
HAL Id: hal-03175237
https://hal.sorbonne-universite.fr/hal-03175237

Submitted on 19 Mar 2021

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Distributed On-line Learning in Swarm Robotics with
Limited Communication Bandwidth

Nicolas Fontbonne, Olivier Dauchot, Nicolas Bredeche

To cite this version:
Nicolas Fontbonne, Olivier Dauchot, Nicolas Bredeche. Distributed On-line Learning in Swarm
Robotics with Limited Communication Bandwidth. IEEE Congress on Evolutionary Computation,
2020, Glasgow (virtual), United Kingdom. �10.1109/CEC48606.2020.9185697�. �hal-03175237�

https://hal.sorbonne-universite.fr/hal-03175237
https://hal.archives-ouvertes.fr

Distributed On-line Learning in Swarm Robotics
with Limited Communication Bandwidth

Nicolas Fontbonne
Sorbonne Université, CNRS

Institut des Systèmes Intelligents et de Robotique
Paris, France

nicolas.fontbonne@sorbonne-universite.fr

Olivier Dauchot
ESPCI, CNRS
Gulliver Lab
Paris, France

olivier.dauchot@espci.fr

Nicolas Bredeche
Sorbonne Université, CNRS

Institut des Systèmes Intelligents et de Robotique
Paris, France

nicolas.bredeche@sorbonne-universite.fr

Abstract—This paper presents a new algorithm for distributed
on-line evolutionary learning in swarm robotics. The challenge we
address is to cope with the limited computation and communica-
tion capabilities of low cost robots, which are often used in swarm
robotics. In order to do so, the algorithm decouples computation
and communication and ensures learning of efficient control
policies even when only a limited amount of information can be
exchanged between neighbouring robots. We show experimentally
that this algorithm is both remarkably robust with respect to its
meta-parameter values, and able to adapt automatically to the
available communication bandwidth.

Index Terms—online distributed learning, swarm robotics,
black-box objective function, embodied evolution, social learning,
evolutionary robotics

I. INTRODUCTION

Swarm robotics is a sub-domain of collective robotics.
This field is characterised by the use of a generally large
number of robots with limited communication and compu-
tation capabilities, and an objective defined at the level of
the whole swarm (e.g. exploring the environment, searching
for resources, collectively transporting heavy objects). The
challenge is to design the rules of microscopic interactions
between the robots in order to achieve a relevant swarm
organisation at the macroscopic level [1]–[3], [9].

There are several bio-inspired methods to address this
problem of distributed programming, which can be grouped
into two main classes: manual programming and automatic
design methods. In the first case, the aim is to explicitly
reproduce at a more or less abstract level behaviours observed
in nature, but whose macroscopic result is sometimes difficult
to foresee in advance.

In the second case, the use of evolutionary optimisation
algorithms makes it possible to automate the design of individ-
ual behaviours according to a global objective function [19].
Indeed, since the structure of the environment is not known
in advance, writing the objective function makes it possible
to specify the general objective of the task (e.g. maximizing
the number of objects picked up for a foraging task), without
giving any precision on the structure of the strategy to be
deployed. This is a well-known problem framework in evo-
lutionary robotics: the structures of the research space and
the fitness landscape have a tenuous relationship, for which
stochastic optimisation methods are a good fit.

However, an important assumption that underlies manual
or automatic design methods is that behavioural rules are
obtained in the laboratory, and then deployed in a real-world
situation as is without any further tuning. In other words,
the environment and the nature of the task are considered
stationary between the conditions known at the time of design
and the conditions actually encountered afterwards.

In this paper, we are interested in a different class of
problem. We consider that the environment in which the robots
will be deployed is not known in advance. Provided a general
objective, that can be written down as an objective function
defined at the level of the individual (e.g. given a foraging task,
each robot should try to get the largest number of items), we
implement a distributed on-line learning algorithm to allow the
swarm of robots to progressively acquire the necessary skills
to perform the target task. The behaviours learned depend on
the nature of the task, but also on the particularities of the
environment. For example, picking up objects in a foraging
task requires different strategies depending on whether the
objects are grouped together in a specific area or distributed
in the environment.

The class of evolutionary algorithms that addresses this
problem is known as either embodied evolution or social learn-
ing. Whether biological or cultural evolution is considered,
both methods can be seen as instances of designing algorithms
inspired by evolutionary dynamics for swarm robotics. These
methods stand as on-line distributed learning that takes into ac-
count interactions between hardware limited robots distributed
over a possibly large space with local communication. On the
one hand, these evolutionary dynamics methods are similar
to the classical evolutionary robotics approach as the goal is
to optimised a black-box objective function whose analytical
form is not known. On the other hand, they differ in that
the problem of the transition to reality is simply non-existent
in evolutionary dynamics methods: the actual learning starts
at the time of operational deployment of the robots, and not
before it. In other words, the goal is to design robust on-line
learning algorithms as much as robust solutions.

To date, several evolutionary dynamics algorithms have
been validated on real robots, addressing various scientific and
practical issues. However, the number of robots is often in the
order of ten(s) due to the hardware and CPU requirements

of such robots to implement learning algorithms (e.g. 20 e-
Puck robots in [6], 6 Thymio-2 robot with a Raspberry board
in [13]). This is in stark contrast with other works in swarm
robotics that do not implement learning capabilities, where the
number robots is often counted by the hundreds [14], [20] and
even up to slightly more than one thousand robots [15]. The
challenge remains open as to implementing online distributed
learning on such a large swam of robots.

In this paper, we propose a new distributed on-line learning
algorithm inspired by evolutionary dynamics. The originality
of this algorithm is to minimise the requirements in terms
of memory and communication cost, in order to be deployed
on a swarm of very low cost robots with limited comput-
ing and communication capabilities (e.g. a Kilobot robot).
The proposed algorithm is based on the horizontal gene
transfer mechanism observed in bacteria: when two robots
interact, a part of the control parameters is transferred to
the robot’s memory and communication system. Thus, the
amount of information transferred can take into account time
and bandwidth limitations, regardless of the number of control
parameters governing decision making.

Though similar ideas have been explored in evolutionary
computation [11], it has never been employed in the con-
text of distributed on-line learning, where the possibility of
modulating the amount of information transmitted between
robots makes it possible to take into account hardware and
environmental constraints. Obviously, the price to pay for such
an algorithm is a reduced convergence speed. But it also makes
it possible to adjust the amount of information exchanged to
account from practical limitations at hand. Indeed, the quality
of the communication bandwidth depends both on technical
characteristics and environmental contingencies (number of
packet collisions that increase with the number of robots,
disturbances due to materials used in the environment, etc.).

The rest of the paper is organised as follow : Section 2
presents the algorithm and evolutionary operators. Section 3
describes the experimental setup. Section 4 presents results
on a classic foraging task, first by comparing the proposed
algorithm with a state-of-the-art counterpart, and second,
by performing a sensitivity analysis of the various hyper-
parameters of the Algorithm. We then present an extension
of the Algorithm to automatically adapt to the available
communication bandwidth.

II. ALGORITHM

Both embodied evolution [4], [21] and social learning
[12] implement an evolutionary algorithm scheme, adapted to
perform distributed on-line learning as illustrated in Figure 1.
Each robot optimises a policy to maximise a score, G, that is
locally defined in each robot.

Robots follow a sense-act loop commonly used in robotics
for reactive agents. Each robot i runs a deterministic policy
πθi

. At initialisation, a robot is initialised with a random
control parameter set θi, referred to as active parameters.
These parameters are then used by the policy to determine the
actions to be taken by the agent in reaction to its observations.

evaluation selection

variation

replacement

active
parameters

listen

broadcast

matingnot close
enough

Fig. 1. Principle of embodied evolution algorithms. The robotic agent sends
and receives parameters of a policy function, and uses a evolutionary algorithm
to improve it own active parameters.

The typical algorithm goes as follow : as a robot moves
through its environment, the quality of its behaviour is as-
sessed using a score function which depends on the user-
defined task to be achieved (e.g. number of items gathered
for a foraging task, which is also sometimes referred to as
fitness value, reward, performance or utility). When two robots
are within communication range, they exchange their active
parameters and the (current) assessment of their policies. This
operation is called mating. The choice of accepting a partner
may be purely based on the environmental contingencies but
other consideration may play a role such as performance or
similarity. Mating does not automatically imply a change in the
active parameters of one agent, but incoming data is generally
stored for later use in a reservoir.

The renewal of a robot’s active parameters typically occurs
after some predefined amount of time. At this point, the robot
will use information stored in the reservoir to update its current
active parameter set, which imply constructing a new candidate
set of parameters from the reservoir using typical selection and
variation evolutionary operators [5], [8], [10], [12], [17].

A. Horizontal Information Transfer

All embodied evolutionary algorithm to date assume that the
whole set of active parameters (and current score) can be sent
as a single communication packet. This is generally true where
the bandwidth is virtually infinite (as in simulation) or where
it is order of magnitude larger than the size of messages to
be sent (as with Linux-running robots using WIFI exchanging
a few hundreds neural network weights) [4]. Using hardware-
limited robots such as Kilobots [18] then raise the question
of limiting the number of control parameters to stay within
the limits of the communication bandwidth, which can be due
to either technical limitations or environmental contingencies.
For example, Kilobots not only use slow IR communication (a
few octets per seconds), but also are limited when the number
of Kilobots closeby increases due packet collisions.

In order to decouple communication and computation con-
straints, we introduce the HIT algorithm. HIT stands for Hor-
izontal Information Transfer, and can be seen as an instance
of either embodied evolution or social learning algorithms. It
uses evolutionary operators in a distributed on-line fashion,

and manage communication between robots by exchanging
a part, rather than all, of the robot’s control parameters. By
exchanging only partial information, we expect two benefits:

• the possible recombination of behavioural skills (i.e.
efficient subsets of the policy parameters) obtained by
separate robots, which would not be possible in a winner-
take-all approach. This will be shown is Section IV-B;

• the decoupling of the number of control parameters that
can be used for control and sent to other robots. In other
words, it makes it possible to exploit the computation and
memory capabilities of the robot, without being limited
by its communication capability. This will be shown is
Section IV-C.

In addition, HIT differs from other similar algorithms as it
does not require a reservoir to store incoming information.
Upon receiving control parameters and current score from
a nearby robot, a robot will immediately integrate the new
parameter values (i.e. overwriting the current corresponding
values) if its interlocutor’s score is better.

robot #1

robot #2

robot #N

...

t

T

T

T

T T

Fig. 2. Communication or mating between the agents. Each robot has a
maturation period of time T where communication with neighbours is turned
off. A new maturation period is initiated after each modification of the active
parameters. During this period, the robot only evaluate it policy

Algorithm 1 describes HIT as implemented in each robot.
It includes both evolutionary learning and decision-making. It
can be decomposed in two cycles:

• lines 4-7, sense-act cycle: The agent retrieves information
from the environment via its sensors using the sense()
function. It retrieves an observation vector o and a reward
scalar r. The reward is stored in a queue, here G[.], of
size T for later use. As for the observation vector, it
is used by the deterministic policy πθ to compute the
action vector a. Finally, the act() function is responsible
for transmitting the commands to the actuators.

• lines 9-15, evolutionary cycle: After an evaluation period
of fixed size T , the agent can enter the evolutionary cycle.
It broadcasts a random subset of its control parameter set
to its neighbours with an evaluation of its quality (i.e.
the score). The subset size is controlled by the transfer
rate α. When it receives a new message (indicated by
the new message variable), if the received parameters
have a better score, then it replaces its own control
parameters by the sender’s selected parameters (function
TRANSFER). Then it applies a Gaussian mutation of
variance σ on all its parameter set (function MUTATION).

In the following, we provide more details on the selection
and variation operators.

Algorithm 1: The HIT algorithm (Horizontal Informa-
tion Transfer)

Data:
α : transfer rate ∈ [0, 1],
T : evaluation time,
π : Policy function,
θ : Random uniform initialisation of policy
parameters, dim(θ) = m,
R[T] : Empty reward buffer of size T ,
r : Null reward scalar,
a : Null action vector,
o : Null observation vector

1 begin
2 t = 0
3 while True do
4 o, r = sense()
5 R[t mod T] = r
6 a = π(o|θ)
7 act(a)
8 if t > T then
9 G =

∑T−1
k=0 R[k]

10 Create the Idx array by drawing randomly
αm integers in range [0,m− 1] without
replacement

11 broadcast(θ[Idx], Idx, G)
12 if new message then
13 θ = TRANSFER(θ, G,

Idxmessage,θmessage, Gmessage)
14 θ = MUTATION(θ)
15 t = 0
16 end
17 end
18 t = t+ 1
19 end
20 end

B. Evaluation and Selection

The assessment of individuals depends mainly on the quality
of the policy but can be very noisy due to non-stationary
stochastic variabilities in the environment and behaviour of
other agents. Depending on the definition of the score function
and the distribution of the rewards in the environment, some
individuals may find themselves naturally favoured by chance
and thus spread misguided policies.

HIT uses a sliding time window of size T to assess the
robot’s performance. The window size depends on the task
and the environment at hand, and must be set so that sufficient
information is gathered to provide a relevant estimate of the
quality of current policy. In order to compare policies in a fair
manner, robots can only exchange information after the sliding
window has been completely filled. We call this maturation
period, which duration corresponds to the time required for a
full self-evaluation, i.e. the evaluation time T .

Figure 2 illustrates the dynamics of the algorithm. Whenever

two robots meet, the worst-scoring robot replace part of its
control parameter with those of the best-scoring robot. Then,
the updated robot resets its score and enters a maturation
period during which communication is disabled.

At each step, the agent receives a reward Rt . We call score
Gt, the cumulated reward obtained by the agent during T steps
(sliding window). The evaluation time T , the score Gt and
reward Rt at step t are linked by the relation:

Gt =

T−1∑

k=0

Rt−k (1)

While a longer evaluation time should allow for more
accurate assessment of a given policy’s quality, there is of
course a cost in terms of convergence speed.

C. Transfer operator

HIT introduces a transfer operator with rate α ∈ [0, 1]
that defines the amount of information that will be transferred
during communication between two robots. As an example,
a transfer rate of α = 0.5 means that half of the control
parameters will be randomly selected to be sent. From one
interaction to another, a different subset of parameters can be
selected for sending, and two interacting robots will send the
same quantity of possibly different parameters.

There can be different methods to randomly pick the param-
eters to be sent. A basic method, which we use afterwards,
is to send n parameters stored in 32-bit float, along withan
additional n bytes to send the indexes of these parameters.
However, several strategies can be used to compress or limit
the quantity of information without compromising overall op-
timisation. It can also possible to send a segment of parameters
whose offset changes randomly in-between each new message.

Algorithm 2 details the transfer mechanism during the
mating operation. Unlike other embodied evolution algorithms,
HIT does not store incoming information in a reservoir.
Whenever the score of the sender is greater or equals to the
score of the receiver, the received parameter are directly used
to overwrite the corresponding local parameter.

Algorithm 2: Transfer function
Data:
θ: active parameters,
G: current evaluation,
Idxmessage: received parameter indexes,
θmessage: received parameters,
Gmessage: received evaluation

1 begin
2 if Gmessage > G then
3 for i ∈ Idxmessage do
4 θ[i] = θmessage[i]
5 end
6 end
7 end

D. Mutation operator

HIT implements a classic Gaussian mutation operator. It
applies a perturbation centred on the current parameter value,
with a variance σ. It is defined as follow, for the m parameters:

θ[i]← N (θ[i], σ) ∀i ∈ [1,m]

Mutation allows to introduce and maintain some level of
diversity during the exploration of the parameters space. While
it may not be useful in the first steps of evolution, it eventually
maintain some level of diversity for exploring the parameters
space as using the transfer operator can only leverage what is
already present in the initial population.

III. EXPERIMENTAL SETUP

A. Task and Environment

In order to study the dynamics of HIT, we devise a for-
aging task, similar to tasks solved by many species of insect
collectives. It is also a good abstraction of a search and retrieve
robotic task, where an unknown environment must be explored
to retrieve specific objects or resources.

The goal here is for each robot to collect as many items as
possible. Both robots and items are initially randomly placed
in the arena. Whenever a robot picks up an object at iteration
t, it gets a reward of rt = 1, and a new item appears at a
random location in the arena to maintain a constant number
of resources.

B. Simulation environment

We used the Roborobo3 simulator [7], which is a pseudo-
realistic, light and fast multi-agent simulation environment de-
veloped in C++. It provides a pseudo-realistic physics robotic
model similar to the seminal Khepera2 and e-Puck 2-wheeled
mobile robots while still ensuring fast enough simulation to
allow for extensive experimental work involving hundreds of
robots.

Robots, objects and the environment are physically repre-
sented by bitmap images, which allows roborobo3 to manage
collisions at the pixel level, though location, perception and
displacement are handled in the continuous domain.

Robots have a size of 5px × 5px . They move in an
environment of 1400px × 800px that is uniformly filled with
objects.

C. Robot Model

Robots are subject to a kinematic model. It is, therefore, a
question of controlling a velocity vector. Thus, the robots have
a 2-dimensional action space A where the two dimensions
represent speed (a0 ∈ [−1, 1] for [backward, forward]) and
angular speed (a1 ∈ [−1, 1] for [clockwise, anti-clockwise]).

Their observation space O is composed of 16 range sensors
that get information about the surrounding of the agent. They
are ray-casting sensors that have a maximum range of three
times the robot length (15px). For each of these sensors, four
information are extracted: the distance to contact if an object is
detected, and three other Boolean information for each sensor

n

v

β

{
v = a0vmaxn

ω = β̇ = a1ωmax

Fig. 3. Robot model with 16 sensors, a velocity v, a maximal speed vmax,
an angular speed ω and a maximal angular speed ωmax. The control variables
are then a0 and a1.

to explicit the type of information (object, wall or agent). Thus,
we obtain an observation vector of dim(O) = 64 dimensions.

The robot’s policy maps observations o ∈ O to actions a ∈
A. For that purpose, we use a multi-layered Perceptron (MLP)
as the main policy structure. Figure 4 details the full topology
between inputs and outputs, and the number of parameters.

8
<
:

Distance to contact 2 [0,1]
Is it an object? 2 {0,1}
Is it a wall? 2 {0,1}
Is it a another robot? 2 {0,1}

8
<
:

Distance to contact 2 [0,1]
Is it an object? 2 {0,1}
Is it a wall? 2 {0,1}
Is it a another robot? 2 {0,1}

...

Input
dimension:
64

Parameter
dimension:

1074

Output
dimension:

2

Se
ns

or
 0

Se
ns

or
 1

5

+
+

a0

a1

+
+

x 16

+
1 1

Fig. 4. Architecture of the policy function. Each sensor gives information
about the distance to obstacle and the type of object detected, if any. The
architecture represented here is a multi-layered Perceptron, used for the
experiments. It has 64 dimensions as input, a hidden layer of 16 dimensions
plus a bias term for each layer. The action dimension is 2. The total number
of parameters is 1074.

This architecture imposes a large number of free control
parameters that need to be optimised. In the present case, this
means 1074 parameters.

IV. RESULT

In this Section, we conduct an experimental study of the HIT
algorithm. Values for all experimental parameters can be found
in Table I, including environmental, neural network controller
and HIT parameters. The rectangular arena used is represented
in Figure 5, with 150 robots and 100 items.

A. Qualitative and Quantitative Evaluation

We analyse the dynamics of HIT while solving the foraging
task for a well chosen set of meta-parameters (See next Section
for an extensive analysis of the α and σ meta-parameters). To
analyse the results, we define two notions:

robots

objects

zoom

roborobo3
visualization

Fig. 5. Arena used for the experiments. It features 150 robots (small blue dots)
with 16 short-range sensors and 100 items (green dots). Items disappear when
caught, to reappear at a new random location. Robots are never relocated, and
the HIT algorithm runs as a distributed on-line fashion.

Parameter Value
Environment parameters
Population size 150
Number of objects 100
Arena size 1400px × 800px
Robot size 5px × 5px
Sensor length 15px
Maximum velocity vmax 2 px/steps
Maximum angular velocity ωmax 30 degrees/steps
Controller: multi-layered Perceptron
Initialisation range [−400, 400]
Sensory inputs 64
Hidden layer 1
Hidden size 16
Control outputs 2
Total number of parameters 1074
Controller: simple Perceptron (only Sec. IV-B)
Initialisation range [−400, 400]
Sensory inputs 163
Control outputs 2
Total number of parameters 328
HIT parameters
Evaluation time T 400
Transfer rate α varying
Mutation size σ varying

TABLE I
PARAMETERS

Final
value

Characteristic time

Fig. 6. Results with HIT, α = 0.8, σ = 0.001, T = 400. The parameters
used for these simulation are described on Table I. The Y-axis represents the
distribution of the average score among all 150 agents, over all runs. Results
are compiled from 128 independent simulation runs.

step = 0 step = 200000 step = 1000000

Fig. 7. Trajectories of agents at different steps. Robots are initialized with random policies. We can therefore observe a lot of curved trajectories. Robots that
achieve high translation will get more rewards and will better propagate their parameters in the population. After convergence to a unique policy, we observe
large translation for all agents.

• the final score: to assert the quality of a particular
algorithm, we measure the score after convergence;

• the characteristic time: to evaluate the speed of conver-
gence, we measure the time at which the average score
is half the final score. This is approximately the position
of the inflexion point of the data sequence that plots
the median score. This was chosen a posteriori as in
all the experiments we conducted, we always observed a
sigmoid-like increase of the score when switching from
the initial low score values to the final score values.

Figure 6 compiles the results obtained with 128 replicates
of the HIT algorithm, with α = 0.8, σ = 0.001, T = 400.
Starting with low values, the score increases between 40000
and 100000 steps (characteristic time ∼70000), and then
converge to a stable value (final score of ∼2.4).

It should also be noted that the variance after convergence
is rather small, advocating for the robustness of the algorithm.
This is actually confirmed by comparing HIT with a canonical
state-of-the-art embodied evolution algorithm, which we refer
to as VanillaEE [8], [10], [16].

Figure 8 shows the results in term of characteristic times and
final scores of two variants of the HIT algorithm (HIT(α =
0.3), which is expected converge slower, and HIT(α = 0.8),
as shown before) and of the best-shot of VanillaEE we could
find (i.e. σ = 0.001 mutation rate, elitist selection). To
account for the implementation difference between HIT and
VanillaEE1, we re-evaluate the final scores by extracting the
control parameters from the last generation, and then running
these with the learning algorithm deactivated. All claims are
backed using Mann-Whitney U Test.

Firstly, the final score is roughly similar for both HIT vari-
ants, which is expected. Both display also an advantage over
the VanillaEE control algorithm. Secondly, the characteristic
time shows, as expected, that HIT(α = 0.3) provides the slow-
est convergence speed. HIT(α = 0.8) and VanillaEE converge
faster, which is actually true on average. However, VanillaEE
displays a higher variance both in terms of convergence speed
and final scores when compared to HIT(α = 0.8).

Finally, we take a closer look at one typical run of HIT(α =
0.8). Figure 7 presents the trajectory of the 150 robots during
400 iterations at different steps of the simulation. Starting with

1The original implementation of VanillaEE is synchronous, meaning that
all robots update their policy at the same time, which HIT does not do.

0.5

1

st
ep
s

Fig. 8. Comparison between HIT and VanillaEE all with σ = 10−3. The
box plots are computed with 80 independent runs. The characteristic time
measures the step at which the average score reaches half its final value. The
final score is the average score after saturation.

randomly initial policy parameters, which produces turning
or non-moving behaviours, robots gradually learn to move
around to explore their environment, which is both efficient
with respect to foraging and mating.

This change in behaviour is also captured by looking at
the evolution of the amount of communication during the
course of evolution. For this typical run, Figures 10 and 9
respectively show the evolution of score and number of
messages exchanged through time. Comparing the two figures
reveals that the increase in communication between robots
actually precedes the increase of score values, and remains
stable throughout the experiment, even before the final score
value is reached.

B. Tradeoff between Speed and Accuracy

Both the transfer rate α and the mutation size σ can have an
impact on learning speed and quality. In this Section, we pro-
vide an extensive analysis of these two meta-parameters. We
measure the characteristic time and the final score the policies
obtained by the HIT algorithm, for a large combination of α
and σ values.

We explore σ values from 0.2 to 1.0 with a step size of 0.1,
and σ from 10−2 to 10−8, and 0. This represents a total of
18432 independent runs (9 × 8 combinations, 256 replicates
per combination)2. In order to minimise to computational cost,

2Experiments took 12 days using an Intel(R) Xeon(R) CPU E5-2630 v3 @
2.40GHz

0.00 0.04 0.08 0.12 0.16 0.20
steps ×106

20

40

60

80

100
#m

es
sa

ge
s p

er
 4

00
 st

ep
s

HIT (α= 0.8, σ= 1× 10−3, T= 400)

Fig. 9. Evolution of the frequency of messages for one experiment, α =
0.8, σ = 0, T = 400. We count the number of message sent in a constant
interval of 400 iterations and report this value as a function of the step number

0.00 0.04 0.08 0.12 0.16 0.20
steps ×106

0

1

2

3

4

sc
or

e
(a

ve
ra

ge
)

HIT (α= 0.8, σ= 1× 10−3, T= 400)

average reward
standard deviation

Fig. 10. Evolution of the average score among 150 agents for one experiment
of foraging 100 objects, α = 0.8, σ = 0, T = 400. At every encounter, the
best agent share half randomly chosen parameters to the other agent. The worst
receives these parameters and use them to improve it own policy. This process
can only happen after both agent have spend at least 400 steps to evaluate
themselves. During the maturation period, the score before modification of
the best is reported for the averaging. No mutations are used here.

we use Perceptron with no hidden layer, but with additional
sensory inputs that do not bring useful information.

Results are shown in Figures 11 (final score) and 12
(characteristic time). We can observe that the average score
plateaus for mutation rates with σ < 102 and a transfer
rate with α ≤ 0.9. Large mutation rate of σ > 0.01 as
well as the maximum value for transfer rate α = 1 are
both destructive, whatever the other meta-parameter value.
Regarding mutation, it is expected that a too large mutation
rate can disrupt selection, and injects noise rather diversity
that can be exploited. As for transfer rate, setting α = 1
limits convergence to full control parameter sets present in
the initial population only, as it is does not allow to benefit
from recombination.

Aside from these extremes, HIT is revealed to be remark-
ably robust in terms of the final score that is reached. The
transfer rate appears as the main parameter to modulate the
convergence speed, with mutation being either destructive in
the worst case σ ≥ 102, or of limited interest. In terms
of efficiency of policies, the algorithm is rather robust with

respect to its meta-parameter values, as long as extreme values
are avoided (α > 0.9 and σ ≥ 102).

Final value

Fig. 11. Final value of the average score for various mutation size and transfer
rate. This value is the average of all score on the last 100 measurements (one
measurement per 400 iterations). 256 independent simulation run have been
used. Lighter colour means better saturation value.

Characteristic time

Fig. 12. Characteristic time for various mutation size and transfer rate. The
characteristic time is the step at which the average score reach half of it final
value. 256 independent simulation run have been used. Lighter colour means
shorter convergence time.

C. Learning the Transfer Rate
As stated at the beginning of this paper, our aim is to pro-

vide an algorithm that can cope with limited communication
capabilities. However, it is hardly possible to know in advance
what are the limits. Technical specifications provide a good
start, but the impact of robots density on packet collisions or
perturbations from other sources makes it difficult to set an
appropriate transfer rate beforehand.

Here, we study the HIT algorithm in a pseudo-realistic
context where communication is artificially limited. In this
experimental setting, all messages larger than m × 0.6 ×
size(parameter set), are lost. The optimal transfer rate is
therefore αopt = 0.6, but is unknown before deployment3.

3We also tested for α = 0.3 with identical results (not shown here).

Resilience to communication failure is addressed by imple-
menting a straight-forward learning method for the transfer
rate. The transfer rate value is incorporated in the parameter
set of each robot, and initially set to a random value α ∈ [0, 1].
It is then tuned by selection pressure.

We performed 64 experiments, setting a mutation rate to
σ = 0.001 only for the parameter α and T = 400 (as earlier).
For all experiments, the whole robot swarm systematically
converged to an α value close to the optimal transfer rate as
shown on Figure 13 (left).

Histogram of
average

Canonical run,

Fig. 13. Left: distribution on 64 independents runs of the average transfer
rate α after 5× 105 iterations, with αopt = 0.6. Center and Right: learning
the transfer rate α in a canonical run. Center: each line represent the trajectory
of the α value for one specific agent. Right: average score for the population
until convergence.

This is illustrated in Figure 13 (center), which represents
the distribution of all α from the 150 robots across time steps
for a typical run. As expected, α values are initially uniformly
distributed between 0 and 1, and then quickly converge to a
value close to αopt.

Robots carrying α values which are too large with respect
to the communication constraints simply cannot spread, and
can only survive as long as it takes to encounter a robot with
better score and capable of transmitting its own parameters.
On the other hand, robots with small values of α can spread,
but may do so at a smaller frequency than robots with relevant
α values. This can be viewed as a lexicographic selection: the
better performing robot will always fare better, and will diffuse
faster if its α value makes the best of the environment at hand.

From a practical viewpoint, and extrapolating also from
results in the previous section, it means that learning the
transfer rate is always a good idea as long as it is limited
to be strictly inferior to 1.

V. CONCLUSION

In this paper, we introduced a new algorithm called Horizon-
tal Information Transfer, which is at the crossroad of embodied
evolution and social learning. We showed that this algorithm
is competitive with the state of the art, but is also able to
deal with limited communication capabilities that are often
met with low-cost robots used in swarm robotics.

The obvious next step is to run full experiments with a
swarm of low-cost robots for which preliminary results (not
shown here) are still limited but encouraging.

ACKNOWLEDGEMENT

This work is funded by the Agence Nationale pour la
Recherche under Grant No ANR-18-CE33-0006.

REFERENCES

[1] Levent Bayindir. A review of swarm robotics tasks. Neurocomputing,
172:292–321, 2016.

[2] Gerardo Beni. From Swarm Intelligence to Swarm Robotics. Robotics,
3342:1–9, 2005.

[3] Manuele Brambilla, Eliseo Ferrante, Mauro Birattari, and Marco Dorigo.
Swarm robotics : A review from the swarm engineering perspective.
Swarm Intelligence, 7(1):1–41, 2012.

[4] Nicolas Bredeche, Evert Haasdijk, and Abraham Prieto. Embodied
evolution in collective robotics: A review. Frontiers in Robotics and
AI, 5:12, 2018.

[5] Nicolas Bredeche and Jean-marc Montanier. Environment-driven Em-
bodied Evolution in a Population of Autonomous Agents. In Parallel
Problem Solving from Nature (PPSN), pages 290–299, 2010.

[6] Nicolas Bredeche, Jean-Marc Montanier, Wenguo Liu, and Alan F T
Winfield. Environment-driven Distributed Evolutionary Adaptation in
a Population of Autonomous Robotic Agents. Mathematical and
Computer Modelling of Dynamical Systems, 18(1):101–129, 2012.

[7] Nicolas Bredeche, Jean-Marc Montanier, Berend Weel, and Evert Haas-
dijk. Roborobo! a fast robot simulator for swarm and collective robotics.
CoRR, abs/1304.2888, 2013.

[8] Iñaki Fernandez Pérez, Amine Boumaza, and François Charpillet.
Comparison of Selection Methods in On-line Distributed Evolutionary
Robotics. In Proceedings of the fourteenth international conference on
the synthesis and simulation of living systems, pages 1–16, 2014.

[9] Heiko Hamann. Swarm Robotics - A Formal Approach. Springer, 2018.
[10] Emma Hart, Andreas Steyven, and Ben Paechter. Improving Survivabil-

ity in Environment-driven Distributed Evolutionary Algorithms through
Explicit Relative Fitness and Fitness Proportionate Communication. In
Proceedings of the 2015 Annual Conference on Genetic and Evolution-
ary Computation, pages 169–176, 2015.

[11] Inman Harvey. The microbial genetic algorithm. In European Confer-
ence on Artificial Life, pages 126–133. Springer, 2009.

[12] Jacqueline Heinerman, Dexter Drupsteen, and A E Eiben. Three-fold
Adaptivity in Groups of Robots: The Effect of Social Learning. In Sara
Silva, editor, Proceedings of the 17th annual conference on Genetic and
evolutionary computation, GECCO ’15, pages 177–183. ACM, 2015.

[13] Jacqueline Heinerman, Massimiliano Rango, and A. E. Eiben. Evolution,
individual learning, and social learning in a swarm of real robots.
In Proceedings - 2015 IEEE Symposium Series on Computational
Intelligence, SSCI 2015, pages 1055–1062. IEEE, 2016.

[14] Noemı́ Carranza Xaver Diego Fredrik Jansson Jaap A. Kaandorp
Sabine Hauert Ivica Slavkov, Daniel Carrillo-Zapata and James Sharpe.
Morphogenesis in robot swarms. Science Robotics, 3(25), 2018.

[15] Alejandro Cornejo Michael Rubenstein and Radhika Nagpal. Pro-
grammable self-assembly in a thousand-robot swarm. Science,
345(6198):795–799, 8 2014.

[16] Jean-marc Montanier, Simon Carrignon, and Nicolas Bredeche. Be-
havioural Specialization in Embodied Evolutionary Robotics: Why so
Difficult ? Frontiers in Robotics and AI, pages 1–17, 2016.

[17] Abraham Prieto, Francisco Bellas, Andres Faina, and RichardJ. Duro.
Asynchronous Situated Coevolution and Embryonic Reproduction as a
Means to Autonomously Coordinate Robot Teams. In Knowledge-Based
and Intelligent Information and Engineering Systems SE - 43, volume
5711 of Lecture Notes in Computer Science, pages 351–359. Springer
Berlin Heidelberg, 2009.

[18] Michael Rubenstein, Christian Ahler, and Radhika Nagpal. Kilobot: A
low cost scalable robot system for collective behaviors. Proceedings
- IEEE International Conference on Robotics and Automation, pages
3293–3298, 05 2012.

[19] Vito Trianni, Stefano Nolfi, and Marco Dorigo. Evolution, Self-
organization and Swarm Robotics. In Swarm Intelligence, pages 163–
191. 2008.

[20] Gabriele Valentini, Eliseo Ferrante, Heiko Hamann, and Marco Dorigo.
Collective decision with 100 kilobots: Speed versus accuracy in binary
discrimination problems. Autonomous Agents and Multi-Agent Systems,
30(3):553–580, May 2016.

[21] Richard A. Watson, Sevan G. Ficici, and Jordan B. Pollack. Embodied
Evolution: Distributing an evolutionary algorithm in a population of
robots. Robotics and Autonomous Systems, 39(1):1–18, 4 2002.

