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Abstract. During the last two decades, various models have been pro-
posed for fish collective motion. These models are mainly developed to
decipher the biological mechanisms of social interaction between animals.
They consider very simple homogeneous unbounded environments and it
is not clear that they can simulate accurately the collective trajectories.
Moreover when the models are more accurate, the question of their scal-
ability to either larger groups or more elaborate environments remains
open. This study deals with learning how to simulate realistic collective
motion of collective of zebrafish, using real-world tracking data. The ob-
jective is to devise an agent-based model that can be implemented on
an artificial robotic fish that can blend into a collective of real fish. We
present a novel approach that uses Quality Diversity algorithms, a class
of algorithms that emphasise exploration over pure optimisation. In par-
ticular, we use CVT-MAP-Elites [32], a variant of the state-of-the-art
MAP-Elites algorithm [25] for high dimensional search space. Results
show that Quality Diversity algorithms not only outperform classic evo-
lutionary reinforcement learning methods at the macroscopic level (i.e.
group behaviour), but are also able to generate more realistic biomimetic
behaviours at the microscopic level (i.e. individual behaviour).

1 Introduction

Many models have been proposed for fish collective behaviours and motion [24,
30, 13]. At an early stage, they were developed to model realistic collective mo-
tion in computer simulation [28]. Nowadays, most of the models are developed
to decipher the interaction rules of the animals and not to replicate their be-
haviour in autonomous agents be them robots or simulations. It is not clear that
they can be used to produce a realistic description of fish collective interactions
with collective trajectories [19] similar to the observations. Moreover, most of
the models consider an unbounded homogeneous space that could be the case
in pelagic conditions but not in bounded and in-homogeneous environments.



Only a few models consider the walls of the tanks that have a important effect
on the fish [21, 9, 3]. In the robotic context, developing bio-mimetic and realis-
tic fish behavioural models that can be implemented in robots are difficult to
develop [6, 5]. These issues are related: (i) how can we develop models produc-
ing good descriptions of fish collective behaviours and (2) that, when used as
controllers, allow fully autonomous agents (robots, simulations) to cope with
bounded inhomogeneous environments and social interactions?

For this type of question, currently two kind of modelling methods are pur-
sued to simply take into account the tank walls and the social context. The first
one is equation-based. Equations for the motion of the individuals are devel-
oped and calibrated on experimental data [21, 3]. It has been shown that they
give excellent results for groups of two fish (Hemmigramus blerei) in a circular
bounded environment [3]. It remains to demonstrate that such method is scal-
able for groups made of more than two individuals and more elaborate set-ups.
The second kind of modelling technique is agent based. For example, we have
developed agent based models that take into account bounded in-homogeneous
environment and the social context of the fish [9, 6]. However, agent based models
become rapidly complicated as the number of variables and parameters increases.
The scalability of this modelling technique remains also an issue.

Here we explore how to develop scalable effective models to generate robot
controllers producing realistic collective behaviours. We do not look for under-
standing specific collective behaviour mechanisms. In recent works, we explored
the use of artificial neural network models (multilayer perceptrons) to gener-
ate realistic collective motion and trajectories of a group of five zebrafish in
a bounded environment [7, 8]. We compared supervised learning and reinforce-
ment learning techniques to optimise the behaviour of artificial Zebrafish, so that
they would match the trajectories obtained from real-world experimental data.
In this setup, learning a behavioural model is challenging because of the contin-
uous state and action spaces as well as the lack of a world model. We showed
that evolutionary reinforcement learning, i.e. a direct policy search method [31,
34], can be used to obtain relevant fish trajectories with respect to individual
and collective dynamics, and outperforms results obtained by supervised learn-
ing. We also showed that while multi-objective evolutionary optimisation using
NSGA-III [35] could provide different results over single objective optimisation
using CMA-ES [1], the overall quality of trajectories generated is limited by
the multiple aspects of behavioural dynamics to be captured simultaneously:
wall-following, aggregation, individual trajectories and group dynamics. As a
result, we showed that while the global biomimetic score (i.e. the aggregation
of all criteria) is improved with these methods, there is no guarantee that all
behavioural features will be optimised. In other words, generated trajectories
may display unrealistic behaviours, such as low alignment between individuals
or erratic wall-following behaviours, while matching real world data in term of
inter-individual distances.

In order to improve the quality of biomimetic behavioural strategies, we pro-
pose to favour exploration over pure optimisation by using Quality-Diversity



(QD) algorithms [27, 12]. These algorithms are particularly successful in evo-
lutionary robotics problems [25, 11, 15], either by improving diversity to over-
come deceptive search spaces [23], or by generating a large repertoire of so-
lutions instead of just one single solution [25]. In the current setup (Fig. 1),
we enforce diversity to guide the search by exploring trade-offs between overall
quality, which results from aggregating different criteria, and unique realistic
behavioural traits, which focus on specific behavioural features, in this case:
(1) inter-individual distances between agents, (2) polarisation of the agents in
the group, (3) distribution of agent linear speed and (4) probability of pres-
ence in the arena. We use CVT-MAP-Elites [32], a variant of the MAP-Elites
algorithm [25] using centroidal Voronoi tessellations to tackle high-dimensional
feature spaces. CVT-MAP-Elites makes it possible to explore a range of both
diverse and high-performing solutions by partitioning the search space into ge-
ometric regions according to features predefined by the user. It is then possible
to find solutions that can be very different from one another.

We show that CVT-MAP-Elites outperforms state-of-the-art evolutionary
optimisation methods (CMA-ES and NSGA-III) for revealing biomimetic be-
havioural strategies in a fish collective. Even more interestingly, we show that
trajectories generated by individuals obtained with CVT-MAP-Elites are also
more realistic (when compared to actual data from the fish) at the microscopic
scale, with realistic behaviours at the level of the individuals. Quality Diversity
algorithms offer a promising alternative to classical evolutionary optimisation
and reinforcement learning algorithms with respect to learning biomimetic con-
troller for artificial fish.

2 Methods

Experimental set-up

We apply the same experimental method, fish handling and set-up as in [6, 29,
7, 8]. During experiments, fish are placed in an immersed square white plexiglass
arena of 1000 × 1000 × 100 mm. An overhead camera records a video of the
experiment at 15 FPS with a 500 × 500px resolution. It is them analysed to
track the fish positions. Experiments were carried out with 10 groups of 5 adult
(6-12 months old) wild-type AB zebrafish (Danio rerio) in ten 30-minutes trials
as in [6, 29]. Experiments conduced in this study were performed under the
authorisation of the Buffon Ethical Committee (registered to the French National
Ethical Committee for Animal Experiments #40) after submission to the French
state ethical board for animal experiments.

Artificial neural network model

Artificial neural networks (ANN) are universal function approximators able to
model phenomena with a priori information. They were used in previous stud-
ies [7, 8, 20] to model fish collective behaviour and generate biomimetic trajecto-
ries of fish in groups. However this problem is challenging, and it is still possible
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Fig. 1: Description of the presented methodology to calibrate artificial neu-
ral networks to generate fish trajectories. We apply CVT-MAP-Elites [32], a
quality-diversity algorithm [27], to optimise the weights of a Multilayer Percep-
tron (MLP, 1 hidden layer, 10 neurons) that drive 5 fish-like agents in simula-
tions. Simulated agents trajectories are compared to experimental fish trajec-
tories. The fitness function corresponds to the biomimetism score of simulated
agent groups. CVT-MAP-Elites is compared to CMA-ES [1] as in [7, 8].

to improve upon the biomimetism of resulting trajectories. Our methodology
builds on Cazenille et al. [8] and calibrates Multilayer Perceptron (MLP) [2]
artificial neural networks to drive simulated fish-like agents in groups of 5 indi-
viduals. All simulations involve 5 simulated agents driven by the optimised MLP
(see workflow on Fig 1).

MLP are a class of feedforward artificial neural networks. They can be em-
ployed in a wide variety of modelling and control tasks [26]. As in [7, 8], our
approach uses MLP with one hidden layer of 10 neurons with a hyperbolic tan-
gent activation function. We use this simple and limited ANN as a baseline for
bench-marking the various optimisation algorithms.

Table 1 lists the parameters used as inputs and outputs of the MLP con-
trollers for each simulated focal agent. The 20 inputs parameters are often used
in multi-agent models of animal collective behaviour [13, 30], and can arguably
be considered to be sufficient to model fish groups trajectories. As we consider
fish trajectories observed in a bounded environment, we also take into account
the presence of walls, which is often ignored in models of fish behaviour, and
only found in a small number of recent studies [9, 3, 7, 6, 8].

Data analysis

As in [7, 8], we analyse the tracked positions of agents in each trial e (experiments
or simulations) and compute several behavioural metrics: (i) the distribution of



Name #Param. Description
Linear speed 1 Instant linear speed of the FA at the prev. time-step
Angular speed 1 Instant angular speed of the FA at the prev. time-step
Distance towards agents 4 Linear dist. from the FA towards each other agent
Angle towards agents 4 Angular dist. from the FA towards each other agent
Alignment (angle) 4 Angular dist. between the FA heading and other agent heading
Alignment (linear speed) 4 Difference of linear speed between the FA and other agent

linear speed
Distance to nearest wall 1 Linear dist. from the FA towards the nearest wall
Angle towards nearest
wall

1 Angular dist. from the FA towards the nearest wall

Name #Param. Description
Delta linear speed 1 Change of inst. linear speed of the FA from the prev. time-step
Delta angular speed 1 Change of inst. angular speed of the FA from the prev. time-

step

Inputs

Outputs

Table 1: List of the 20 parameters used in inputs and of the 2 parameters used
as outputs of the neural network models of agent behaviour. Here, FA refers to
the focal agent.

inter-individual distances between agents (De); (ii) the distributions of instant
linear speeds (Le); (iii) the distribution of polarisation of the agents in the group
(Pe); (iv) the probability of presence of agents in the arena (Ee). The polarisation
of an agent group assesses the extent to which fish are aligned. It corresponds to
the absolute value of the mean agent heading: P = 1

N

∣∣∑N
i=1 ui

∣∣ where ui is the
unit direction of agent i and N = 5 is the number of agents [33]. Recent studies
introduced more complex metrics to assess fish behaviour, like 2D features maps
of neighbours compared to a focal fish used in [22, 18]. Our approach here aims
to provide a simple methodological baseline, so we only take into account simple
and established behavioural metrics like polarisation and inter-individual dis-
tances. While more complex metrics based on 2D features maps could describe
more accurately fish collective dynamics, they may also require quantities with
higher dimensionality than simple metrics, which may make their synthesis into
behavioural scores more difficult.

We quantify the realism of the simulated fish groups by computing a biomimetism score
of their behaviour, as in [6–8]. It measures the similarity between behaviours ex-
hibited by the simulated fish group and those exhibited by the experimental fish
averaged across all 10 experimental trials (Control case ec). This score ranges
from 0.0 to 1.0 and is defined as the geometric mean of the other behavioural
scores:

S(e, ec) = 4
√
I(Le, Lec)I(De, Dec)I(Pe, Pec)I(Ee, Eec) (1)

The function I(X,Y ) is defined as such: I(X,Y ) = 1−H(X,Y ). The H(X,Y )
function is the Hellinger distance between two histograms [14]. It is defined as:

H(X,Y ) = 1√
2

√∑d
i=1(
√
Xi −

√
Yi)2 where Xi and Yi are the bin frequencies.

As opposed to [8], we do not take into account the distribution of angular speeds



in the computation of the fitness. Indeed, the distributions of angular speeds of
evolved individuals was always similar to the ones from random individuals.
Thus, we removed this behavioural metrics from the features taken into account
to reduce the dimensionality of the feature space.

Optimisation and illumination

We calibrate the weights of the MLP models driving agent behaviour to approx-
imate as close as possible the trajectories and behaviours of groups of 5 fish-like
agents, as in [7, 8, 5]. Simulations have a duration of 30 minutes (15 time-steps
per seconds, i.e. 27000 steps per simulation).

In previous studies [7, 8], we optimised these MLP controllers using evolu-
tionary algorithms: CMA-ES [1] and NSGA-III [35].

Here, we use the CVT-MAP-Elites [32] QD algorithm, a variant of the popu-
lar MAP-Elites [25] algorithm, to search for interesting MLP controllers match-
ing experimental fish trajectories across a user-provided space of features. The
family of Map-Elites algorithms is based on the idea of exploring a clustered
search space, retaining the best candidate solutions for each cluster. Clusters
correspond to specific range of values for pre-defined features and each candidate
solution is stored in a cell of a so-called map, which corresponds to its cluster.
The seminal MAP-Elites algorithm uses a pre-defined clustering of the feature
space, with the number of clusters (or ”bins”) quickly exploding as the number of
feature dimensions considered grows. In order to tackle high-dimensional feature
space, the CVT-MAP-Elite algorithm defines clusters as centroids of Voronoi
tesselation, where centroids can be automatically positioned during exploration.

In our case, these features correspond to the four behavioural metrics Le,
De, Pe, Ee presented earlier. CVT-MAP-Elites is capable of handling high di-
mensional feature spaces (like our case) by using centroidal Voronoi tessellations
to reduce the dimensionality of the feature space. Here, the CVT-MAP-Elites
case only consider 32 bins of elites, which is far lower as what would be used
with MAP-Elites in a reasonable configuration (e.g. with 32 bins per features, it
would correspond to a grid with 32×32×32×32 = 33554432 bins of elites). We
selected empirically 32 bins of elites in the CVT-MAP-Elites methods because
it produced the best-performing results among tested numbers of bins.

We compare the generated trajectories using CVT-MAP-Elites with previous
results from [7, 8] where MLP controllers were optimised by the CMA-ES [1].
CMA-ES is a popular mono-objective global optimiser capable of handling prob-
lems with noisy, ill-defined fitness function.

In all cases, the algorithms aim to maximise the biomimetism score (Seo,ec)
of MLP-driven agents in simulations (eo) compared to experimental fish groups
(ec). Both cases are tested in 10 different trials with the same budget of objective
function evaluation (one simulation corresponds to one function evaluation):
60000 evaluations. The CVT-MAP-Elites case involves 6000 evaluations in the
initial batch, and 450 batches of 120 individuals. The CMA-ES case involves 500
generations of 120 individuals.
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Fig. 2: Agent trajectories in the square (1m) experimental arena after 30-minute
trials, for all considered cases: Control reference experimental fish data ob-
tained as in [9, 29], CVT-MAP-Elites and CMA-ES corresponding to simu-
lated MLP-driven agents. A Examples of an individual trajectory of one agent
among the 5 making the group (fish or simulated agent) during 1 minute out of
a 30-minute trial. B Presence probability density of agents in the arena.
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Fig. 3: Similarity scores between the trajectories of the experimental fish groups
(Control) and those of the best-performing simulated individuals optimised by
CVT-MAP-Elites or CMA-ES. All cases are tested across 10 different trials (ex-
periments or simulations). Four behavioural features are considered to quantify
the realism of exhibited behaviours. Inter-individual distances measures the
similarity in distribution of inter-individual distances between all agents and cor-
responds to the capabilities of the agents to aggregate. Linear speed distribu-
tion measures to the distributions of linear speeds of the agents. Polarisation
measures how aligned the agents are in the group. Probability of presence
corresponds to the density of agent presence in each part of the arena (cf Fig. 2B).
The Biomimetic score is computed as the geometric mean of the other scores.
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Fig. 4: Behavioural comparison between ten 30-minute trials of experimental
fish in groups of 5 and the 5-sized simulated fish groups for both tested cases.
The following behavioural features are examined: inter-individual distances (A),
linear (B) and angular (C) speeds distributions, polarisation (D), and distances
to nearest wall (E). Note that distributions of angular speeds and distances to
nearest wall are informative and not used in the calibration process.



We use a CVT-MAP-Elites implementation from the QDpy (Quality Diver-
sity in Python) framework [4]. The CMA-ES implementation is based on the
DEAP library [16].

3 Results

We analyse the behaviour of the simulated agent groups for the CVT-MAP-Elites
and CMA-ES cases and compare them with the behaviour of experimental fish
groups (Control case). In both cases, the agents are driven by MLP controllers,
calibrated either by CVT-MAP-Elites or with CMA-ES to match as close as
possible the behaviour of experimental fish across the behavioural metrics pre-
sented above. Each case is repeated in 10 trials and the following statistics only
consider the best-evolved MLP controllers.

Figure 2A provides examples of agents trajectories. In the control case, fish
tend to follow walls but retain a capability to go to the center of arena. This
is also observed in trajectories from both MLP-driven cases. However, they also
incorporate patterns not found in actual fish trajectories. Small circular loops
can appear in both cases. A small periodic ”shaking” is present in the trajecto-
ries of the CMA-ES case. Conversely, the trajectories of the CVT-MAP-Elites
appear smoother and match more closely those of the experimental fish. This
suggests that CVT-MAP-Elites is more realistic at the microscopic level of agent
trajectories. Figure 2B presents the mean probability of presence of all agents in
the arena for all cases.

We assess the realism of the two tested cases by computing the behavioural
metrics presented in Sec. 2. These metrics serve as a base to compute similarity
scores between the tested cases and experimental fish behaviour (Fig. 3). Both
simulated cases display lower similarity scores than the experimental fish groups.
Based on a comparison of the best solutions found by both algorithms, CVT-
MAP-Elites outperforms CMA-ES with statistical significance (p-value=0.0227
using the Mann-Whitney U-test). The best solution found by CVT-MAP-Elites
also dominates all solutions found with CMAE-ES (best fitness: 0.724 with CVT-
MAP-Elites vs. 0.704 with CMA-ES).

However, the controllers optimised by the two methods prioritise different
features. The CVT-MAP-Elites case shows higher scores on inter-individual dis-
tances and polarisation than the CMA-ES case. In turn, CMA-ES exhibits higher
probability of presence scores than the CVT-MAP-Elites case. Scores of linear
speeds are roughly similar between the two cases. Overall, it means that the con-
trollers optimised by the two methods exhibit different kind of behaviours and
way of coping with the trade-offs between fish aggregative and wall-following
behaviours. In term of group dynamics, the solutions of the CVT-MAP-Elites
case are more cohesive than what is seen in the CMA-ES case, which evolves
controllers that are more biased towards wall-following than group aggregation.

Histograms of all behavioural metrics are shown for all cases in Fig. 4, with
two complementary metrics: the distribution of angular speeds (Fig. 4, related
to polarisation) and distance to nearest wall (Fig. 4, related to probability of



presence). They confirm the results from Fig. 3. The distributions of angular
speed (Fig. 4C) of both cases are sub-optimal in term of realism. Figure 4E
displays that simulated agents of both cases tend to exhibit correctly a wall-
following behaviour.

The experimental fish groups of the Control case display a large behavioural
variability across all investigated metrics (Fig. 3 and 4). Indeed, experiments
were conduced with 10 groups of 5 fish (totalling 50 different fish) displaying
disparate behaviours and individual preferences. This matches results from pre-
vious zebrafish collective behaviours studies [29, 10]. Social (group composition)
and environmental contexts impact fish behaviour: fish tend to aggregate in small
short-lived sub-groups that follow walls from a distance that vary according to
group composition. They also tend to exhibit an uniform degree of alignment
within sub-groups.

4 Discussion and Conclusion

Calibrating artificial neural networks to model the collective behaviour of fish
group and generate realistic fish trajectories is a challenging problem because
fish behaviours involve several complementary dynamics with trade-offs between
group-level dynamics (aggregative tendencies, group alignment), individual-level
behaviours (agent linear speed) and response to environmental cues (wall-following
behaviour, probability of presence in the arena). It is difficult to balance these
conflicting behaviours during the calibration process.

Here, we show that the CVT-MAP-Elites [32], a quality diversity method that
emphasises exploration over pure optimisation, calibrates controllers that are
more realistic in term of agent groups polarisation and inter-individual distances
when compared to previous results using stochastic optimisation methods such
as the CMA-ES evolutionary method [7, 8]. Moreover, QD algorithms also have
the advantage of exploring a range of diverse solutions instead of searching for
a single local optimum, and could be used to decipher the interrelation between
features and behavioural biomimetism in order to draw biological conclusions.

Our approach could still be improved further, either by taking into account
more behavioural metrics (tangential and normal accelerations, curvature or
tortuosity) or by using more complex artificial neural networks than MLP, such
as recurrent neural networks or deep neural networks.

Additionally, our methodology could be adapted to make possible to derive
biological conclusions from the calibrated ANN models. ANN can be used as
benchmarks to find the necessary information in experimental data to replicate
experimental fish behaviour. Recently, Heras et al. [17] hinted at the possibility
of this approach to decipher the interaction mechanism in large zebrafish groups.
It remains to be shown that such ANN models can also produce collective tra-
jectories similar to those observed experimentally. If it is shown to be the case,
best-performing agents optimised through such methodology could be used as
controllers to drive the behaviour of robots interacting experimentally with fish
to study their collective dynamics.
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