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Initial cell density encodes 
proliferative potential in cancer cell 
populations
Chiara Enrico Bena1,2, Marco Del Giudice2,3, Alice Grob4,9, Thomas Gueudré2, Mattia Miotto5, 
Dimitra Gialama6, Matteo Osella7, Emilia Turco8, Francesca Ceroni6,9, Andrea De Martino2,10 & 
Carla Bosia2,11* 

Individual cells exhibit specific proliferative responses to changes in microenvironmental conditions. 
Whether such potential is constrained by the cell density throughout the growth process is however 
unclear. Here, we identify a theoretical framework that captures how the information encoded in 
the initial density of cancer cell populations impacts their growth profile. By following the growth 
of hundreds of populations of cancer cells, we found that the time they need to adapt to the 
environment decreases as the initial cell density increases. Moreover, the population growth rate 
shows a maximum at intermediate initial densities. With the support of a mathematical model, 
we show that the observed interdependence of adaptation time and growth rate is significantly at 
odds both with standard logistic growth models and with the Monod-like function that governs the 
dependence of the growth rate on nutrient levels. Our results (i) uncover and quantify a previously 
unnoticed heterogeneity in the growth dynamics of cancer cell populations; (ii) unveil how population 
growth may be affected by single-cell adaptation times; (iii) contribute to our understanding of the 
clinically-observed dependence of the primary and metastatic tumor take rates on the initial density 
of implanted cancer cells.

The so-called “lag” phase that precedes the exponential growth of a cell population entails the adaptation of 
cells to the growth medium. Its duration (the “lag time”) is known to be affected by a number of factors, includ-
ing the history of the population prior to inoculation1–3. Initial conditions, including pre-inoculation ones, are 
however thought to be gradually forgotten as cells adapt, so that the growth rate characterizing the subsequent 
exponential (or “log”) regime only encodes the current physiological state of cells and environmental conditions. 
In this respect, the growth rate of a cell population provides the most elementary measure of its fitness. It might 
then be somewhat surprising that both the lag phase and the growth rate can be affected rather significantly by 
the density N0 of the initial population (the inoculum).

Following Rein & Rubin’s pioneering work4, inoculum-density dependent traits have been observed, among 
others, in bacterial5–8, insect9, plant10–12, and cancer cells13–15, most notably impacting metabolism (specifically 
the ability to excrete certain compounds15), carrying capacity15, and the lag time16. For instance, N0-dependent 
lag times have been reported at very low inoculum densities17 or under stress, when only small sub-populations 
can sustain growth18. In turn, the growth rate was found to increase9,12 or decrease11,13 with the initial density 
depending on the organism and the growth medium. Inoculum-density dependence has also been implicated in 
the growth rate’s sample-to-sample variability7,10 and, more recently, in the overall growth kinetics of a popula-
tion of cancer cells19.

While intriguing, N0-dependencies are to be expected, at least from a theoretical viewpoint. For instance, 
under logistic growth, the maximum growth rate of a population of non-interacting cells naturally declines as N0 
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approaches the carrying capacity of the medium1,20. Other types of behaviours, especially positive correlations 
between the growth rate and N0 , may have different origins. For instance, it is known that randomness in cellular 
reproduction events can propagate to macroscopic parameters21–23. If such heterogeneities are putatively averaged 
out in large inocula, they may become relevant when the initial cell density is small and/or when the performance 
of the population is driven by single cells having extreme behaviours. Purely stochastic effects indeed explain 
why identically prepared single cells can generate very different growth trajectories8. Likewise, higher fitness 
could be achieved by populations starting from larger inocula through strengthened cooperation19,24. How these 
features, putatively established during the adaptation phase, are carried into the exponential phase is however 
not always clear.

One of the factors that limit our understanding of inoculum-density dependencies lies in the lack of experi-
mental studies characterizing the growth of a cell population with quantitative accuracy across a broad range of 
initial densities. In this work we provide such a study. In specific, we analyzed the complete growth dynamics 
(from inoculum to saturation) of a large number of populations of two widely used cancer cell lines, namely 
Jurkat and K562, growing in fixed carbon-limited media from initial densities ranging over 5 orders of magni-
tude. We found that the average growth rates of the populations has a striking non-monotonic dependence on 
N0 , with a plateau at small N0 , the theoretically expected logistic decrease at large N0 , and a marked maximum 
at intermediate values. Such a behaviour contrasts markedly with the (monotonic) Monod-like function that 
governs the dependence of the growth rate on nutrient levels25. Growth rate fluctuations, on the other hand, 
get larger as the inoculum density increases. The mean lag time and lag time fluctuations were instead found 
to decrease as the initial cell density increases. For a quantitative insight, we calibrated a simple mathematical 
model with cues from the growth-curve fitting function to derive relationships linking macroscopic growth 
parameters to each other through N0 . Our theory suggests that growth properties are importantly affected by 
heterogeneities in single-cell adaptation times. In addition, we propose that the joint effect of a finite carrying 
capacity and weak cooperative effects during growth can explain the non-trivial behaviour of the maximum 
growth rate. Implications of our results, both for cancer biology and for theoretical approaches, are discussed 
in the final part of this article.

Results
Automated quantitative analysis of Jurkat growth curves.  We performed batch culture experi-
ments on a widely studied cancer cell line (Jurkat) growing in suspension. Experiments proceeded as follows (see 
Fig. 1a). (i) A sample of density N0 cells/ml was taken from a population growing exponentially in a standard 
medium whose glucose concentration was at saturation of the Monod function25. (ii) Cells were then seeded to 
a new dish supplied with a fixed amount of fresh medium of the same quality. (iii) Finally, cells were grown on 
the fresh medium. Following adaptation (“lag phase”), every population entered a regime of exponential growth 
(“log phase”) with a roughly constant rate up to the maximum attainable (the carrying capacity of the medium, 
k), at which point the concentration of cells saturated. We monitored the growth dynamics daily until saturation, 
recording the corresponding growth curve, namely the logarithm of the concentration of viable cells (in units 
of N0 ) versus time (see Fig. 1b). A total of 217 populations (i.e. growth curves) starting from different values of 
N0 was collected. Ultimately, the initial densities we considered span five orders of magnitude, from N0 ≃ 102 
cells/ml to N0 ≃ 7× 106 cells/ml. Values of N0 were chosen (within experimental accuracy) so as to span a 
range as broad as possible in a roughly uniform way. Growth curve parameters, representing respectively the lag 
time tlag , the maximum growth rate �max and the carrying capacity k through the quantity A ≡ ln(k/N0) , where 
then inferred from the growth curves (see Fig. 1a,b and “Materials and methods”, as well as Figure S1 in Supple-
mentary Information for the behaviour of A versus N0 ). The estimated carrying capacity k turned out to have a 
relatively broad distribution over our ensemble of populations (see Fig. 1c), with mean k ≃ 8.4× 106 . The larg-
est inoculum densities we considered lie just below the mean carrying capacity. Fig.  1d–f show that the various 
parameters characterizing growth display weak linear correlations among each other across our experiments.

The mean lag time decreases as the initial population size increases.  When plotting the mean tlag 
(averaged over experiments) versus N0 we observed a clear decreasing linear dependence on lnN0 (see Fig. 2a). 
Such a decrease is accompanied by large sample-to-sample fluctuations across the entire range of values of N0 . To 
quantify this variability, we resorted to the empirical coefficient of variation (CV), namely the ratio between the 
estimated standard deviation and the estimated mean, of the lag time. This quantity appears to be roughly con-
stant across 4 orders of magnitude in N0 (see Fig. 2b), with the final increase reflecting the fact that the mean lag 
time becomes smaller and smaller as N0 approaches the mean carrying capacity. Recalling that the inoculum was 
seeded in the same medium in which cells were pre-grown, the existence of a significant lag time suggests some 
degree of conditioning of the pre-growth medium. Moreover, while considerably more marked, the observed 
trend of the mean tlag qualitatively matches that found for low inocula in16, where it was traced back to stochastic 
effects in the single-cell growth dynamics. We shall explore these points more in depth in the following.

The mean growth rate is maximized at intermediate initial population size.  The maximum 
growth rate �max of a population corresponds to the maximum slope of the growth curve (see Fig. 3a). Our 
experiments returned a broad distribution of values of �max with a well defined mean but significant variability 
(up to about 50%, see Fig. 3b). Surprisingly, the mean �max appears to be modulated by N0 in a complex non-
monotonic manner (Fig.  3c). For small enough N0 (i.e. N0 ≪ k ), �max is roughly constant. This agrees with 
the growth scenario underpinned by the logistic model as well as by the (weakly cooperative) Allee model, in 
which initial densities far from the carrying capacity generate populations growing at the rate corresponding to 
a medium with infinite carrying capacity (the ‘asymptotic growth rate’, see “Materials and methods”). Sample-
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Figure 1.   (a) Sketch of the experimental procedure employed for Jurkat cells. The right-most panel shows 
a representative growth curve (green circles) with the corresponding fit (gray sigmoidal curve). The fitting 
parameters (saturation level A, maximum growth rate �max and lag time tlag ) are displayed. (b) Examples of 
growth curves for different inoculum densities N0 together with the corresponding fitting curves. Error bars 
represent the standard errors of the mean counts. (c) Empirical distribution of the carrying capacity k with its 
mean ( ̄k ≃ 8.4× 106 ) emphasized by the dashed vertical line. (d) Scatter chart showing the estimated lag time 
tlag and carrying capacity k for each experiment with their respective standard errors. The two quantities display 
a weak linear correlation ( r2 = 0.3 , p < 0.05 ). (e) Scatter chart showing the estimated maximum growth rate 
�max and carrying capacity k with their respective standard errors. The two quantities display a weak linear 
correlation ( r2 = −0.3 , p < 0.05 ). (f) Scatter chart showing the estimated maximum growth rate �max and lag 
time tlag with their respective standard errors. The two quantities display a weak linear correlation ( r2 = 0.1 , 
p = 0.14).

Figure 2.   (a) Lag time tlag as a function of the inoculum density N0 . Orange markers represent results from 
individual experiments together with their standard errors. Red markers denote the behaviour of the mean lag 
time. The dashed black line corresponds to the empirical mean carrying capacity. (b) Empirical behaviour of the 
coefficient of variation of the lag time ( CVtlag ) as a function of the initial density N0.
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to-sample variability in this regime is generically small, i.e. different populations grow at similar rates, except 
for the smallest values of N0 ( N0 ≃ 60 cells/ml), whose apparently higher dispersion reflects the fact that these 
initial densities were estimated by subsequent dilutions rather than by direct counting (see “Materials and meth-
ods”). As N0 increased, we observed a significant enhancement of fluctuations, which noticeably only occur 
above the reference level given by the asymptotic growth rate. This leads to an overall upward trend in the mean 
�max : larger initial densities appear to bear a fitness advantage. Finally, as N0 approaches the carrying capacity, 
�max decreases approximately linearly with N0 , in agreement with the logistic and Allee models (see Fig. 3c and 
“Materials and methods”).

To ensure that these results were not due to our choice of characterizing the exponential phase using �max , 
we verified that the same qualitative behaviour occurs when the growth rate is read off the growth curves by a 
linear fit through the exponential phase (see Fig. 3d–f). By construction, such an estimate of the growth rate can-
not exceed �max . Results are otherwise qualitatively identical. Likewise, we verified that the observed behaviour 
of �max is not due to fluctuations in the carrying capacity across experiments. No significant interdependence 
between �max and k was observed (see Fig. 1e).

The growth dynamics of K562 cells recapitulates the scenario obtained for Jurkat cells.  To 
test whether the scenario just discussed is specific of Jurkat cells, we performed the same study on a different 
suspension cancer cell line, namely K562 (see Fig. 4a for a sketch of the experimental procedure and “Materials 
and methods” for details). We obtained 83 growth curves for values of N0 spanning more than three orders of 
magnitude. Growth dynamics was again characterized by fitting growth curves to a sigmoidal function with free 
parameters related to the carrying capacity (k, see Fig.  4b–d), growth rate ( � , Fig. 4e) and lag time ( tlag , Fig. 4f). 
Despite quantitative differences, the qualitative scenario we obtained is in very good agreement with that found 
for Jurkat cells. In particular, (i) � displays a clear maximum as a function of N0 , with increased fluctuations 
around it, and (ii) the lag time shows a rough decreasing trend when N0 is increased. Because of a limited carry-
ing capacity, we were unable to resolve the low-N0 plateau of � that characterized the growth rate profile of Jurkat 

Figure 3.   (a) Representative growth curve. The fitting parameters are tlag , A and �max . The maximum growth 
rate �max corresponds to the slope of the tangent to the inflection point (orange line) of the fitting curve (gray 
curve). The intersection of such a tangent with the time-axis gives the lag time tlag , while its intersection with 
the line ln(N/N0) = A yields the time of exit from the exponential phase, tlog . (b) Empirical distribution of the 
maximum growth rate. (c) Maximum growth rate �max as a function of the inoculum density N0 . Orange dots 
represent parameter estimates from individual experiments with their standard errors, while red dots represent 
the mean values of �max . The dashed vertical line marks the value of the mean carrying capacity. The blue line 
denotes the behaviour of �max vs N0 expected on the basis of a purely logistic model with k = 8.4× 106 and 
asymptotic growth rate r = 0.029 (see “Materials and methods”). (d) Representative fit of a growth curve using 
an alternative measure of the growth rate � , given by the slope of the linear fit of the data points within the 
exponential phase of growth (light blue region). (e) Empirical distribution of the alternative growth rate defined 
in panel (d). (f) Estimated alternative growth rate versus N0 . Light blue dots represent results from individual 
experiments with their standard errors, dark red dots represent their mean values. The dashed vertical line 
marks the value of the mean carrying capacity.
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cells. Unfortunately, the values of N0 at which such a plateau should be found ( N0 � 100 cells/ml) for K562 cells 
are inaccessible with our experimental protocol.

Quantitative relationships between growth parameters.  To get quantitative insight into these 
results, we obtained expressions linking the macroscopic parameters of growth curves (most notably tlag and 
�max ) through the inoculum density N0 by constraining a minimal mathematical model of an exponentially 
growing population with cues from the growth-curve fitting function. Our model assumes that cells in the 
inoculum are divided in two subpopulations: fast adapters, who begin to expand right after inoculation, and slow 
adapters that remain quiescent after inoculation for times longer than the lag time of the culture (see “Materials 
and methods”). Under this simplifying scenario, we found that �max and tlag are approximately related by

where α ≡ (1+ e2)−1 ≃ 0.12 and p denotes the fraction of fast adapters. Likewise, we found the “log time” tlog 
at which the population exits the exponential phase to be related to �max by

(1)�maxtlag ≃ ln

[(
k

N0

)α

− 1+ p

]

− ln p ,

(2)�maxtlog ≃ ln

[(
k

N0

)α

− 1+ p

]

+ ln
k

pN0
,

Figure 4.   (a) Sketch of the experimental procedure employed for K562 cells. The panel on the right shows 
a representative growth curve (green circles) with the corresponding fit (gray sigmoidal curve). The fitted 
parameters (growth saturation A, growth rate � and lag time tlag ) are emphasized explicitly. (b) Three 
representative growth curves with different inoculum sizes N0 with their corresponding fits. Data error bars 
are given by 

√
N  , where N is the concentration of cells. Their size is smaller than the dots, thus they are not 

visible. (c) The growth saturation A, related to the carrying capacity k through the relation A ≡ ln(k/N0) , is 
plotted against the inoculum size N0 . The mean value of the carrying capacity k is shown by the vertical dashed 
line. (d) Empirical distribution of the carrying capacity k. The dashed vertical line represents the mean of the 
distribution. (e) Growth rate � as a function of the inoculum size N0 . Each light blue dot is an estimated � with 
its standard error. The dashed black line corresponds to the mean carrying capacity. (f) Adaptation time tlag as a 
function of the inoculum size N0 . Light blue dots represent the estimated lag times together with their standard 
errors. The dashed black line corresponds to the mean carrying capacity.
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In spite of the crudeness of our model, these expressions capture empirical results remarkably well with the single 
adjustable parameter p taking the value p ≃ 0.4 (Fig. 2.5a,b). In addition, they allow to estimate the behaviour 
of the mean lag time and maximal growth rate (Fig. 2.5c,d), along with the respective coefficients of variation, 
as functions of N0 (see Fig. 2.5e, “Materials and methods” and Supplementary Information, Figures S9 and S10). 
This suggests that heterogeneities in single-cell adaptation times are crucial to explain the interrelations between 
macroscopic growth parameters uncovered by our experiments, a scenario close to that considered in16. How-
ever, the parameter p by itself does not appear to fully capture their empirical variability. More refined models 
e.g. with additional sources of variability and structured (as opposed to bipartite) initial populations are likely 
to perform even better, albeit at the cost of introducing more adjustable parameters. To conclude we note that, 
upon conditioning on N0 , our data suggest a peculiar relationship between the mean lag time and the standard 
deviation of the maximal growth rate estimated across different populations (see Fig. 2.5f): the latter tend to 
increase as the former gets smaller. In other words, there exists a trade-off between the typical relaxation times 
and the magnitude of growth rate fluctuations in an ensemble of cell populations growing in homogeneous media. 
Contrary to similar trade-offs that have been discussed in the context of individual populations26–29 (i.e. in terms 
of the variability of growth rates across cells within a given population), trade-offs arising in ensembles of popula-
tions represent purely statistical (‘emergent’) laws whose origin is unclear. Most likely, such laws result from the 
coupling between the natural variability that characterizes individual cell populations and exogenous stochastic 
factors (e.g. environmental fluctuations). In this respect, recently discussed stochastic models of population 
growth that generate robust scaling relationships may yield useful hints30–32. Our simplified theory is however 
capable of reproducing the trade-off observed in our data (Fig. 2.5f).

Possible role of mechanical interactions and intercellular signaling.  The positive feedback 
between �max and N0 suggests that cooperative effects, e.g. due to mechanical or biochemical interactions, play 
a role in shaping the growth rate profile. Notably, Jurkat cells tend to cluster during growth, implying a potential 
role of mechanical sensing in modulating the fitness. We hence reasoned that, if cooperation is indeed due to 
mechanical interactions, two populations inoculated at the same density would grow at different rates if cluster 
formation was inhibited in one population but not in the other. To test this hypothesis, we performed experi-
ments in which clusters were dissolved by stirring at different frequencies (one or three times per day and every 
two or 5 days), see Supplementary Information. The growth rates measured in these conditions were however 
indistinguishable within the error (see Supplementary Information, Figure S4). This suggests that mechanical 
interactions do not significantly affect the growth kinetics of Jurkat cells, leaving intercellular signaling e.g. via 
growth factors as the main suspect. A possible mechanism was suggested in33, where the proliferation rate of 
pancreatic cancer cells was shown to be a Hill function of the concentration of insulin-like growth factor II 
(IGF-II), a hormone excreted by cells during proliferation. Assuming the concentration of growth factors to be 

Figure 5.   (a, b) Behaviour of �maxtlag (a) and �maxtlog (b) versus N0 from experiments (orange markers), 
empirical means (red markers) and theoretical predictions based on Eqs. (1) and (2). Gray shaded areas 
represent the 95% confidence intervals. (c–e) Empirical behaviour of tlag (c), λmax (d) and of its relative standard 
deviation CVtlag (e) versus N0 in individual experiments (orange markers), together with the empirical means 
(red markers) and the theoretical predictions based on Eq. (1) with the single adjustable parameter p (blue line 
in (c) and blue markers in (d) and (e)). See Materials and Methods for details. (f) Empirical relationship between 
the mean lag time tlag and the standard deviation of the maximal growth rate, σλmax (red markers). Blue markers 
represent the theoretical prediction based on Eq. (1) (see Materials and Methods for details).
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proportional to the density of cells at the time at which growth is fastest, which in turn is proportional to N0 , one 
may expect the maximum growth rate to approximately satisfy the relationship

The factor in square brackets represents the Hill-like cooperative term, with β an exponent characterizing the 
dependence on the initial density, r0 the growth rate in absence of cooperation (i.e. for N0 much smaller than the 
threshold density Nc ) and δr the maximum extra fitness achievable by cooperation. The term in round brackets 
is instead the growth-curbing logistic term induced by a finite carrying capacity. Unsurprisingly in view of the 
many parameters, such an expression provides a very good fit to empirical data (see Supplementary Informa-
tion, Figure S8). More importantly it suggests that, upon increasing k, the average �max vs N0 will plateau (as 
opposed to continuing to increase) before starting to decrease close to the carrying capacity. Such a scenario 
can be tested experimentally.

Discussion
Despite the variability uncovered in recent years in the behaviour of single cells within a population34,35, it is not 
unreasonable to expect that different populations of the same cells grown in identical media will display similar 
growth characteristics (e.g. lag times and growth rates) due essentially to the fact that different single-cell fea-
tures will be averaged out in large enough populations. This however is not necessarily the case3. In particular, 
the density of the initial inoculum N0 is known to affect sample-to-sample variability in population growth in 
unexpected ways7. To get a large-scale picture of this phenomenon, we have studied how growth rates and lag 
times of two widely used cancer cell lines grown in a prescribed medium are modulated by N0 . Our results detail 
a previously unobserved scenario. By varying N0 over five orders of magnitude, we found that both the mean lag 
time and lag time fluctuations tend to decrease monotonically with N0 . On the other hand, the maximum growth 
rate �max displays a peak at intermediate values of N0 , with the largest fluctuations occurring around the peak. 
While the impact of environmental, genetic or epigenetic factors is not surprising, the complex dependence on 
N0 that we observe in macroscopic parameters was not expected, both based on logistic growth models and on 
the Monod-like dependence of the growth rate on other exogenously-controlled parameters25.

Given that the growth medium is identical to the one in which cells were pre-grown, the very presence of 
a lag time points to a conditioning of the pre-growth medium. Both Jurkat and K562 cells are known to pro-
duce factors that play pivotal roles for in vitro proliferation, like interleukin-2 and prolactin (Jurkat)36 and the 
erythroid-potentiating activity (EPA) glycoprotein (K562)37. The observed mean lag time is however consistent 
with a scenario in which seeds in the inoculum adapt independently to the growth medium during the lag phase, 
albeit with strongly heterogeneous characteristic times. In a limiting case with two sub-populations (fast vs slow 
adapters), we found that results are reproduced when fast adapters begin to expand shortly after inoculation 
(see “Materials and methods”).

Understanding the origin of the non-monotonic N0-dependence of �max is a more subtle issue, especially 
in view of the expectation that smaller initial densities should lead to larger variability and of the fact that the 
observed behaviour is not consistent with purely logistic or Allee-like models. We propose that two factors con-
tribute. On one hand, weakly cooperative interactions mediated by excretion of growth factors during growth 
lead to the positive feedback between �max and N0 that is seen at smaller inoculum densities. On the other hand, 
the finite carrying capacity limits growth starting from higher densities. Based on this, we predict that, if the 
carrying capacity is augmented, the maximum growth rate versus N0 will achieve a plateau before decreasing 
(see Supplementary Figure S8).

Our results can also shed light on a known feature of cancer growth, namely the dependence of the primary 
and metastatic tumor take rates on the density of cells orthotopically implanted in animal models. In breast 
cancer13, both rates (the latter more markedly so) were found to be higher when the number of implanted cells 
was smaller, implying more reproducible outcomes for smaller values of N0 . Likewise, tumor onset times and 
doubling times turned out to be negatively correlated with N0 , so that smaller inocula implied longer latency 
periods and slower growth rates. Such a scenario is fully consistent with our results, which strongly suggests that 
the picture we uncover might hold well beyond the experimental conditions we employed. In this sense, the pat-
tern of variability of the growth rate versus N0 reflects an implicit tradeoff behind the expansion of a population 
of cancer cells. The longer latency times and slower growth rates deriving from smaller inocula allow for the 
establishment of more sustained cooperative effects and microenvironmental modifications, possibly driven by 
the excretion of cytokines and other signaling molecules. This ultimately leads to more efficient take rates. For 
larger inocula, instead, populations quickly run into limitations in nutrient supply that negatively affect their 
expansion potential.

For this reason, it would be particularly important to enrich the set of experimental observations by analyzing 
these issues in different cell types. Moreover, the identification of the population-level mechanisms underlying 
this scenario is an open challenge. If the qualitative patterns uncovered in the present work are generic (i.e. not 
specific to the cell types we investigated), the same mechanisms are likely to be active in different contexts. In 
this light, a more thorough (and possibly parameter-rich) modeling approach could go beyond our minimal 
framework in shedding light on these findings. Developing stochastic models that overcome the conceptual 
framework of logistic models and account for growth-factor mediated cooperation and finite nutrient availability 
appears as the most pressing next step along this path.

(3)
�max ≃

[

r0 + (δr)
N

β
0

N
β
0 + N

β
c

]
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×

(

1−
N0

k

)
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Materials and methods
Cell cultures.  Jurkat cells (clone E6-1, ATCC) were cultured in complete growth medium (RPMI-1640 
Medium (Gibco) supplemented with 10% fetal bovine serum) with 1% penicillin/streptomycin in standard 
growth conditions, i.e. at 37◦ C and in 5% CO2 , following ATCC suggestion ( https​://www.lgcst​andar​ds-atcc.org/
produ​cts/all/TIB-152.aspx?geo_count​ry=fr#cultu​remet​hod ). Cells growing exponentially were then seeded at 
different concentrations in 6-well plates (Falcon) in a fixed 5 ml volume of the same medium and counted every 
24 h until saturation was reached. To assay growth, cells were pipetted gently and 30µ l of cells and medium 
were mixed with 30µ l of methylene blue (1% in PBS). Blue cells corresponded to dead cells while bright round-
shaped cells corresponded to live ones. The mixture was then transferred in three single-use Burker’s chambers. 
For each chamber, five phase contrast photos were taken (10 to 15 different photos for each experiment at any 
given time) with an Axiovert Zeiss inverted microscope (objective 10× ). The pictured surfaces corresponded 
to a volume of 10−4 ml. The photos were then analyzed via a MATLAB-based image analysis code that imple-
ments a built-in function to count live cells (details below). For very low initial seedings (i.e. N0 ≃ 60 cells/ml), 
N0 was estimated through subsequent dilutions. K562 cells (ATCC) were cultured complete growth medium 
(RPMI-1640 medium (Gibco) supplemented with 10% fetal bovine serum) in standard growth conditions, i.e. 
at 37◦ C and in 5% CO2 , following ATCC suggestion (https​://www.lgcst​andar​ds-atcc.org/produ​cts/all/CCL-243.
aspx?geo_count​ry=gb#cultu​remet​hod). Cells growing exponentially were then seeded at different concentra-
tions in 75 ml flasks supplied with 10 ml of the same fresh medium and counted every 24 h until saturation level 
was reached. To assay growth, live cells were monitored through NucleoCounter, a cell counter that integrates 
imaging and cytometry to count live cells after proper cell staining.

Cell counting algorithm.  The cell counting algorithm we developed takes one micrograph (phase contrast 
photo) at a time as input. Following a first reduction of the noise, the micrograph is converted into a binary 
image through thresholding: after the definition of a threshold, value 1 or white (resp. 0 or black) is assigned 
to all pixels with intensities higher (resp. lower) than the threshold. In our case, the threshold was empirically 
chosen by analysing the intensity of both background and objects of interest, i.e. live cells. After standard image 
manipulation to optimize object detection and a watershed transform method38 to discriminate single cells 
within clusters, each object formed by at least 10 pixels organized in a roughly round shape is labeled as a cell. 
The algorithm recognized circular objects by computing their circularity c, defined as c = P2/(4πS) , where P is 
the perimeter and S the surface area of a given object. For our analysis, we accepted all cases with 0.51 ≤ c ≤ 1.6 . 
Our counting method is unbiased with respect to the cell density (see Supplementary Information). Once the 
total number of cells per image is obtained, the average over 10 to 15 repeated measurements per sample is 
computed and converted into a concentration value. This value represents the time-point of growth curves (see 
for example Fig. 1b).

Growth curve fitting procedure and parameter estimates.  The behaviour of the logarithm of the 
number N of live cells per ml (normalized by the initial density N0 ) versus time defines the growth curve of 
the population. To quantitatively determine the different phases of growth, we applied two different methods 
depending on the value of the initial density N0 . For N0 smaller than 106 cells/ml (i.e. for initial densities suf-
ficiently smaller than the carrying capacity), we fit growth curves to the sigmoidal function39

with fitting parameters A, tlag and �max . Such parameters represent respectively ln(k/N0) , lag time and maximum 
growth rate (see Fig. 1a). In practice, �max is the slope of the tangent at the inflection point of the growth curve, 
while tlag corresponds to the intercept of this tangent with the time axis. Data were fitted by non-linear least 
squares and the error bars shown in the figures correspond to standard errors. Results obtained by using other 
sigmoidal functions were found to be qualitatively identical. As a representative instance, the scenario obtained 
by fitting a Gompertz function to data is shown in Supplementary Information, Figure S2. For the 32 populations 
with N0 larger than 106 cells/ml (i.e. for initial densities approaching the carrying capacity), lag times become 
much smaller than the sampling period (24 h) and fits using sigmoidal functions lose quality. We thus estimated 
the maximal growth rate �max as the maximal empirical time derivative between subsequent points along the 
growth curves ( (ln(N/N0)(t + 1)− ln(N/N0)(t))/dt ). For the carrying capacity k, we computed the arithmetic 
mean between the highest population density achieved by the growth curves and its previous and subsequent 
values. Finally, we set the lag times tlag to 0. Errors for �max and k were estimated by error propagation, while 
the error on tlag was manually set to the sampling period. Mean values for the parameter estimates in all figures 
were evaluated within equally spaced bins over the logarithm of the initial density N0 , and were weighted with 
the inverse estimated variances of the individual parameter estimates within the bins.

N0‑dependent maximum growth rate for logistic and Allee models.  We want to find the behav-
iour of the maximum growth rate versus N0 for population growth models of the general type

where r is the intrinsic maximal population growth rate and b ≥ 0 is a numerical exponent (returning the logistic 
model for b = 0 and the weakly cooperative Allee model for b > 0 ). To this aim, it suffices to compute the value of 

(4)ln
N

N0
=

A

1+ exp
[
4�max
A (tlag − t)+ 2

] ,
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(
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N at which the right-hand-side of the above expression vanishes. Noting that ddt ln(N/N0) =
1
N

dN
dt  , this value ( N⋆ ) 

corresponds to the population density at the inflection point of the growth curve, namely N⋆ = kb/(1+ b) . For 
initial conditions N0 < N⋆ , the inflection point occurs at some t > 0 and �max is simply obtained by evaluating 
the N-dependent growth rate (right-hand-side of (5)) at N = N⋆ . If N0 is larger than N⋆ , however, the inflection 
point occurs at a negative time, implying that the growth rate is maximum at t = 0 . In summary,

for general b > 0 , while �max = r(1− N0/k) for the purely logistic model ( b = 0 ). The latter formula corresponds 
to the blue curve shown in Fig. 3c. From a qualitative viewpoint the two models are however very similar since, 
in both cases, �max is largest at small N0 and decreases (monotonically for b = 0 , following a plateau for b > 0 ) 
as N0 increases.

Quantitative relationships between tlag , tlog and �max.  We first note that, according to (4), the size of 
the population at time t = tlag is N(tlag) = kαN1−α

0  , where α = (1+ e2)−1 ≃ 0.12 . Now consider a population 
of N0 cells (seeds) inoculated in a given volume of the growth medium at time t = 0 and assume that each cell i 
undergoes an adaptation phase of duration τi before proliferating. Assuming for simplicity that each seed prolif-
erates independently at rate µ following adaptation, the overall number of cells in the population at time t reads

where θ(x) is the Heaviside step function ( θ(x) = 1 for x > 0 , = 0 for x < 0 , = 1/2 for x = 0 ). We can estimate 
this quantity at time tlag for N0 ≫ 1 under the assumption that a fraction p of cells has adaptation times shorter 
than tlag (‘fast adapters’). This implies

Note that Flag depends in principle on both µ and N0 . Imposing consistency with the fitting function, i.e. that 
the above quantity equals (k/N0)

α , one finds that µ and tlag are linked by

When τi ≃ τ < tlag for all fast adapters, − lnFlag ≃ µτ − ln p . We can further simplify the picture by assum-
ing that fast adapters expand right from inoculation, i.e. τ = 0 . Upon identifying µ with �max this immediately 
yields Eq. (1). Working along the same lines one also finds that the growth rate µ and the time tlog (exit from the 
exponential growth phase) are linked by

which corresponds to Eq. (2). These results can then be used to derive estimates for the empirical coefficient of 
variation of individual macroscopic quantities, specifically by straightforward differentiation (if x, y > 0 and 
y = f (x) , then δy = f ′(x)δx , so CVy ≡

δy
y = x

y |f
′(x)|CVx ). For �max and tlag in particular one gets

To find an optimal value for p, we fitted the experimental data for the lag time in Fig. 2.5c (orange markers) to 
Eq. (1) assuming constant µ = �max = 0.029 (thereby leaving a single adjustable parameter). The best fit (accord-
ing to minimum weighted least squares method) was obtained for p = 0.38 . This value of p was then used to 
obtain the theoretical lines shown in Fig. 2.5a,b. (For simplicity, in all cases we set k to the value k = 8.4× 106 , 
corresponding to the empirical average carrying capacity.) For the coefficients of variation, we used p and CVtlog 
(or CV�max ) as fitting parameters (see Figs. 2.5e and S9; the agreement improves if CVk is also used as a fitting 
parameter, see Fig. S10). Notice that the value of p providing the optimal agreement with experiments is consist-
ent with the empirical behaviour of − lnFlag derived from Eq. (9). Specifically, the fact that the mean value of 
− lnFlag is roughly 1 (Supplementary Figure S11) indeed implies p ≃ 1/e ≃ 0.3678 (to be compared with our 
best estimate of 0.38).
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