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2 Sorbonne Université, CNRS, Institut des Systèmes Intelligents et de Robotique, ISIR, F-75005 Paris, France
(E-mail: nicolas.bredeche@sorbonne-universite.fr)

Abstract: We are interested in programming a swarm of molecular robots that can perform self-assembly to form a
specific shapes at a specific location. Programming such robot swarms is challenging for two reasons. Firstly, the goal
is optimize both the parameters and the structure of chemical reaction networks. Secondly, the search space is both
high-dimensional and deceptive. In this paper, we show that MAP-Elites[5], an algorithm that searches for both high-
performing and diverse solutions, outperforms previous state-of-the-art optimization methods.
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1. INTRODUCTION

In this paper, we consider the challenge of automat-
ically programming a swarm of micro-robots (� 1000
robots). The micro-robots we consider are microscopic
agarose beads functionalized with bio-molecules (single
strand DNA of 12-24 base pairs) [3]. The beads form-
ing the body of the robots are small enough to move
through Brownian motion. The DNA functionalization
allows them to produce (a) chemical signals that may im-
pact the behavior of nearby beads and (b) an anchoring
signal that will attach them to their neighbors. Clusters
created from aggregated beads move slower or even stop,
based on their size. That property allows us to control
where the beads should go, which we use to create self-
assembled structures. Thanks to that scale and the low
price and availability of the molecular components, we
previously designed and validated in vitro a simple sys-
tem of a million micro-robots that self-assemble [1].

We previously introduced the BIONEAT algo-
rithm [1], inspired from state-of-the-art NEAT algo-
rithm [7]. BIONEAT aims at producing chemical re-
action networks (CRN) which represent bio-molecules to
be attached to beads or left floating in the 2-dimensional
substrate. Given a target for self-assembly (e.g., in
Fig. 1), the objective is that micro-robots assemble to one
another in the target area.

Though initial results are promising, this previous
work revealed an important limit of the BIONEAT al-
gorithm. Due to the complex search space, the algorithm
quickly converged to sub-optimal results even when rel-
atively simple assembled shape where considered (e.g.
self-assembling into a single region placed in the center
of the environment).

In order to tackle this, we introduce the use of MAP-
Elites [5], an illumination algorithm that favors explo-
ration over pure optimization, thus reducing the risk of
premature convergence during the search. We also im-
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plement a new mechanism, termed topological initializa-
tion that helps MAP-Elites to bootstrap exploration when
confronted with search spaces with large neutral regions.

The following, we describe the Methods, both in terms
of experimental setup, objective function and optimiza-
tion algorithms. Then, we present the results comparing
the original BIONEAT algorithm with MAP-Elites, and
show that the latter dominates both in quality and speed
of convergence.

2. METHODS

We consider a swarm comprised of molecular robots
made from spherical beads grafted with specific strands
of DNA. Those strands are of two types: (a) templates
used to capture signal DNA from the environment, pro-
cess it and produce signal back; (b) anchoring points,
which are used for aggregation when the anchoring sig-
nal is present. In this Section, we summarize the general
idea behind the model. A detailed description, including
a validation with in vitro experiments, can be found in our
previous work [1].

2.1. Model
Processing and production of signals are based on the

PEN DNA toolbox [4]. Using this toolbox, signal strand
can attach to a compatible template and either triggers
the production of a different DNA strand (activation) or
prevents activation from other strands (inhibition). Signal
strands are spread in the environment through chemical
diffusion and are degraded over time through enzymatic
activity.

Robots move through Brownian motion: individual
robots move much faster than aggregated clusters, which
in turn may become completely immobilized when they
get large enough.

Beads are modelled as disks moving in the environ-
ment through Brownian motion. While the simulation is
2-dimensional, we consider that the beads are moving in
a 3-dimensional environment, which allows us to ignore



Fig. 1 Left: Simulation of an experiment where a swarm
of micro-beads (in blue) interact with their environ-
ment and self-aggregate. Two gradient sources, in
the top-left and top-right positions, are continuously
diffused isotropically in the environment. They are
shown respectively in red and green. Right: Tar-
get for self-assembly. Beads should aggregate in the
black area.

collisions. In presence of anchoring signal, beads have a
probability to aggregate. That probability is simulated by
implementing a Gillespie-like step: considering the cur-
rent concentration, it is possible to predict when the next
aggregation event will occur. If that event happens before
the next time step, aggregation is considered successful.
The reverse reaction, having a bead separating from an
aggregate, is computed the same way.

The local concentration of signal-producing species is
directly proportional to the number of beads at a given
point of space. That is, we sum the concentrations of
DNA molecules grafted on all the beads that are present.
Note that, due to the non-linearity of the enzymatic re-
actions involved, a linear increase in signal-producing
species does not necessarily mean a linear increase in
the production of signal species. Finally, the production,
diffusion, and degradation of signal species are modeled
through reaction-diffusion. For a given signal S, we have:

∂[S]

∂t
(t, x, y) = RS(t, x, y) + DS · ∆[S](t, x, y)

where [S] is the concentration of S, RS is the contribu-
tion from reactions (e.g., production or degradation), DS

is the diffusion coefficient of S and ∆ is the Laplacian
operator.

We define a target for self-assembly corresponding to
the black area shown in Fig. 1. It is composed of a sin-
gle line at the top position of the arena. Our objective
is for the micro-beads to self-assemble into the target
area, shown in black, starting from their initial random
positions. Two fixed gradient sources are arranged in
the top-left and top-right positions in the arena (Fig. 1
left). They each emit a respective type of signal strand
that diffuse throughout the environment. They provide
the micro-beads information about their localization, po-
tentially inducing self-assembly. As the gradients diffuse
isotropically, self-assembling into straight patterns can be
difficult.

We quantify the performance of a simulation by using
the method described in [1]. The experimental arena is

discretized into a N ×N matrix of cells, with N = 160.
This allows to compute the following match-nomatch
score:

f =
∑

(x,y)∈T

r ∗B(x, y)

︸ ︷︷ ︸
reward term

−
∑

(x,y)/∈T

p ∗ ea∗d(x,y) ∗B(x, y)

︸ ︷︷ ︸
penalization term

with T the set of (x, y) positions in the target area, r
a reward parameter, B(x, y) a Boolean function of the
presence of micro-beads at position (x, y), d the distance
of a cell towards the closest position in T and a a scal-
ing parameter. Individual are rewarded according to the
number of cells within T and penalized for cells outside
of T , with penalization increasing with distance to the
target area. Table 1 lists the parameters used for simu-
lation and fitness computation. In order to take into ac-
count noise during evaluation, each candidate solution is
reevaluated 5 times to provide a reliable estimation of its
performance.

Individuals are deemed valid only if their respective
topology matches the requirements of Table 2 in term of
number of nodes and number of activation and inhibition
templates.

2.2. Optimization
We rely on two methods to optimize the structure of

chemical reaction networks: BIONEAT and Map-Elites.
BIONEAT is an evolutionary algorithm we first intro-

duced in [1]. It takes inspiration from the famous state-
of-the-art NEAT algorithm [7], which was originally de-
signed to optimize artificial neural networks. BIONEAT
uses specific variation operators to navigate the search
space of chemical reaction networks. It is also capable
to protect innovation, that is to explore several regions of
the search space simultaneously, balancing between nov-
elty of a particular design and the quality of solutions.
We previously showed that BIONEAT provides efficient
solutions for targets comprised of a single regions (hor-
izontal or vertical lines, see [1] for details). The main
limit of BIONEAT is that while it can protect innovation
for some time, there is not guarantee that it is capable of
escaping completely the curse of premature convergence

Table 1 Simulations and fitness parameters.

Simulation Parameter Value
Arena size 1mm× 1mm
Beads 500
Bead size (aggregation) 50µm
Bead size (Brownian motion) 5µm
Temperature 43◦C
Grid size 160× 160
Time discretization 0.1 min per step
Simulation duration 1000 steps (i.e., 100 min)
Target width 0.20mm (20% of arena width)
Fitness Parameter Value
r (reward) 1.0
p (penalty) 0.2
a (scaling) 0.1



due to the pressure for optimizing towards (possibly only
temporary) better solutions.

BIONEAT searches through CRN topologies itera-
tively. This behavior is inherited from NEAT that pos-
tulated that iterated small changes in topologies would
often only result in a mild effect on the fitness values.
It may not be the case with CRN , where small changes
in topology can have severe effects in fitness values, a
particular trait of deceptive and hard-explore problems.
This may explain why BIONEAT is prone to premature
convergence during optimization, as it does not possess a
way to explore a totally unexplored niche in the space of
topologies. While this aspect is partially mitigated with
BIONEAT mechanism of speciation, which allows the
parallel optimization of several topological niches, it does
not enforce the discovery of totally novel niches. Worst,
as new species are only created through atomic mutations
(i.e., change only a small part of the topology), the sur-
viving species may contains individuals with very similar
topologies, possibly in the same topological niche.

In order to favor exploration over pure optimization,
we rely on MAP-Elites [5], which is an illumination al-
gorithm (also sometimes referred to as Quality-Diversity
algorithm [6]) that decomposes the search space into re-
gions based on feature descriptions. It considers how
does a candidate solution look like in the phenotypic
space instead of considering how it is coded in the
genotypic space. This method is particularly suited to
cope with multi-modal, deceptive, hard-explore and ill-
defined problems where traditional optimization algo-
rithms would be prone to premature convergence, as in
evolutionary robotics [5]

MAP-Elites iteratively regroups the explored solutions

Table 2 Parameters of BIONEAT and MAP-Elites.

Optimization Parameter Value
Evaluation Budget 3000
Number of retrials per individuals 5
Maximal number of activation nodes 6
Maximal number of activation templates 7
Maximal number of inhibition templates 7

BIONEAT Parameter Value
Target number of BIONEAT species 20
Population Size 50
Number of templates 1 − 13

MAP-Elites Parameter Value
Shape of the grid 7
Batch size 50
Number of elites per grid bin 1
Number of templates 7 − 13

Mutation operator Probability
Parameter mutation 0.80
Add template strand 0.05
Remove template strand 0.05
Add signal species 0.05
Add inhibition species 0.05

in a grid of elites. This results in a collection of high-
performing individuals across a number of features se-
lected by the user, corresponding to the axes of the grid.
Here, we only consider a single feature corresponding to
the total number of templates in the topology of an indi-
vidual. CRN with smaller number of templates are easier
to test experimentally but lose expressivity. Conversely,
large-sized CRN can describe more complex behaviors,
which may be necessary for the beads to successfully
self-aggregate into the target shape. As such, a trade-off
in term of topology complexity has to be considered, pos-
sibly after the optimization process. This substantiates
methodologies that concurrently search for topologies of
differing sizes.

MAP-Elites is equipped with the same set of muta-
tion operators as BIONEAT, and also retains its capabil-
ity to optimize iteratively the topologies. We describe a
novel methodology to bootstrap MAP-Elites exploration
by initializing a collection of individuals with random
topologies. This approach allows MAP-Elites to consider
a large number of differing topologies from the start. It
makes use of the BIONEAT mutation operators to gen-
erate individuals of varying topologies across a range of
number of templates. In one optimization run, 10% of the
individuals are initialized with a random topology (i.e.,
300 individuals for an evaluation budget of 3000). This
contrasts with the BIONEAT approach, where only small
iterative changes in topologies are possible from muta-
tions, and where individuals with totally new topologies
are not initialized.

Table 2 lists the chosen parameters for the MAP-
Elites algorithm. We use our own implementation
of BIONEAT and MAP-Elites. BIONEAT is open
source and available from https://bitbucket.
org/AubertKato/bioneat/. MAP-Elites is coded
in Python using the QDpy library [2] and freely available
as open source software at https://gitlab.com/
leo.cazenille/qdpy. All additional scripts used
in this paper are available at https://bitbucket.
org/leo-cazenille/daccad-qd.

3. RESULTS

The BIONEAT and MAP-Elites algorithms are used
to optimize CRNs on the target described earlier, with a
budget of 3000 evaluations per run, and with 16 repli-
cates.

For each setting, the evolution of fitness values during
16 optimization runs are presented in Fig. 2. As shown in
the Figure, MAP-Elites dominates BIONEAT in both per-
formance and speed of convergence during the course of
optimization. This is confirmed by an additional experi-
ment, comparing methods using the best individuals from
each run of each method (16 individuals per method).
We used a Mann-Whitney U test on the distribution of
fitness of their respective best individuals. Results are
summarized in Table 3. Again, MAP-Elites dominates
BIONEAT, with a p value of 10 − 6 (Mann-Whitney U
Test).



Figure 3 shows the final state of a full simulation
of the best-performing solutions for each optimization
method. For clarity, only the anchoring signal is repre-
sented, corresponding to large self-assembled clusters of
micro-beads.
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Fig. 2 Evolution of the median quality of the
best-performing individuals for each method (BN:
BIONEAT; ME: MAP-Elites). Optimization meth-
ods are tested across 24 different runs. A fitness of
1.0 corresponds to the best performance. The darker
shade represents the 25 to 75 percentiles. The lighter
shade encompasses the minimal and maximal values.
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Fig. 3 Examples of final states obtained by the best-
performing individuals optimized by both optimiza-
tion methods

Table 3 Fitness scores of the best-performing
individuals for BIONEAT and MAP-Elites, across 100

retrials.

BIONEAT 0.71 ± 0.03

MAP-Elites 0.87 ± 0.03

4. DISCUSSION AND CONCLUSION
We introduced the MAP-Elites algorithm to optimize

chemical reaction networks of a swarm of bio-micro-

robots to self-assemble into a target shaped target. While
MAP-Elites is originally a quality-diversity algorithm
that emphasize exploration over exploitation, we showed
that the incentive for exploration can directly benefits op-
timization in a setting involving complex interaction be-
tween micro-robots.

As short term perspectives, we are investigating the
benefits of using MAP-Elites for more complex target
shapes. In particular, we propose to refine MAP-Elites’
feature descriptors to capture useful phenotypical traits at
the level of the robot swarm, so as to guide exploration
towards relevant behavioural patterns.

Secondly, the current simulator we use is highly reli-
able with respect to simulating real chemical reactions,
but results in a high computational cost. We aim to tackle
this problem by introducing a surrogate model to trade
speed over accuracy. As such approximation cannot cap-
ture the details of real chemistry, we propose to mix the
use of surrogate model and realistic simulation to speed
up optimization while retaining high quality solution.
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