α-

amino acids formation and (ii) formation of amino acids could occur in experiments without

cyanide addition (i.e. with only ammonia and aldehyde, hence not through Strecker mech-

anism).14 Similarly, recent ab initio computer simulations addressed amino acid formation

under extreme conditions (intense electric fields, meteorite impacts), suggesting the possible

existence of alternative mechanisms.15–18 For instance, electric field may allow original redox
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processes and hydrogen transfers, leading to glycine formation with a formamide intermedi-

ate.16 In the case of meteorite impacts, C-N bonded oligomers may have formed and their

decomposition may have led to glycine derivatives.18 When it comes to milder conditions,

on the other hand, accurate quantum chemistry studies were generally focused on solvent-

less static calculations in the low-temperature limit, thus neglecting entropic contributions

apart from vibro-rotational harmonic corrections.19,20 Thus, there is a lack of theoretical

studies addressing more widespread, non-extreme environments, i.e., synthesis in solution of

relevance to hydrothermal vents and parent bodies of meteorites.

Up to now, the Strecker synthesis is therefore the most (if not the only) accepted and

studied chemical pathway towards amino acids synthesis in prebiotic conditions. However,

a thorough study of the whole pathway, and the quantitative determination of the relevant

thermodynamics and kinetics of each elementary step is, quite surprisingly, still lacking. This

is particularly true with respect to the kinetics of the fastest chemical steps (the addition and

elimination reactions yielding to glycinonitrile, the first experimentally stable intermediate

((4) in fig. 1). In fact, the glycinonitrile synthesis (reactions (1)→(2), (2)→(3), (3)→(4)))

occurs quickly on the experimental timescale, thus without allowing isolation/identification

of intermediate metastable states. The kinetics of this specific synthesis is determined only

indirectly, using e.g. Taft empirical relationship.21–24 Symmetrically, thermodynamic data

lack for the rate limiting part of the synthesis, e.g. the nitrile hydration and the amide

hydrolysis (reactions (4)→(5) and (5)→(6)). To our best knowledge, despite the crucial role

of this synthesis in origins of life scenarios, few experimental studies have been undertaken

to achieve a full, step-by-step, quantitative description of the kinetics and thermodynamics

of the Strecker amino acids synthesis, and even more so in realistic prebiotic conditions.

To “grasp the nettle”, we undertook a detailed theoretical study of the chemistry of the

Strecker synthesis of glycine. We assessed the free energy differences and barriers involved in

this mechanism, and compared them with experimental data. Eventually, we filled existing

gaps in experimental data. We determined the full microscopic reaction mechanism, and
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Figure 1: The Strecker synthesis of glycine, according to the detailed mechanism obtained in
the present work. Labels denote a set of species solvated in 81 explicit waters. Neither acid or
base is added to the simulation box. In the mechanism representation above, molecules not
intervening in the chemical step are omitted (e.g. waters in (3)). Labels denote (1) formalde-
hyde, hydrogen cyanide, ammonia, water; (2) aminomethanol, cyanide, water, H+

(aq); (3) pro-

tonated methanimine, cyanide, two waters; (4) glycinonitrile (2-amino ethanenitrile) and two
waters; (5) glycinamide (2-amino ethanamide), water; (6) glycine (2-amino ethanoic acid)
and ammonia. In addition, both a metastable state (2’) ( N-protonated aminomethanol,
cyanide, water) and a metastable state (5’) (tautomeric aminoamide (NH2CH2COHNH),
water) are met as intermediates in reactions (1)→(2) and (4)→(5), respectively. We char-
acterised the zwitterionic tetrahedral intermediate (TI5−6) as a transient intermediate of
reaction (5)→(6). Proton exchanges may happen through a water molecule relay during
the simulations. We emphasise that the origin and the fate of protons are not decided
beforehand in simulations but emerge as a result of our unsupervised protocol of pathway
exploration.
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thus provided the first quantum-based ab initio framework of this fundamental reaction.

Quantitatively addressing the question of how, in general, chemical products form in

solution, starting from given reactants, demands a versatile and efficient theoretical approach.

In fact, it is indispensable to explicitly include the solvent molecules, which are instead often

neglected or oversimplified in more standard computational chemistry studies, particularly

in the prebiotic context. In this work, we undertake the first-ever (to our best knowledge)

step-by-step ab initio study of the Strecker reaction in solution. To this end, we use ab initio

molecular dynamics at the Density Functional Theory (DFT) level, including explicitly tens

of solvent water molecules, thus simulating realistic solvation at a realistic concentration of

0.7 mol/L for initial formaldehyde, hydrogen cyanide, or final glycine.

In addition to the cost due to the explicit inclusion of the solvent, a foremost limiting

factor in the predictive power of ab initio simulations is represented by the enormous gap

between the experimental time scales and the ones that can be simulated. To tackle the time

scale issue, we have developed an approach25 based on state-of-the-art enhanced sampling

techniques, combined with a flexible definition of the reaction coordinates (collective variables

(CVs)) based on the topology of the atomic network. Our method, which includes path-based

CVs,26 has been successfully employed to study chemical reactions in the past, generally

limited to a single or to isolated elementary acts.27–30

This approach handles the mechanistic analysis in a fully agnostic way, as, for a given ele-

mentary act, only the reactants and the products are constrained. Therefore, no input about

possible transition states is given, and the system is thus free to find the most favourable way

to react. In addition, our description takes the solvent into account, leaving the system free

to choose which water molecules might interact with the solute and, for example, exchange

H+/OH− with it. Here we deploy our approach for the first time to a complex multi-step

synthesis, and a very meaningful one, as the Strecker reaction in aqueous solution. The

technical details are described in the Methods section.
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(a) Nitrile hydration transition
state, step (4)→(5’). ∆F‡ = 23
kcal/mol.

(b) Amide hydrolysis transition
state, step (5)→(6). ∆F‡ = 31
kcal/mol.

Figure 2: Representative transition state structures for the reaction steps with the largest
barriers. The geometries are extracted from umbrella sampling simulations, and the distances
displayed are average values.

In order to introduce our results, we first represent, in figure 2, the transition states

with the two highest activation free energies: nitrile hydration and amide hydrolysis. It is

worth noting how explicit solvent molecular dynamics gives structural details about solvation

that (i) are out of reach of current experimental methods and (ii) show fine and specific

solvent/transition state interactions that are crucial for a realistic quantitative description.

We note for instance that the negative charge on the nitrile moiety, due to the nucleophilic

attack of water, is stabilised by a strong H-bond solvation, as shown by the short (1.4 Å)

hydrogen-nitrogen distance in figure 2(a).

Concerning amide hydrolysis to glycine, the metadynamics exploration yielded an unex-

pected mechanism, with the concerted addition of an hydroxyde anion and the departure

of an ammonia molecule as shown in figure 2(b). The mechanism expected from literature

proceeds instead via a well-known tetrahedral intermediate.31 However, umbrella sampling

simulations in the barrier region display fast interconversion, on a picosecond timescale,

between the concerted transition state and the tetrahedral intermediate, resulting in the
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“volcano”-like shape of the free energy profile in figure 3(g), the intermediate lying within

the shallow minimum at s ≈ 0.6. This observation strengthens our results, as our optimi-

sation of the reaction pathways was able to find, unsupervisedly, both the actual transition

state, and the close-by tetrahedral intermediate.

We present in the following the full outcome of our study, i.e. the accurate quantitative

free energy landscape for the Strecker reaction in aqueous solution. We calculate the free

energy level for each (metastable) intermediate state, and the activation free energy for each

elementary act of the mechanism.

In the following, we analyse the overall reaction by focusing on two main steps, the

synthesis of glycinonitrile (steps (1) to (4)) and then the pathway to glycine (steps (4) to

(6)), and we compare to (sparse) available experimental data whenever possible. Before

starting, we underline that when comparing data from different sources, the formaldehyde

hydration reaction must be considered: H2CO + H2O � H2C(OH)2 ,with ∆rH
−◦
aq = −8.4

kcal/mol, ∆rS
−◦
aq = −13 cal/mol/K, ∆rG

−◦
aq = −4.5 kcal/mol.32 All values presented in this

paper consider bare formaldehyde as displayed in figure 1, state (1).

For the multi-step reaction (1)�(4), we report a cyanide addition mechanism that pro-

ceeds via a protonated imine (iminium), consistent with the mechanism proposed in the

experimental literature.13 We note that the experimental difference of activation parameters

of the forward and backward reactions in literature13 is not equal to the thermodynamic dif-

ference ∆rG
−◦
aq((1)�(4)), because the rate limiting steps are not the same in both directions.

The experimental activation parameters for the overall reaction (1)�(4) are actually “effec-

tive” data, since elementary acts (1)�(2’), to (3)�(4) are confounded in experiments. The

effective experimental activation free enthalpy is ∆G‡effective((1)�(4))= 10 kcal/mol.13 Few

experimental data exist on this global result, which makes difficult a detailed comparison to

our numerical value. Our observed rate limiting step for the overall process (1)→(4) has

a barrier of 15 kcal/mol (elementary act (2’)→(2)). The 5 kcal/mol discrepancy is quite

satisfying considering the typical PBE-DFT error,33 see below.
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Figure 3: Umbrella sampling free energy profiles (blue) and error bars (red) for each ele-
mentary act. The tetrahedral intermediate (TI5−6) is also shown. Relative free energies
are indicated with respect to the Strecker reactants. Error bars are estimated from block
analysis.
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Figure 4: Free energy diagram of the Strecker reaction. Values next to metastable and tran-
sition states are our umbrella sampling free energies relatively to (1), in kcal/mol, except for
state (6’), that takes literature acido-basic equilibrium data into account, since simulations
led to non-zwitterionic glycine and ammonium (6).

Another relevant experimental difficulty in this reaction concerns the addition of ammo-

nia to formaldehyde and the imine formation without hydrogen cyanide (1)→(3). Ammonia

and formaldehyde indeed spontaneously lead to a polycyclic oligomer, the so-called hexam-

ine.34,35 As a consequence, the authors of reference35 gave only Taft-type estimate for kinetics

of the bare ammonia to formaldehyde reaction.21,22

Another experimental work yields an Arrhenius activation energy of 4.5 kcal/mol for the

low temperature aminomethanol formation on ice.36 Furthermore, a recent computational

study34 adopting an implicit solvent approach studied the free energy differences and barri-

ers for ammonia addition to formaldehyde (corresponding to (1)→(2) in this work) and the

subsequent imine formation reaction (corresponding to (2)→(3)), calculating for the latter

one a rate limiting barrier of 21.6 kcal/mol. This value is significantly worse than ours in

comparison to experiments, thus confirming the importance of adopting an explicit solvent

approach. For the second part of the glycinonitrile (4) formation, experimental kinetic data

are provided in Ref.13 The decomposition reaction (NH2)CH2(CN) � (NH +
2 )CH2+CN– , op-

posite of reaction (3)�(4), has an experimental activation free enthalpy of 27 kcal/mol. Our

computed value is 26 kcal/mol, in excellent agreement. Other data about cyanide addition

to imine (3)→(4) rely upon gas-phase calculations or small size solvent clusters (three water

molecules37). This reference proposes a rate limiting barrier of 35 kcal/mol for (4)→(3),
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again significantly worse than ours in comparison to experiments. Furthermore, this ref-

erence37 has shown dramatic effect of explicit water molecules addition on the calculated

activation barriers, supporting our fully explicit solvent description.

For the pathway leading from glycinonitrile to glycine, in the Strecker mechanism, the

main experimental difficulties are twofold: (i) the high activation barriers hamper equilibrium

uncatalyzed studies in neutral water, and (ii) the equilibrium is strongly displaced towards

products, which makes the nitrile detection difficult.38,39 The precise thermodynamics of

nitrile hydration and of the subsequent amide hydrolysis is therefore an open question. It

is generally considered that nitrile hydration is favoured thermodynamically and proceeds

through a tautomeric amide intermediate (imidic acid),13,38 and that the amide hydrolysis

to carboxylic acid is thermodynamically disfavoured. Our results are consistent with this

general knowledge (see steps (4)→(5) and (5)→(6) figure 4). Furthermore, for nitrile

hydration to amide, the water addition step is known to be rate limiting compared to the

tautomerisation step, also in agreement with our results (compare barriers (4)→(5’) and

(5’)→(5) in figure 4). Again, since quantitative results are lacking, our study fills these

important gaps in the literature. In particular, our explicit solvent approach is crucial to

reveal, with respect to literature,39 that the thermodynamically relevant sub-step of the

nitrile hydration is the water addition and not the imidic acid/amide tautomeric equilibrium

(compare free energy levels of species (4), (5) and (5’)).

Kinetic data, on the other hand, are available for glycinonitrile hydration from Ref.13

glycinonitrile hydration has experimental activation free enthalpies of 29 kcal/mol and 20.5

kcal/mol, under acid limit mechanism or basic limit mechanism, respectively. Our calculated

value is 23 kcal/mol, consistently with experiments. In fact, the theoretical transition state

is characterised by a water molecule close to a unprotonated nitrile (see figure 2(a)), which

is intermediate between the two literature limit mechanisms, and consistent with a barrier

comprised between the two limiting values.

The glycinamide hydrolysis second-order kinetic parameters are also given in the case
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of both acid limit mechanism or basic limit mechanism.13,40 The acid-catalysed activation

free enthalpy is 25 kcal/mol, while it is only 19.5 kcal/mol in the basic case. In our sim-

ulation of the elementary act (5)→(6), the mechanism corresponds to the acid-catalysed

limit mechanism (addition of water and ammonia leaving group). The calculated barrier is

31 kcal/mol, that compares quite well with the 25 kcal/mol experimental result, within the

typical PBE-DFT errors.33

The full comparison of our results to the few existing experimental thermodynamics data

is summarized in table 1. We made the approximation, common in condensed phase chem-

istry, that PV terms in enthalpy undergo small variations compared to energy variations, due

to the small molar volumes of condensed phases. Thus, (free) enthalpy differences can be

approximately compared to (free) energy differences. The total cumulative error on the free

energy difference between our calculations and the experimental data for the overall synthesis

is 24 kcal/mol, which results from the error accumulation on the 7 elementary acts studied.

If one examine these discrepancies in details, the free energy differences between two states

reported in experimental papers are: ∆rG
−◦ ((1)→(2))=4 kcal/mol, ∆rG

−◦ ((2)→(3))=-5.5

kcal/mol, ∆rG
−◦ ((1)→(4))=-13/-16 kcal/mol.

The corresponding values herein computed are: ∆rG
−◦ ((1)→(2))=-3 kcal/mol, ∆rG

−◦ ((2)→(3))=3

kcal/mol, ∆rG
−◦ ((1)→(4))=-23 kcal/mol. In other words, these discrepancies are only re-

spectively 7, 8, and 7/10 kcal/mol, which is reasonable (at most approximately two H

bonds41), and largely within the typical PBE-DFT error on heat of formation, of about

10 kcal/mol.33 The global -24 kcal/mol error on ∆rG
−◦ ((1)→(6)) can be explained by the

PBE-DFT overestimation of this specific reaction enthalpy, by comparing database gas phase

formation enthalpies from experiments42 and PBE-DFT.43 Using the best available basis sets

of Pople-type and Dunning-type (resp. 6-311+G(3df,2p) and aug-cc-pVDZ) in database43

for our system with the PBE functional, the glycine Strecker synthesis enthalpy reaction

errors are respectively -22 and -19 kcal/mol in gas phase compared to experiments.42 This

intrinsic DFT discrepancy appears to explain most of the present work error.
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We remark the importance of careful, systematic assessment of the reaction steps for the

prebiotic synthesis of biological building blocks, since the complexity of chemical networks

starting from small organic compounds grows quicker than exponentially with the number

of consecutive reactions, as pointed out by a recent high impact experimental study of the

amino acids synthesis in complex mixtures,44 as well as recent screening study of prebiotic

networks.45 However, this kind of studies provide only plausible mechanistic networks and

not their quantitative free energy characterisation. In this context, quantitative studies like

the present one are needed to understand why some compounds have been selected, and

which pathway could actually lead to them.

Table 1: For state (4) we indicate two values for its free energy difference with (1) since
use of calculated ∆rH

−◦
aq and ∆rS

−◦
aq from13 gives ∆rG

−◦ ((1)→(4))=-13 kcal/mol, while direct
extrapolation from temperatures close to 300 K in the same source gives ∆rG

−◦ ((1)→(4))=-
16 kcal/mol. Reference46 retained -13 kcal/mol from.13 We felt giving the experimental value
most suitable to the temperature we used is simulations was relevant, and it gives an idea
of the error that can be expected from literature data.

Thermodynamic data, with respect to state 1
state Gaq (lit.) Faq ∆(Faq-Gaq (lit.))
(1) 0 (-105)a 0 0
(2’) NA -14 NA
(2) 4b -3 -7
(3) -1c 0 +1
(4) -13/-16d -23 -10/-7
(5’) NA -45 NA
(5) NA -51 NA
(6) -13e -37 -24
(6’) -21e -45 (-8 w.r.t. 6) idem

a42 , b13,23,24 , c13,21,22 , d13,32,46 , e42,47–51

In this work we tackled a fully ab initio study of the end-to-end Strecker reaction in

aqueous conditions, by using an explicit solvent description and a state-of-the-art approach

for the exploration of chemical networks, the unsupervised identification of best pathways,

and the accurate determination of relative free-energies, activation barriers, and transition

states. In accomplishing this challenging task, we obtained results in very good agreement
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with the scarce and sparse experimental data, typically focused on specific elementary steps of

this complex, 7-step reaction, filling the experimental gaps. In particular, disclosing relative

free energy values for all elementary acts in an explicitly simulated complex medium opens

perspective in terms of comparison to actual prebiotic relevant systems. Similar simulations

may allow for instance to interpret meteoritic abundances, where thermodynamic equilibrium

can be reached. In this context, it is worth noting glycinotirile (4) has been detected in the

Sgr B2(N) molecular gas cloud.52 The identification of a compound such as amino-amide

(5) as a thermodynamic trap of Strecker synthesis, could be considered another signature

of Strecker Mechanism. Our study allows, for the first time, a global and at the same time

accurate view of the fundamental Strecker reaction, which is widely regarded as a central

tenet in prebiotic chemistry and origins of life studies.

Computational Methods

Born-Oppenheimer Molecular Dynamics (BOMD).

Ab initio molecular dynamics were based on the Density Functional Theory with Perdew-

Burke-Ernzerhof functional and Grimme’s van der Waals corrections,53,54 and Martins-Troullier

pseudopotentials55 for C, N, O and H atoms (with a cutoff of 70 Ry and 10−5 convergence

cutoff for orbitals), with the CPMD software.56 BOMD simulations were performed in the

canonical ensemble (NVT) at a temperature of 300 K , with a time step of 0.48 fs, in a

periodically repeated cubic box of 13.4 Å, including 2 carbon, 2 nitrogen, 6 hydrogen, 1

oxygen atoms, and 81 water molecules. The density of the box is therefore 1.058 kg/L, and

the concentration is 0.7 mol/L for initial formaldehyde, hydrogen cyanide or final glycine.

Enhanced sampling simulations.

Metadynamics and umbrella sampling were performed with the PLUMED free energy plu-

gin.57 The former approach was employed for discovery of pathways, the latter for precise
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free energy profile determination. We used path-based collective variables s and z .26 The

s coordinate represents the progress along a putative pathway defined as a sequence refer-

ence structures. The z coordinate represents the distance from the putative pathway. For

path-based collective variables definition, we used a topological metric based on coordination

patterns, suited for chemical reactions in solution.27–29

Metadynamics simulations were performed with only two reference structures, corre-

sponding to reactant and products. To identify transition states, we extracted a set of

configurations from metadynamics trajectories close to the putative transition state. Start-

ing from such configurations, we launched independent short unbiased BOMD trajectories

and we verified whether they fell into reactants and products (committor analysis). A tran-

sition state is identified when approximately half of the trajectories are committed to both

reactants and products.

To resolve more precisely the transition pathways, we used additional reference structures

(12 in total including reactants and products), extracted from unbiased committor analysis

trajectories, to define path-based collective variables for umbrella sampling. The latter

technique was applied to each elementary reaction by restraining s at different values with

parabolic potentials along reaction pathways. 30 to 60 windows were used for each elementary

reaction.

Free energy profiles were eventually computed with two different codes, by A. Grossfield58

and J. Goings59 based respectively on Weighted Histogram Analysis Method and Multistate

Bennett Acceptance Ratio. Statistical error bars were determined by cutting every umbrella

sampling trajectory in four parts: the two last parts were used to determine free energy

profiles, while the convergence error is estimated as the difference between these two profiles.

Typical statistical errors are of about 1 kcal/mol, smaller than DFT error.

Each metadynamics simulation lasted about 30 ps, committor analysis trajectories 3 ps,

and umbrella sampling trajectories 15 ps or more. The global cost for an elementary act is

therefore dominated by umbrella sampling, corresponding to about 600 ps in the case of 40
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windows. The cumulative time simulated in this work is of about 4 ns.
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