A ⁴³Ca NMR perspective on octacalcium phosphate and its hybrid derivatives

Danielle Laurencin,^{1*} Yang Li,² Melinda J. Duer,² Dinu Iuga,³ Christel Gervais,⁴ Christian Bonhomme^{4*}

¹ICGM, Univ Montpellier, CNRS, ENSCM, Montpellier, France.

² Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge, Cambs, CB2 1EW, United Kingdom.

³ Department of Physics, University of Warwick, Gibbet Hill Road, Coventry CV4 7AL, United Kingdom.

⁴ LCMCP - Laboratoire de Chimie de la Matière Condensée de Paris, Sorbonne Université, 4 place Jussieu, 75252 Paris Cedex 05, France.

Table S1. *Natural abundance* ⁴³Ca MAS NMR experimental parameters for OCP and OCP intercalated hybrids (D1: recycle delay, NS: number of scans).

Table S2. Selected Ca...H and Ca...P distances for all eight crystallographically inequivalent calcium sites (noted Ca_n, with n = 1, 3, 5, 7, 9, 11, 13, 15) in OCP (distances are given in Å, geometry optimized at the DFT level)). In blue: the shortest Ca...H distance, in yellow: the shortest Ca...P distance.

Table S3. Selected P...Ca distances for all phosphorus sites (P1 to P6) in OCP (distances are given in Å). The P...Ca distances are highlighted in yellow.

Figure S1. (a) ⁴³Ca{¹H} REDOR (with ⁴³Ca detection) and (b) ³¹P{⁴³Ca} CP REAPDOR (with ³¹P detection) pulse sequences. L₀ corresponds to the number of recoupling loops. T_R corresponds to the rotor period.

Figure S2. ⁴³Ca{¹H} REDOR experiment for *HAp (20.0 T, 14 kHz MAS). Blue spectrum (S₀): ⁴³Ca spin echo, green spectrum (S): REDOR dephased echo, for 24 recoupling loops. L₀ is defined in Figure S1a.

Figure S3. ³¹P{⁴³Ca} CP REAPDOR experiment for *HAp (20.0 T; 14 kHz MAS). Blue spectra (S₀): ³¹P CP-echo, with echo delays increasing from bottom to top, green spectra (S): REAPDOR dephased echoes, for 10, 20, 40 and 60 recoupling loops L_0 (as defined in Figure S1b).

Figure S4. ³¹P{⁴³Ca} CP REAPDOR experiment for *OCP (20.0 T; 14 kHz MAS). Blue spectrum (S₀): ³¹P CP-echo; green spectrum (S): REAPDOR dephased echo for 20 recoupling loops (see Figure S1b for the definition of L₀). We mention that the ³¹P CP spectrum presented here is somewhat different from the Bloch-decay spectrum presented in: Y. Li, D.G. Reid, M.J. Duer, J.C.C. Chan, *Solid State Nuclear Magnetic Resonance* **2018**, *95*, 1. Part of the differences are possibly due to isotropic ²J(⁴³Ca-³¹P) couplings (few Hz) and the large number of ⁴³Ca neighbors for each of the phosphorus sites.

Figure S5. GIPAW calculated $\delta_{iso.}$ (⁴³Ca) for all calcium sites in OCP (red dots) and OCP-citrate (blue dots) models *vs* the average Ca-O distance (with 2 different cut-offs, 2.7 and 2.9 Å). Three groups of ⁴³Ca isotropic chemical shifts are highlighted by red ovals (above 20 ppm, between 0 and 10 ppm, and below 0 ppm).

Figure S6. Analysis of the most extreme *calculated* $\delta_{iso.}$ ⁽⁴³Ca) values calculated for the five OCP-citrate models, showing the corresponding calcium local environments (including Ca...X distances). Ca: green, O: red, P: blue, C: black, H: light pink.

Table S1. *Natural abundance* ⁴³Ca MAS NMR experimental parameters for OCP and OCP intercalated hybrids (D1: recycle delay, NS: number of scans).

Sample	Signal	D1	NS	Total			
	enhancement			experimental			
				time			
ОСР	RAPT	0.5 s	137864	~ 20h			
OCP-citrate	multi-DFS	0.5 s	65500	~ 9h			
OCP-succinate	multi-DFS	0.5 s	65500	~ 9h			
OCP-formate	multi-DFS	0.5 s	65500	~ 9h			
OCP-adipate	multi-DFS	0.5 s	65500	~ 9h			
OCP-citrate/formate	multi-DFS	0.5 s	65500	~ 9h			

Table S2. Selected Ca...H and Ca...P distances for all 8 crystallographically inequivalent calcium sites (noted Ca_n, with n = 1, 3, 5, 7, 9, 11, 13, 15) in OCP (distances are given in Å). In blue: the shortest Ca...H distance, in yellow: the shortest Ca...P distance (geometry optimized at the DFT

level).

Cal	OF	2 27699	6.2	OF	2 252	10	CoF	021	2 24704		- 7	026	2 20077	Call	01	2 21020
Cal	03	2.37000	Cab	05	2.333	15	Cab	021	2.24794			020	2.30977	Ca9	01	2.31930
Cal	014	2.41387	Cas	053	2.354	09	Cas	025	2.35885	0	_a/	034	2.34521	Ca9	047	2.32703
Cal	043	2.42531	Ca3	Ca3 014		83	Ca5	055	2.43867	0	.a/	020	2.40317	Ca9	023	2.33833
Cal	015	2.45129	Ca3	047	2.3/1	21	Ca5	035	2.44170	0	La/	08	2.42810	Ca9	041	2.39154
Cal	053	2.45132	Ca3	043	2.444	/1	Ca5	057	2.48579	0	.a/	056	2.49011	Ca9	049	2.48853
Cal	047	2.52724	Ca3	015	2.512	02	Ca5	037	2.51845		la/	040	2.51812	Ca9	051	2.55/35
Cal	02	2.64489	Ca3	09	2.611	2.61186		H17	2.91355	(.a/	022	2.63194	Ca9	H5	2.73423
Cal	051	2.76049	Ca3	Ca3 049		57	Ca5	07	2.95994	C	la/	H24	2.91836	Ca9	013	2.75038
Ca1	011	2.85428	Ca3	P4	3.138	54	Ca5	H15	2.99606	C	.a7	P11	3.08482	Ca9	H3	2.89099
Ca1	P7	3.16379	Ca3	024	3.159	.15961		H13	3.10889	C	Ca7	H22	3.28359	Ca9	P2	3.12185
Ca1	P4	3.22671	Ca3	P2	3.281	12	Ca5	H19	3.12218	C	La7	050	3.35963	Ca9	044	3.27054
Ca1	P2	3.23046	Ca3	P7	3.319	91	Ca5	018	3.18256	C	Ca7	P5	3.43808	Ca9	P7	3.36127
Ca1	H6	5.39327	Ca3	H11	5.108	54	Ca5	P3	3.28372	C	Ca7	P8	3.45711	Ca9	P4	3.42814
							Ca5	P11	3.44455							
							Ca5	P5	3.66854							
Ca11	051	2.23811		Ca13	053	2.30069		Ca15	011	2.34090						
Ca11	049	2.25031		Ca13	057	2.33450		Ca15	09	2.34938						
Ca11	O33	2.27282		Ca13	O3	2.33759		Ca15	O16	2.39285						
Ca11	07	2.35658		Ca13	037	2.41335		Ca15	027	2.39951						
Ca11	043	2.49745		Ca13	041	2.46915		Ca15	023	2.43351						
Ca11	027	2.78822		Ca13	011	2.51266		Ca15	01	2.79331						
Ca11	05	2.88203		Ca13	09	2.60586		Ca15	05	2.93215						
Ca11	023	3.07836		Ca13	H5	2.74949		Ca15	03	2.97068						
Ca11	P6	3.09382		Ca13	H17	2.78874		Ca15	P1	3.18289						
Ca11	P1	3.11421		Ca13	H11	2.97343		Ca15	H5	3.18814						
Ca11	P3	3,17691		Ca13	НЗ	3.04217		Ca15	P3	3,31841						
Call	01	3 42160		Ca13	P4	3 13201		Ca15	H11	3 39164						
Ca11	C28	3 47542		Ca13	<u>ц10</u>	3 10164		Ca15	057	3 51114						
		2 50726		Co12	055	2 200/15		Co15	D10	2 52211						
	15	2 57706		Co12	222	2 22442		CollE	014	2 54292						
	FZ	3.57700		C-12	F2	3.32442		Call	014	5.54562						
(all	P/	5 74544		L a L K	P3	3 04/3/										

Table S3. Selected P...Ca distances for all phosphorus sites (P1 to P6) in OCP (distances are given

in Å). The P...Ca distances are highlighted in yellow.

P1	01	1.53506	P2	055	1.52231	P3	057	1.52633	P4	013	1.53906	P5	021	1.51899	P6	O33	1.51966
P1	O43	1.54167	P2	O49	1.54237	P3	07	1.53619	P4	09	1.54409	P5	019	1.52811	P6	031	1.52936
P1	023	1.54350	P2	051	1.54591	P3	03	1.55125	P4	011	1.54454	P5	026	1.52960	P6	027	1.55167
P1	O48	1.54611	P2	053	1.56278	P3	05	1.56109	P4	015	1.55140	P5	017	1.61772	P6	029	1.57936
P1	Ca11	3.11421	P2	Ca9	3.12185	P3	H11	2.52773	P4	Ca13	3.13201	P5	H1	2.23963	P6	H11	2.23511
P1	Ca2	3.16378	P2	047	3.22882	P3	Ca11	3.17691	P4	Ca3	3.13854	P5	H8	2.69921	P6	H5	2.52959
P1	O16	3.17828	P2	Ca1	3.23046	P3	Ca5	3.28372	P4	O53	3.17128	P5	H16	2.77961	P6	H1	2.63118
P1	Ca15	3.18289	P2	Ca3	3.28112	P3	Ca15	3.31841	P4	Ca1	3.22671	P5	Ca8	3.08487	P6	H23	2.78190
P1	Ca4	3.31990	P2	Ca13	3.32442	P3	029	3.49157	P4	Ca9	3.42814	P5	O20	3.39126	P6	H17	2.80124
P1	Ca10	3.36127	P2	H3	3.34137	P3	H13	3.54055	P4	Ca16	3.53211	P5	033	3.42391	P6	H21	2.92800
P1	Ca9	3.56781	P2	Ca8	3.45712	P3	Ca3	3.55661	P4	041	3.53214	P5	Ca7	3.43808	P6	Ca11	3.09382
P1	047	3.58806	P2	07	3.51076	P3	Ca13	3.64232	P4	Ca4	3.53451	P5	Ca6	3.44449	P6	H13	3.15134
P1	051	3.59277	P2	057	3.53038	P3	09	3.66817	P4	Ca2	3.57728	P5	O46	3.50296	P6	041	3.42270
P1	02	3.62195	P2	Ca11	3.57706	P3	Ca13	3.67348	P4	01	3.62572	P5	H15	3.66161	P6	039	3.42602
P1	Ca1	3.62398	P2	O39	3.57916	P3	Ca1	3.67576	P4	016	3.64560	P5	Ca5	3.66854	P6	03	3.43287
P1	Ca9	3.68345	P2	Ca11	3.59599	P3	011	3.70716	P4	010	3.67989	P5	H20	3.70767	P6	H3	3.44416
P1	O49	3.68832	P2	Ca5	3.74215	P3	O53	3.72073	P4	Ca15	3.69443	P5	031	3.72995	P6	017	3.56124
P1	Ca3	3.71006	P2	041	3.74787	P3	051	3.72711	P4	Ca15	3.72106	P5	O36	3.75412	P6	057	3.58275
P1	027	3.74708	P2	H5	3.88106	P3	O35	3.74819	P4	023	3.74962	P5	P11	3.92708	P6	H3	3.67373
P1	047	3.99215	P2	05	3.88682	P3	027	3.79614	P4	016	3.75865	P5	H14	3.95930	P6	Ca8	3.75604
			P2	H21	3.95345	P3	049	3.81178	P4	012	3.79699	P5	022	3.96761	P6	Ca15	3.75667
			P2	O3	3.96596	P3	O53	3.83556	P4	H5	3.80931	P5	H21	3.97856	P6	037	3.76425
						P3	Ca8	3.85360							P6	O39	3.80075
						P3	055	3.90019							P6	H8	3.83917
						P3	H17	3.94996							P6	019	3.90247
															P6	035	3.91076

Figure S1. (a) ${}^{43}Ca{}^{1}H$ REDOR (with ${}^{43}Ca$ detection) and (b) ${}^{31}P{}^{43}Ca$ CP REAPDOR (with ${}^{31}P$ detection) pulse sequences. L₀ corresponds to the number of recoupling loops. T_R corresponds to the rotor period.

(b)

Figure S2. ⁴³Ca{¹H} REDOR experiment for *HAp (20.0 T, 14 kHz MAS). Blue spectrum (S₀): ⁴³Ca spin echo, green spectrum (S): REDOR dephased echo, for 24 recoupling loops. L₀ is defined in Figure S1a.

Figure S3. ³¹P{⁴³Ca} CP REAPDOR experiment for *HAp (20.0 T; 14 kHz MAS). Blue spectra (S₀): ³¹P CP-echo, with echo delays increasing from bottom to top, green spectra (S): REAPDOR dephased echoes, for 10, 20, 40 and 60 recoupling loops L_0 (as defined in Figure S1b).

Figure S4. ³¹P{⁴³Ca} CP REAPDOR experiment for *OCP (20.0 T; 14 kHz MAS). Blue spectrum (S₀): ³¹P CP-echo; green spectrum (S): REAPDOR dephased echo for 20 recoupling loops (see Figure S1b for the definition of L₀). We mention that the ³¹P CP spectrum presented here is somewhat different from the Bloch-decay spectrum presented in: Y. Li, D.G. Reid, M.J. Duer, J.C.C. Chan, *Solid State Nuclear Magnetic Resonance* **2018**, *95*, 1. Part of the differences are possibly due to isotropic ²J(⁴³Ca-³¹P) couplings (few Hz) and the large number of ⁴³Ca neighbors for each of the phosphorus sites.

Figure S5. GIPAW calculated $\delta_{iso.}$ (⁴³Ca) for all calcium sites in OCP (red dots) and OCP-citrate (blue dots) models *vs* the average Ca-O distance (with 2 different cut-offs, 2.7 and 2.9 Å. Three groups of ⁴³Ca isotropic chemical shifts are highlighted by red ovals (above 20 ppm, between 0 and 10 ppm, and below 0 ppm).

Cut-off: 2.7 Å

Figure S6. Analysis of the most extreme *calculated* $\delta_{iso.}$ ⁽⁴³Ca) values calculated for the five OCP-citrate models, showing the corresponding calcium local environments (including Ca...X distances). Ca: green, O: red, P: blue, C: black, H: light pink.

