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Online Trajectory Planning Through Combined Trajectory Optimization
and Function Approximation: Application to the Exoskeleton Atalante

Alexis Duburcq1,2,3, Yann Chevaleyre2, Nicolas Bredeche3 and Guilhem Boéris1

Abstract— Autonomous robots require online trajectory plan-
ning capability to operate in the real world. Efficient offline
trajectory planning methods already exist, but are computation-
ally demanding, preventing their use online. In this paper, we
present a novel algorithm called Guided Trajectory Learning
that learns a function approximation of solutions computed
through trajectory optimization while ensuring accurate and
reliable predictions. This function approximation is then used
online to generate trajectories. This algorithm is designed to
be easy to implement, and practical since it does not require
massive computing power. It is readily applicable to any
robotics systems and effortless to set up on real hardware
since robust control strategies are usually already available. We
demonstrate the computational performance of our algorithm
on flat-foot walking with the self-balanced exoskeleton Atalante.

I. INTRODUCTION

Online trajectory planning enables robots to deal with a
real-world environment that may change suddenly, and to
carry out sequences of tasks in unknown orders and contexts.
For instance, walking robots must be able to change direc-
tion, adapts their speed, consider stairs of different heights,
or the position and size of obstacles. Yet offline trajectory
planning remains very challenging for complex systems that
may involve hybrid dynamics, underactuation, redundancies,
balancing issues, or a need for high accuracy. Although
methods exist to solve most trajectory optimization problems,
there is no guarantee of convergence and finding solutions
is computationally demanding, preventing their uses online.

One way to get around these issues is running the opti-
mization in background and updating the trajectory periodi-
cally, e.g. between each step for biped robots [1]. However,
it remains hard to meet such computational performance, and
this still provides a poor reaction time. Another approach is
to simplify the model to speed up the calculation and ensure
convergence, for example by linearizing it. Nevertheless, it
does not have any guarantee to be feasible in practice since it
does not take into account the actual dynamics of the system,
and the overall motion is less sophisticated [2], [3].

A workaround to avoid online trajectory optimization
consists in using a function approximation, ie. to perform
trajectory learning over a set of trajectories optimized be-
forehand. This requires no simplification of the model since
the optimizations are carried out offline. Moreover, once
training has been done, it operates at a fraction of the cost
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Robotique, ISIR, F-75005 Paris, France.

Fig. 1. Rendering of the exoskeleton Atalante on the left. Clinical trials
assisted by a physiotherapist for safety on the right.

of the previous methods. Two distinct approaches can be
considered: policy learning, i.e training a controller, and
trajectory learning, i.e. predicting nominal state sequences.
This paper focuses on trajectory learning. Indeed, it has
the advantage of being effortless to implement on robotic
systems for which there already exists control strategies
that ensures robust tracking of trajectories generated through
optimization: it comes down to replacing a finite set of
trajectories by the function approximation.

A naive approach would be to train a function approxima-
tion on a database of solutions of the optimization problem.
Although it may work in practice, this does not offer any
guarantee to really perform the desired task nor to be feasi-
ble, and is sensitive to overfitting. This is actually the state-
of-the-art in trajectory learning, as this field is still largely
unexplored. On the contrary, there has been major advances
in policy learning. It is now possible to ensure accurate and
reliable learning, which is exactly what trajectory learning
is not able to do yet. Still, it can hardly be applied on robot
hardware because the reality gap is not properly handled.

Our contribution is the Guided Trajectory Learning al-
gorithm (GTL), which makes trajectory optimization adapt
itself, so that it only outputs solutions that can be perfectly
represented by a given function approximation. It is inspired
by the Guided Policy Search (GPS) [4] and the work of
Mordatch [5] in the context of policy learning. The idea
is to make the trajectory optimization problem adapt itself
wherever the function approximation fails to fit. Adaptation
is achieved by jointly solving trajectory optimization and
trajectory learning for a collection of randomly sample tasks.
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This is a consensus optimization problem over a database
of trajectories, which is intractable directly. We overcome
this limitation by solving it iteratively via the Alternating
Direction Method of Multipliers (ADMM) [6]. Furthermore,
as function approximation, we propose a special kind of de-
convolution neural network well-suited for fitting trajectories.

Our method is readily applicable to any complex robotics
systems with high-dimensional state for which offline tra-
jectory optimization methods and robust control strategies
are already available and efficient. It makes online trajectory
planning based on function approximations more accurate
and reliable by guaranteeing the feasibility of the predictions,
and thereby it is practical for systems where failure is not
an option. We demonstrate it on flat-foot walking with the
medical exoskeleton Atalante designed by Wandercraft [7].

II. RELATED WORK

Even though policy learning may exhibit richer and nicer
behaviors than trajectory learning since it performs feedback
control, it comes with additional challenges. Indeed, the
performance of the few policy learning approaches assessed
on real robots were unsatisfactory because of the reality
gap [8]. Although major advances were made recently [9],
it is not near to be readily available for systems already
challenging to control using classic methods. Daumé III
suggests to get around this problem by using policy learning
to predict trajectories [10]. This can be done by simply
passing on earlier predictions as inputs for future predictions.
Although trajectories computed in this way can achieve
results competitive with trajectory learning [11], it makes
policy learning an indirect approach to do trajectory learning,
therefore losing its main advantages wrt. trajectory learning.

Both policy and trajectory learning are prone to the
so-called distributional shift issue, namely the predictions
themselves affect the future states during the execution on the
system. Ignoring this leads to very poor performance in the
case of policy learning [11]–[13]. This is because as soon as
the policy makes a mistake, it may encounter completely dif-
ferent observations than those under expert demonstrations,
leading to the compounding of errors. The Guided Policy
Search (GPS) [4], [14] overcomes this limitation by adapting
the states for which expert demonstrations are provided, but
also the policy optimization problem itself. Formally, the
optimization problem is modified to maximize the actual
return of the learned policy, making it less vulnerable to
suboptimal experts. The resulting policy is guaranteed to
perform well under its induced distribution of states.

The effect of the distributional shift is less dramatic in
trajectory learning, since the observations do not take part
in the prediction process. Its effect follows directly from
the reconstruction error of the function approximation, and
thereby requires the latter to fit accurately. Even though
trajectory learning using a standard regression may be appro-
priate in some cases, this does ensure accurate predictions.
This approach has proven effective on the bipedal robot
Cassie for controlling in real-time the velocity of the center

of mass [15], [16], but was unsuccessful in simulation for
more complex systems like a human-sized 3D humanoid [4].

Unlike GPS, the policy learning method proposed by Mor-
datch and Todorov [5] is closely related to trajectory learning
since it relies on trajectory optimization to generate expert
demonstrations. They seek after a compromise between the
optimality of the trajectories and the accuracy of the learned
policy, and solves this problem via the Alternating Direction
Method of Multipliers. Robustness of the feedback control
loop is improved by training the policy to behave as a
Linear Quadratic Regular [17]. However, their formulation
of the problem does not allow to cancel the reconstruction
error out and therefore to get rid of the distributional shift
completely. Although this approach is cost-efficient and leads
to satisfactory results in simulation for simple systems, it is
likely to diverge in practice.

Another aspect to consider is that trajectory optimization
based on the direct collocation framework is numerically
robust and scalable [18], [19]. It has proven its ability
to efficiently solve most trajectory optimization problems,
even for complex robotic systems, such as humanoid robots
walking trajectory generation [20]–[22]. Therefore, adapting
the policy learning approaches to trajectory learning appears
natural to overcome their respective limitations.

III. PRELIMINARIES

A. Trajectory Optimization Problem

Consider a time-invariant time-continuous dynamical sys-
tem of the form ẋ(t) = f (x(t),u(t)), where x(t) ∈Rp, u(t) ∈
Rq are the state and the controls of the system applied at
time t, respectively. f denotes the dynamics of the system.
Optimization variables minimizing a cost function are high-
lighted with a superscript asterisk ·∗.

Given a task to perform τ ∈ Dτ , where Dτ is a compact
set of Rm denoting the task space, a trajectory optimization
problem for such a system can be formulated as

(x∗,u∗, t∗) = argmin
(x,u,T )∈Cτ

∫ T

0
l(x(t),u(t),T )dt, (1)

where x : t 7→ x(t),u : t 7→ u(t) are functions whose temporal
dependence is implicit, l is the running cost, and T is the
duration of the trajectory. Cτ is the feasibility set

Cτ = {(x,u,T ) ∈Dx×Du×DT |
cT (τ,x(0),u(0),x(T ),u(T ),T ) = 0,
cin(τ,x(t),u(t), t)≤ 0,
ceq(τ,x(t),u(t), t) = 0},

where Dx,Du,DT are compact sets embodying the physical
limitations of the system. The terminal constraints cT and the
inequality and equality constraints cin,ceq are continuously
differentiable functions that depends on the task τ .

The periodicity and duration of the trajectory are examples
of terminal constraints, while the dynamics equation and
the admissibility conditions are part of the inequality



and equality constraints. A task can be composed of any
combination of high-level objectives: for example, for a
walking robot, the desired step length and speed.

The state and control functions x,u are further discretized
in time sequences of fixed length LT . In this context, the
optimal trajectory for task τ is uniquely defined by its
sequence of states and duration ({x∗1,x∗2, . . . ,x∗LT

},T ∗).

B. Trajectory Learning Problem

The objective is to use the solutions generated through
trajectory optimization to train a function approximation
parametrized by W ∈Rn, such that, for any task τ , it outputs
a trajectory achieving the task. As the control strategies are
not part of the learning process, this can be viewed as a
standard regression over a database of N optimal trajectories
{τi,(X∗i = {x∗i,1,x∗i,2, . . . ,x∗i,LT

},T ∗i )}N
i=1, where N must be

sufficiently large to span the whole task space.

Formally, training a function approximation consists in
finding parameter W giving the best performance in average,

W ∗ = argmin
W∈Rn

Rγ(X∗,T ∗,W ), (2)

where Rγ(X ,T,W ) is the total reconstruction error, such that

Rγ(X ,T,W ),
N

∑
i=1

∥∥Xi− X̂(τi,W ))
∥∥2

+ γ
∥∥Ti− T̂ (τi,W )

∥∥2
, (3)

where γ is a weighting factor that determines the trade-
off between the state and duration fitting accuracy. The
predicted duration and state sequence for a task τ are denoted
T̂ (τ,W ), X̂(τ,W ). The subscript ·i specifies the task.

It is irrelevant to take into account the constraints of the
trajectory optimization problem explicitly in the regression
since they are satisfied at the limit when the reconstruction
error vanishes. Reducing this error is usually done by increas-
ing number of fitting parameters n to match the regularity of
the data. However, it does not bring any guarantee regarding
the feasibility of the predictions apart from the training
samples, since overfitting may occur. Several techniques exist
to alleviate this issue without increasing the computational
cost too much, e.g. early stopping and regularization [23]–
[25], but they do not allow adaptation of the training data.
Regularisation of the training data through adaptation may
be more computationally demanding, but it ensures reliable
predictions by limiting the number of fitting parameters.

IV. GUIDED TRAJECTORY LEARNING

We propose to achieve adaptation of the training data by
solving simultaneously trajectory optimization and trajectory
learning, such that the generated trajectories are perfectly fit-
ted by the function approximation and satisfy the constraints
of the original trajectory optimization problem concurrently.

A. Consensus Optimization Problem

This problem consists of jointly optimizing a collection
of N trajectories achieving a set of tasks {τi}i≤N , and the

parameters of the function approximation W that is intended
to fit them. This can be written as follows

(X∗,U∗,T ∗,W ∗) = argmin
(Xi,Ui,Ti)1≤i≤N ∈∏

N
i=1 Cτi

W∈Rn

1
N

N

∑
i=1

L(Xi,Ui,Ti) (4)

st. Xi = X̂(τi,W ),Ti = T̂ (τi,W ), ∀i ∈ {0,1, . . . ,N},
where the tasks {τi}i≤N are uniformly sampled, L(Xi,Ui,Ti)
is the discretization of the total optimization cost (1)

L(Xi,Ui,Ti),
Ti

LT

LT

∑
t=1

l(xi,t ,ui,t ,Ti).

The reconstruction constraint guarantees that the trajec-
tories are perfectly fitted by the function approximation,
despite its potentially limited expressive power, and have
properties compliant with it. However, solving this problem
directly is intractable since it requires to compute the gradient
of every trajectory optimization sub-problems at every step
of the solver. Indeed, the number of sub-problems N usually
ranges from thousands to hundreds of thousands.

B. Alternating Direction Method of Multipliers

ADMM [6] is a method to efficiently solve optimization
problems composed of a collection of subproblems linked by
a single linear equality constraint but otherwise independent,
each of them having a readily available solving method.
Let’s consider the following separable nonconvex consensus
problem [26], [27]

(Y ∗,Z∗) = argmin
(yi)1≤i≤N ∈∏

N
i=1 Yi

Z∈Z

N

∑
i=1

fi(yi)+g(Z) (5)

st. Yi =
{

yi ∈Dy | ψi(yi) = 0, φi(yi)≤ 0
}
,∀i ∈ {0,1, . . . ,N}

Z = {Z ∈Dz | θ(Z) = 0, σ(Z)≤ 0}
Y −Z = 0,

where Dy ⊂ Rp,Dz ⊂ RN p are compact sets. The cost func-
tions fi :Rp→R,g :RN p→R and the equality and inequality
constraints ψi,φi,θ ,σ are twice continuously differentiable.

Such nonconvex problems can be handled efficiently by
the Augmented Lagrangian Method [28], [29]. In this case,
the augmented Lagrangian in scaled form can be stated as

Lρ(Y,Z,Λ),
N

∑
i=1

fi(yi)+g(Z)+
ρ

2
‖Y −Z +Λ‖2 .

This is an exact penalty method [30], [31]. In this regard, the
original problem can be solved by minimizing it. This can be
done in an alternating Gauss-Seidel manner, optimizing each
variable while holding the others fixed [6], [32]. This yields
Algorithm 1 taken from [26], [27]. α and ρk are referred to
as the dual step size and penalty factor, respectively.

C. Guided Trajectory Learning

Let us introduce an additional optimization variable Z in
Problem (4), such that Zi , (X̂(τi,W ),γT̂ (τi,W )), where (·, ·)
stands for the vector concatenation operator.



Algorithm 1: ADMM for Nonconvex Consensus Problem

1 initialization;
while stopping criterion not met do

for i ∈ {1, ...,N} do

2 yk+1
i = argmin

yi∈Yi

fi(yi)+
ρk

2

∥∥∥yi− zk
i +λ

k
i

∥∥∥2

end

3 Zk+1 = argmin
Z∈Z

g(Z)+
ρk

2

∥∥∥Y k+1−Z +Λ
k
∥∥∥2

4 Λ
k+1 = Λ

k +α(Y k+1−Zk+1)

end

The reconstruction constraints becomes

(Xi,γTi)−Zi = 0

st. Zi ∈Zγ = {z | inf
W

∥∥z− (X̂(τi,W ),γT̂ (τi,W ))
∥∥2

= 0}.

Then, ADMM can be applied to solve Problem (4). The
Augmented Lagrangian is given by

Lρ(X ,U,T,Z,Λ) =
1
N

N

∑
i=1

L(Xi,Ui,Ti)+
ρ

2
‖(X ,γT )−Z +Λ‖2,

where Λ = (ΛX ,γΛT ).

The update rule for step 2 of Algorithm (1) corresponds to

(Xk+1
i ,Uk+1

i , T k+1
i ) =

argmin
(Xi,Ui,Ti)∈Cτi

L(Xi,Ui,Ti)+
ρk

2

∥∥∥(Xi,γTi)−Zk
i +λ

k
i

∥∥∥2
, (6)

while the update rule for step 3 is

Zk+1
i = (X̂(τi,W k+1),γT̂ (τi,W k+1))

st. W k+1 = argmin
W∈Rn

Rγ(Xk +ΛX ,T k +ΛT ,W ).
(7)

One can think of the multipliers Λ being the cumulative
residual prediction error for each task τi. They reveal where
the function approximation makes repeating prediction errors
for each trajectory. They modify the regression and trajectory
optimization objective functions to give more weight to
regions where errors are consistently made. Over iterations,
the trajectories become easier to mimic for the function
approximation and less optimal wrt. the original objective
function, until a consensus is found. This algorithm reduces
Problem (4) to a sequence of trajectory optimization and
regression problems, each of which is well-studied with
efficient solving method. The complete algorithm is sum-
marized in Algorithm 2. A suitable stopping criterion is∥∥Λk+1−Λk

∥∥≤ ε , where ε depends on the need of accuracy.

D. Convergence Analysis

Originally, ADMM was intended to solve convex uncon-
strained optimization problems, but it has been proven to
converge for nonconvex consensus problems [26], [33]–[35].

Algorithm 2: Guided Trajectory Learning

1 generate N tasks uniformly sampled, {τi}N
i=1 ∼U(Dτ)

2 initialize (X0,U0,T 0) by solving the original trajectory
optimization problem for each task in parallel using (1)

initialize Λ0 to zero
update W 0 using the standard regression (2), deduce Z0

3 while not converged do
update (Xk+1,Uk+1,T k+1) by solving the modified
trajectory optimization problem in parallel using (6)

update W k+1 and deduce Zk+1 using (7)
update Λk+1: Λk+1 = Λk +α

(
(Xk+1,γT k+1)−Zk+1

)
end

Proposition 1: Algorithm 1 converges to the closest sta-
tionary point to Z0, corresponding to a local or global
minimum of Problem (5), under these assumptions [26]:
• The consensus optimization problem (5) is feasible.
• ∀k ∈ N, yk

i (resp. Zk) computed at step 2 (resp. step 3)
of the algorithm is locally or globally optimal.

• Let L denote the set of limit points of the sequence
{(Y k,Zk)}k∈N and let (Y ∗,Z∗)∈L . (Y ∗,Z∗) is a regular
point, i.e the gradient vectors at y∗i (resp. Z∗) of the
set of active constraints of Yi (resp. Z ) are linearly
independent.

• Let define L such that ∀yi ∈Dy,∀Z ∈Dz, fi and gi have a
L-Lipschitz continuous gradient. The sequence {ρk}k∈N
is increasing and either:

– 0 < α ≤ 1 and ∃k0 ∈ N st. ∀k ≥ k0, ρk > L.
– α = 0 and {ρk}k∈N −→+∞.

It is worth noting that updating the penalty factor ρk at
each iteration is unnecessary for 0 < α ≤ 1, as one can
keep it equal any value satisfying the converge assumptions.
Andreani has proven that, under the additional assumptions,
it converges R-linearly for α small enough and ρ constant
[27]. Strictly increasing ρk makes the converge faster (su-
perlinearly in some cases), but it is impracticable at some
point. Indeed, high penalty factor leads to ill-conditioning,
making the optimization impossible to solve numerically.

Proposition 1 shows that the GTL algorithm can be sim-
plified by setting the dual step size α to 0, which is denoted
GTL-0 in the following. It is only guarantee to converge for
sequences of penalty factor going to infinity. Otherwise, the
price to pay is a non-vanishing reconstruction error. GTL-
0 reduces GTL to an instance of the Alternating Direction
Penality Method [26] since the multipliers are kept equal
to zero. This problem can also be viewed as replacing the
reconstruction constraints Xi = X̂(τi,W ),Ti = T̂ (τi,W ), ∀i ∈
{0,1, . . . ,N} in Problem (4) by the penalized reconstruction
cost ρkR(X ,T,W ) and solving it in an alternating Gauss-
Seidel manner.
E. Deconvolution Neural Network as Function Approximation

We propose to use a deconvolution neural network [36],
[37] as function approximation since it is especially well-
suited to generating multi-dimensional temporal sequences



Fig. 2. Architecture of the neural network used for learning state sequences. A feedforward network generates low dimensional features and a deconvolution
network produces sequences from them. The hyperparameters of the feedforward network are the number of hidden layers Nh and their size Lh. The ones
of the deconvolution network are the number of upsampling steps Nup and the length of the 1D convolution kernel Nk . The number of channels Nch and
the initial length of the features Lseq directly derive from them, Nch , p 2Nup−2, Lseq , ceil(LT /2Nup ). i denotes the index of the upsampling layer.

[38]. The architecture is described in Fig 2. It combines 1D
convolution and upsampling to perform the deconvolution
operations, as opposed to the usual transpose convolution
that is sensitive to artefacts [39].

V. EXPERIMENTAL EVALUATION

A. Experimental Setup

The Medical Exoskeleton Atalante: It is a crutch-less
exoskeleton for people with lower limb disabilities. It is an
autonomous device, self-balancing and self-supporting. It has
6 actuated revolute joints on each leg,
• 3 joints for the spherical rotation of the hip,
• 1 joint for the flexion of the knee,
• 2 joints for the hinge motion of the ankle.

It features dimensional adjustments for the thigh and tibia
lengths to fit the morphology of the patient.

Modeling of the Coupled System Patient-Exoskeleton:
The patient is assumed to be rigidly fastened, thus his mass
distribution can be aggregated to the one of the exoskeleton.
With this in mind, the system exoskeleton-patient is just a
specific type of bipedal robot whose kinematics and dynam-
ics properties are patient-specific.

How Trajectories are Generated: The state sequences
must guarantee the periodicity of the gait, accurate impact
handling, and stability of the exoskeleton. The optimization
problem and how to solve it via the Direct Collocation
framework is explained thoroughly in [20], [22], [40].

B. Training

Learning task: The objective is to learn flat foot walking
trajectories for the exoskeleton Atalante. Fig 3 reveals their
temporal smoothness, supporting the use of the aforemen-
tioned deconvolutional network as the natural way to do it.
The system is fully-actuated, thereby the state only comprises
the positions and velocities of the 12 actuated joints.
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Fig. 3. Original trajectories of the ankle joints for uniformly sample tasks.

Standard regression is compared to GTL-0 (cf. last part of
Section IV-D) instead of GTL for practical reasons. It halves
the required storage space wrt. GTL, but most importantly,
it enables to update the sample tasks at each iteration of the
algorithm instead of keeping the same set all along. It makes
parallelization trivial to implement on clusters, and it reduces
overfitting that may occur when the number of sample tasks
N is relatively limited. Moreover, its performance can only
be worse than GTL, giving a lower bound on the expected
performance of GTL. The values of the parameters are
summarized in Table I. The task space Dτ encompasses,
• the morphology of the patient: height and weight,
• the settings of the exoskeleton: thigh and shank lengths,
• some high-level features of the gait: step length and total

duration, among many others (12 in total).

TABLE I
PARAMETERS SUMMARY

m p q LT

16 24 12 200

(a) learning problem

Nh Lh Nup

1 200 5

(b) neural network

N γ ρk α

70000 1.0 5.0 0.0

(c) GTL



Validation criteria: The controllers of the exoskeletons are
tuned in such a way that the maximum tracking error of the
joint positions can reach up to 0.01 rad in the nominal case,
which is accurate enough to achieve stable walking. Thus, we
assume that a predicted trajectory is stable on the real robot
if the maximum absolute difference between a predicted
trajectory and the optimal one is not significantly larger than
0.01rad, referred to as norm-inf error in the following.

Guided Trajectory Learning: We refer to the initialisation
of GTL-0 ‘iter 0’ as Regression since it corresponds to the
standard regression method, and we compare it to GTL-
0 after convergence at ‘iter 2’. Their respective accuracy
is summarized in Table II. Unlike Regression, the GTL-
0 algorithm shows promising results despite the lack of
multipliers. Fig 5 shows that, contrary to GTL-0, the error
distribution of Regression is very spread and has a long
right tail that never really goes to zero. Therefore, a large
part of its predictions has a reconstruction error much larger
than the maximum acceptable error of 0.01 rad. Nonetheless,
the reconstruction error of GTL-0 does not vanish. This is
expected since the residual error is typically handled by the
multipliers. It is possible to reduce it further if necessary
by increasing the penalty factor ρ , at a cost of lowering the
conditioning of the optimization problem.

The efficiency of GTL-0 can be understood in the light of
Fig 4. It reveals several discontinuities for the solutions to
the original problem, which are impossible to fit accurately
using a continuous function approximation. By contrast, the
trajectories generated via GTL-0 are perfectly continuous
wrt. the task. Only one iteration of GTL is sufficient the
continuity of the solutions, thereby explaining the very fast
convergence of the algorithm in only 2 iterations.

TABLE II
TESTING ACCURACY IN NORM-INF

Algorithm Mean (rad) Mode (rad) > 0.01 rad > 0.015 rad

Regression 2.01×10−2 8.16×10−3 50.3% 16.1%
GTL-0 7.43×10−3 4.25×10−3 10.5% 4.46%
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Fig. 4. Continuity of the trajectories wrt. the task. It shows the effect of
the variation of the step length of the walking gait on the angle of the left
ankle joint at 20% of the step (see Fig 3). ‘Original’ denotes the solutions of
the original trajectory optimization problem for energy minimization cost.
‘Guided’ and ‘Prediction’ correspond to solutions and predictions of GTL-0.
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Fig. 5. Norm-inf test error distribution over iterations of GTL-0.

C. Validation in reality on able-bodied people
We have evaluated our ability to control the average ve-
locity of the exoskeleton. The desired average velocity is
determined by the combination of desired step length and
duration. Note that data are only available for GTL-0, since
most predictions were unstable on the real robot using the
standard regression. In the case of GTL-0, the vast majority
of them were stable, and restricting the ranges of the desired
step length and duration to 90% during inference lead to
stable gaits only. Fig 6 shows that the measured velocities
are close to the desired ones for every patient.
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Fig. 6. From simulation to reality. Comparison between the desired and
achieved average velocity on 6 valid people with a different morphology.
Each pair marker-color corresponds to one patient.

VI. CONCLUSION AND FUTURE WORK
In this work, we present a novel algorithm called GTL

that learns a function approximation of the solutions to a
trajectory optimization problem over a task space. Accurate
and reliable predictions is ensured by simultaneously training
the function approximation and adapting the trajectory opti-
mization problem such that its solutions can be perfectly fit-
ted by the function approximation and satisfy the constraints
concurrently. It results in a consensus optimization problem
that we solve iteratively via ADMM. We demonstrate its
efficiency on flat-foot walking with the exoskeleton Atalante.

We believe that our method offers a new scope of applica-
tions, such as reinforcement learning, perturbation recovery,
or path replanning. Enabling adaption of the architecture of
the neural network itself to further improve its efficiency and
usability is an exciting direction for future work.
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[10] H. Daumé III, J. Langford, and D. Marcu, “Search-based structured
prediction,” Machine Learning, 2009.

[11] S. Ross, G. J. Gordon, and J. A. Bagnell, “A reduction of imitation
learning and structured prediction to no-regret online learning,” The
Journal of Thoracic and Cardiovascular Surgery, vol. 147, no. 5, pp.
1488–1492, 2010.

[12] J. A. Bagnell and S. Ross, “Efficient reductions for imitation learning,”
in 2010 30th International Conference on Artificial Intelligence and
Statistics (AIStat), 2010.

[13] J. T. Abbeel and Pieter, “On a connection between importance
sampling and the likelihood ratio policy gradient,” 2016 29th Neural
Information Processing Systems Conference (NeurIPS), 2016.

[14] S. Levine and V. Koltun, “Variational policy search via trajectory
optimization,” 2013 26th Neural Information Processing Systems
Conference (NeurIPS), pp. 207–215, 2013.

[15] X. Da and J. Grizzle, “Combining trajectory optimization, supervised
machine learning, and model structure for mitigating the curse of
dimensionality in the control of bipedal robots,” The International
Journal of Robotics Research, vol. 38, no. 9, pp. 1063–1097, 2019.

[16] Z. Xie, G. Berseth, P. Clary, J. Hurst, and M. van de Panne, “Feedback
control for cassie with deep reinforcement learning,” 2018 IEEE
International Conference on Intelligent Robots and Systems (ICRA),
pp. 1241–1246, 2018.

[17] H. Kwakernaak and R. Sivan, Linear optimal control systems. Wiley-
interscience New York, 1972, vol. 1.

[18] M. Kelly, “An introduction to trajectory optimization: How to do your
own direct collocation,” SIAM Review, vol. 59, no. 4, pp. 849–904,
2017.

[19] C. R. Hargraves and S. W. Paris, “Direct trajectory optimization
using nonlinear programming and collocation,” Journal of Guidance,
Control, and Dynamics, vol. 10, no. 4, pp. 338–342, 1987.

[20] A. Hereid, E. A. Cousineau, C. M. Hubicki, and A. D. Ames,
“3D dynamic walking with underactuated humanoid robots: A direct
collocation framework for optimizing hybrid zero dynamics,” in 2016
IEEE International Conference on Robotics and Automation (ICRA).
IEEE, 2016.

[21] A. Hereid and A. D. Ames, “Frost∗: Fast robot optimization and
simulation toolkit,” in 2017 30th IEEE/RSJ International Conference
on Intelligent Robots and Systems (IROS). IEEE, 2017, pp. 719–726.

[22] J. Grizzle, A. Duburcq, O. Harib, S. Finet, G. Boeris, T. Gurriet, A. D.
Ames, M. Masselin, and A. Hereid, “Towards restoring locomotion for
paraplegics: Realizing dynamically stable walking on exoskeletons,”
in 2018 IEEE International Conference on Robotics and Automation
(ICRA). IEEE, 2018, pp. 2804–2811.

[23] F. Girosi, M. Jones, and T. Poggio, “Regularization theory and neural
networks architectures,” Neural computation, vol. 7, no. 2, pp. 219–
269, 1995.

[24] N. Srivastava, G. Hinton, A. Krizhevsky, I. Sutskever, and R. Salakhut-
dinov, “Dropout: a simple way to prevent neural networks from
overfitting,” The journal of machine learning research, vol. 15, no. 1,
pp. 1929–1958, 2014.

[25] H. Zou and T. Hastie, “Regularization and variable selection via the
elastic net,” Journal of the royal statistical society: series B (statistical
methodology), vol. 67, no. 2, pp. 301–320, 2005.

[26] S. Magnusson, P. C. Weeraddana, M. G. Rabbat, and C. Fischione,
“On the convergence of alternating direction lagrangian methods for
nonconvex structured optimization problems,” IEEE Transactions on
Control of Network Systems, 2016.

[27] R. Andreani, E. G. Birgin, J. M. Martı́nez, and M. L. Schuverdt, “On
augmented lagrangian methods with general lower-level constraints,”
SIAM Journal on Optimization, vol. 18, no. 4, pp. 1286–1309, 2007.

[28] D. P. Bertsekas, “Multiplier methods: a survey,” Automatica, vol. 12,
no. 2, pp. 133–145, 1976.

[29] ——, Constrained optimization and Lagrange multiplier methods.
Academic press, 1982.

[30] S.-P. Han and O. L. Mangasarian, “Exact penalty functions in non-
linear programming,” Mathematical Programming, vol. 17, no. 1, pp.
251–269, 1979.

[31] G. Di Pillo and L. Grippo, “Exact penalty functions in constrained
optimization,” SIAM Journal on control and optimization, vol. 27,
no. 6, pp. 1333–1360, 1989.

[32] J. C. Bezdek and R. J. Hathaway, “Convergence of alternating opti-
mization,” Neural, Parallel & Scientific Computations, vol. 11, no. 4,
pp. 351–368, 2003.

[33] M. Hong, Z. Q. Luo, and M. Razaviyayn, “Convergence analysis of
alternating direction method of multipliers for a family of nonconvex
problems,” in 2015 40th IEEE International Conference on Acoustics,
Speech and Signal Processing (ICASSP). IEEE, 2015.

[34] M. Hong and Z.-Q. Luo, “On the linear convergence of the alternating
direction method of multipliers,” Mathematical Programming, vol.
162, no. 1-2, pp. 165–199, 2017.

[35] W. I. Zangwill, Nonlinear programming: a unified approach.
Prentice-Hall Englewood Cliffs, NJ, 1969, vol. 196, no. 9.

[36] Z. Wojna et al., “The devil is in the decoder: Classification, regression
and gans,” International Journal of Computer Vision (IJCV), 2019.

[37] C. Dong, C. C. Loy, K. He, and X. Tang, “Image super-resolution using
deep convolutional networks,” IEEE transactions on pattern analysis
and machine intelligence, vol. 38, no. 2, pp. 295–307, 2015.

[38] H. Tachibana, K. Uenoyama, and S. Aihara, “Efficiently trainable text-
to-speech system based on deep convolutional networks with guided
attention,” in 2018 43th IEEE International Conference on Acoustics,
Speech and Signal Processing (ICASSP). IEEE, 2018, pp. 4784–4788.

[39] A. Odena, V. Dumoulin, and C. Olah, “Deconvolution and checker-
board artifacts,” Distill, 2016.

[40] A. Hereid, C. M. Hubicki, E. A. Cousineau, and A. D. Ames,
“Dynamic humanoid locomotion: A scalable formulation for hzd gait
optimization,” IEEE Transactions on Robotics, 2018.

https://www.wandercraft.eu/en/

	INTRODUCTION
	RELATED WORK
	PRELIMINARIES
	Trajectory Optimization Problem
	Trajectory Learning Problem

	GUIDED TRAJECTORY LEARNING
	Consensus Optimization Problem
	Alternating Direction Method of Multipliers
	Guided Trajectory Learning
	Convergence Analysis
	Deconvolution Neural Network as Function Approximation

	EXPERIMENTAL EVALUATION
	Experimental Setup
	Training
	Validation in reality on able-bodied people

	CONCLUSION AND FUTURE WORK
	References

