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Supplementary Methods: 26 

DOIs 27 

For computational reasons we split the extractions from the GBIF into 10 parts, accessible 28 

through the 10 followings DOI: 29 

GBIF.org (01 May 2020) GBIF Occurrence Download https://doi.org/10.15468/dl.z8kcad 30 

GBIF.org (01 May 2020) GBIF Occurrence Download https://doi.org/10.15468/dl.fyakne  31 

GBIF.org (01 May 2020) GBIF Occurrence Download https://doi.org/10.15468/dl.7u7dgx  32 

GBIF.org (01 May 2020) GBIF Occurrence Download https://doi.org/10.15468/dl.ske4qr  33 

GBIF.org (01 May 2020) GBIF Occurrence Download https://doi.org/10.15468/dl.bhfw37 34 

GBIF.org (01 May 2020) GBIF Occurrence Download https://doi.org/10.15468/dl.zy2nhr 35 

GBIF.org (01 May 2020) GBIF Occurrence Download https://doi.org/10.15468/dl.67dgze 36 

GBIF.org (30 April 2020) GBIF Occurrence Download https://doi.org/10.15468/dl.3b8bc8 37 

GBIF.org (30 April 2020) GBIF Occurrence Download https://doi.org/10.15468/dl.p5awfb 38 

GBIF.org (30 April 2020) GBIF Occurrence Download https://doi.org/10.15468/dl.kjv523 39 

Plant species selection 40 

We removed crop and ornamental species from this list, using an FAO reference list for 41 

crop species 42 

(http://www.fao.org/fileadmin/templates/ess/documents/world_census_of_agriculture/appendi43 

x4_r7.pdf) complemented by visual inspection of the list. We also considered invasive species 44 

separately; they were identified using the European Union list for invasive species 45 

(https://ec.europa.eu/environment/nature/invasivealien/index_en.htm), complemented by 46 

visual inspection. By definition, invasive species have increased in abundance/occupancy in the 47 
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recent past; this allowed us to check that occupancy trends as calculated below were able to 48 

detect these increases (Fig. S3). 49 

To homogenize taxonomy among these lists and our dataset, we used the GBIF backbone 50 

taxonomy, which is designed to avoid synonymy issues among datasets, all along the paper. 51 

Potential drivers of occupancy trends 52 

For each species, we calculated historical climatic indices for the six bioclimatic variables 53 

studied here. To do so, we averaged SCIs over 1951-1980 (i.e. stopping before the recent sharp 54 

temperature increase, Fig. S1a) for each species, weighting each year by the number of records 55 

of the given species. 56 

For nutrient (reflecting mainly nitrophily) and moisture preferences we used the Ellenberg 57 

Indicator Values (EIV) from France (Julve 1998), United-Kingdom (Fitter & Peat 1994), Italy 58 

(Pignatti et al. 2005), Czech Republic (Chytrý et al. 2018) and Germany (Ellenberg et al. 1992). 59 

All EIVs are on the same scale, but they are a relative measure of species preference, depending 60 

on the species assemblages used. As these species assemblages depend on the source, a given 61 

value can reflect distinct nutrient/moisture preferences among sources. Using species shared 62 

across EIV sources, we corrected biases among data sources, using the following formula: 63 

𝐸𝐼𝑉𝑥𝑠
′ = 𝐸𝐼𝑉𝑥𝑠

+
∑ 𝐸𝐼𝑉𝐵𝑎𝑠𝑒𝑓𝑙𝑜𝑟𝑗

−𝐸𝐼𝑉𝑥𝑗
𝑛
𝑗=1

𝑛
                                             (5) 64 

where 𝐸𝐼𝑉𝑥𝑠
 is the Ellenberg indicator value of species s in source x and n the number of 65 

species shared between the source x and Baseflor, which was used as a reference because it 66 

contains information for the largest number of species. Finally, for species present in several 67 

data sources we used the average corrected EIVs, over all sources. The whole procedure was 68 

performed independently for moisture and nutrient preferences. 69 



 

 

 Pollen vector (i.e. insects, wind or self-fertilization) was retrieved from the Baseflor (Julve 70 

1998), Ecoflora (Fitter & Peat 1994) and BiolFlor (Kühn et al. 2004) databases. Many species 71 

are associated with several types of pollen vectors, both within and among databases. We 72 

encapsulated this variability into a single variable: pollinator dependency, the percentage of 73 

times “insects” appear as a pollen vector for a given species, across all databases. Pollinator 74 

dependency ranges from 0, for species that are never associated with insect pollination in the 75 

trait databases and that should be therefore independent of pollinators for their reproduction, to 76 

100, for species that are only associated with insect pollination, and that should be strictly 77 

dependent on pollinators for their reproduction.  78 

The lifespan of each species was extracted using the R package TR8 (Gionata 2015) from 79 

BiolFlor and LEDA (Kleyer et al. 2008) databases and coded following Martin et al.’s (2019) 80 

categories but with three levels only: strict annual plants, intermediate plants (biennial, 81 

annual/perennial, etc.) and strict perennial plants. 82 

Habitat affinity was calculated following the same principles as for SCIs, but averaged over 83 

the whole time period (1951-2014). We used the EUNIS habitat classification (Davies et al. 84 

2004) at the first level, but merging all aquatic, wetland and coastal habitats together (Table 85 

S2). As for SCIs and occupancy calculation we used a 10km×10km grid cell. In general, the 86 

finest spatial resolution is best to calculate species habitat affinity or detect changes in 87 

occupancy or species climatic indices. Hence, we chose to limit spatial aggregation as much as 88 

possible, but we were constrained first by computation times and second, more importantly, by 89 

the spatial resolution of GBIF data: we discarded a spatial aggregation at 1km² because GBIF 90 

datasets are often defined at 5 or 10km². For each 10km×10km grid cell, we calculated the 91 

percentage of area covered by each habitat. Then, for each species and each habitat, we 92 

calculated the weighted mean of the habitat coverage over the range of each plant species, 93 

weighting the contribution of each cell (10×10km²) by the ratio of the number of records of this 94 



 

 

species on the number for records for all plant species.  For each species, we therefore obtained 95 

7 habitat affinity indices, each ranging from 0 to 1 and summing to 1 across habitats. They 96 

correspond to the fraction of a given habitat in the species distribution.  97 

Species traits, SCI and occupancy trends are available in Table S1. 98 

Phylogenetic signal in SCI and occupancy trends 99 

Estimating phylogenetic signal in species response informs us on plausible evolutionary 100 

constraints on mechanisms underlying SCI and occupancy trends. To analyze the phylogenetic 101 

structure of SCI and occupancy trends, we used the Daphne phylogeny of European flora 102 

(Durka & Michalski 2012). Of the 4,120 species we analyzed, 1,335 were not included in the 103 

phylogeny, thus we excluded them for phylogenetic analysis, and focused on the 2,785 104 

remaining species. We assessed the phylogenetic structure using Pagel’s λ, implemented in the 105 

phylosignal R package (Keck et al. 2016), and tested its significance by randomizing the tips 106 

of the phylogeny 1,000 times, for both SCI and occupancy trends. 107 

Evidencing the role of the recent climatic change in observed effects 108 

To confirm that the costs of the shifts in experienced climatic conditions occur only after 109 

the acceleration of climate change (1980-2000, Fig. S5), we performed the same set of analyses 110 

on the earliest data, taking the first 40 years (1951-1990), i.e. including 1980-1990 to retain 111 

enough records and years to estimate SCI and occupancy trends. We calculated SCI trends and 112 

occupancy trends between 1951 and 1990. For SCI trends, we used only records from 1951 to 113 

1990. For occupancy trends, we used all records and the same model as in equation (2) but with 114 

a broken-line model for the year effect, as implemented in the segmented R package (Muggeo 115 

2008), with a breakpoint in 1990. Such method enables estimation of random site effects and 116 

effect of the species list length on the entire dataset while modelling a trend for 1951-1990. 117 

Results are shown in Fig. S6. 118 
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 145 
Figure S1: Spatial and temporal distribution of the records used. (a) Spatial distribution of 146 

the records used, grouped by ~100km² grid cells. White grid cells correspond to cells with no 147 

data and grey cells are outside of the study area. Hexagonal patterns in France are due to the 148 

main data source from France (CBN dataset: https://www.gbif.org/fr/dataset/75956ee6-1a2b-149 

4fa3-b3e8-ccda64ce6c2d). This dataset was aggregated spatially using WSG84 coordinates, 150 

leading to grid cells with heterogeneous area on a map projection. Here we re-projected the 151 

entire dataset using grid cells with the same area across Europe. The superimposition of two 152 

grids that are not orthogonal, because of distinct projections, led to such periodic patterns. (b) 153 

Number of annual records through time, showing a continuous geometric increase over years 154 

in the number of data points.  155 
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 157 
Figure S2: Examples of interannual variability in SCIs, using annual mean temperature. 158 

SCIs represented by blue points are those used in the paper. They are calculated with a mean 159 

weighted by the ratio 
𝑁𝑖𝑗𝑘

∑ 𝑁𝑠𝑗𝑘
𝑛𝑠𝑝
𝑠=1

 where 𝑁𝑖𝑗𝑘 is the number of record of species i, grid cell k and 160 

year j. ∑ 𝑁𝑠𝑗𝑘
𝑛𝑠𝑝
𝑠=1  is the total number of records over all plant species for a given year and grid 161 

cell. SCIs represented by yellow points are calculated with a mean weighted by 𝑁𝑖𝑗𝑘, which 162 

accounts for sampling pressure (represented by ∑ 𝑁𝑠𝑗𝑘
𝑛𝑠𝑝
𝑠=1 ). The red curve is the mean weighted 163 

by 
1 𝑖𝑓 𝑁𝑖𝑗𝑘 > 0

0 𝑖𝑓 𝑁𝑖𝑗𝑘 = 0
× ∑ 𝑁𝑠𝑗𝑘

𝑛𝑠𝑝
𝑠=1 , which represents variation in temperature but also temporal bias 164 

in the sampling pressure over the geographic range of species i. Circle size is proportional to 165 

the number of grid cells included in the (weighted) mean. Curves are the results of locally 166 

estimated scatterplot smoothing regressions implemented in ggplot2.  167 



 

 

 168 
Figure S3: Occupancy trends of non-invasive vs. invasive species. Density distribution of 169 

occupancy trends for the 4,120 native or naturalized (“non-invasive”) species and for the 58 170 

species that were identified as “invasive” in the species selection. The red vertical line indicates 171 

zero. 172 
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 Figure S4: Correlation matrix among variables potentially added to phylogenetic regression 174 

and linear mixed-effect models. The red to blue color ramp represents the sign and strength 175 

of the correlation. Variables are ordered in the matrix so that highly correlated variables are 176 

clustered.  177 
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 179 

Figure S5: Change in bioclimatic variables across time and space. (a) and (b) show temporal 180 

variations in temperature and precipitation respectively, averaged over the study area. Circles 181 

depict maximum temperature or precipitation of the wettest month (bio5 & 13), triangles annual 182 

mean temperature or annual precipitation (bio1 & 12), and squares minimum temperature or 183 

precipitation of the driest month (bio6 & 14). The black lines correspond to LOESS (Locally 184 

Estimated Scatterplot Smoothing) curves obtained from the ggplot2 library in R. (c) and (d) 185 

illustrate the spatial variation in temporal changes of annual mean temperature and 186 

precipitation respectively. Temporal changes were measured here as the difference between 187 

the 1950-1960 average and the 2004-2014 average. In (d) the upper bound of the color scale 188 

is truncated to 350mm instead of 575mm to preserve readability.  189 



 

 

 190 
Figure S6: Correlations between occupancy trends and SCI trends from 1951 through 1990. 191 

Estimates (±CI95%) from phylogenetic regressions (PGLS) and linear mixed-effect models 192 

(LME) explaining occupancy trends with temporal trends in SCIs and other species traits. 193 
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Figure S7: Phylogenetic signal in the linear trends in species climatic indices (SCIs) for the 195 

2,785 species included in the phylogeny. (a) Phylogenetic signal in the SCI trends related to 196 

the annual mean temperature bioclimatic variable (bio1). The color scale is bounded between 197 

the 5th and 95th quantile to preserve readability. (b) Pagel’s λ for SCI trends related to the six 198 

bioclimatic variables. Zero (dashed black line) indicates an absence of phylogenetic signal. 199 

Red circles correspond to a significant phylogenetic signal (p-value < 0.05, calculated from 200 

1000 randomizations). 201 
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Figure S8: Correlates of occupancy trends for each biogeographic region. The three left 203 

panels represent the estimates (±CI95%) from phylogenetic regression (PGLS) and linear mixed-204 

effects model (LME), explaining occupancy trends with temporal trends in species climatic 205 

indices (SCIs) and other species traits. The two right panels show predicted averaged 206 

occupancy trends (±CI95%) for each habitat, considering a theoretical perfect affinity to each 207 

habitat (score = 1 & lifespan = annual), and for lifespan categories, predicted at the average 208 

of all other variables.  209 
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 211 

Figure S9: Climatic debt/bonus in Europe and its climatic drivers, considering non-212 

significant predictors. Same figure as Figure 4 of the paper but also including the effects of 213 

trends in species climatic indices (SCIs) that are not significant. (a) Climatic debt/bonus 214 

averaged over all species over the last 65 years. The gradient from white to red indicates a 215 

climatic debt (cost of climate change in terms of species occupancy), while the gradient from 216 

white to blue indicates a climatic bonus (benefits of climate change in terms of species 217 

occupancy); white represents no cost on average for plants. Relative contribution of (b) 218 

temperature and (c) precipitation SCI trends to the climatic debt, in percentage. Black regions 219 

are biogeographic regions with too few data. The maps were generated using predictions 220 

averaged over the linear mixed-effects model (LME) and the phylogenetic regression (PGLS).  221 



 

 

Table S1 (separate file): 222 

SCI, occupancy trends and species traits for the 4,120 species studied + the 58 invasive 223 

species present in the initial species list. 224 

 225 

 226 

 227 

 228 

 229 

Table S2: EUNIS habitat classification, and the grouped habitat classification used in 230 

the study. 231 

 232 

 233 

 234 

 235 

Table S3: Mean and associated CI95% for SCI trends over the 4,120 studied species. 236 

 237 

Variable upper CI95% Mean lower CI95% 
Annual mean Temperature 
(bio1) 

0.03290744 0.032226788 0.0315461347 

Maximum Temperature (bio5) 0.04568614 0.044922632 0.0441591201 

Minimum Temperature (bio6) 0.03366092 0.032643692 0.0316264601 

Annual Precipitation (bio12) 0.27474310 0.202730377 0.1307176590 

Wettest month Precipitation 
(bio13) 

0.01677690 0.008501243 0.0002255894 

Driest month Precipitation 
(bio14) 

0.12556774 0.118927077 0.1122864159 

 238 

EUNIS categories Our categories 

A - Marine habitats Aquatic and wetland 

B - Coastal habitats Aquatic and wetland 

C - Inland surface waters Aquatic and wetland 

D - Mires, bogs and fens Aquatic and wetland 

E - Grasslands and land dominated by forbs, mosses or lichens Grassland 

F - Heathland, scrub and tundra Heathland and tundra 

G - Woodland, forest and other wooded land Woodland 

H - Inland unvegetated or sparsely vegetated habitats Sparsely vegetated land 

I - Arable land and market gardens Farmland 

J - constructed, industrial and other artificial habitats Urban areas 


