TROPHIC RELATIONSHIPS BETWEEN FISHES AND BENTHIC ORGANISMS ON NORTHEASTERN NEW ZEALAND REEFS

R G Cole

To cite this version:
R G Cole. TROPHIC RELATIONSHIPS BETWEEN FISHES AND BENTHIC ORGANISMS ON NORTHEASTERN NEW ZEALAND REEFS. Vie et Milieu / Life & Environment, 1999, pp.201-212. hal-03180565

HAL Id: hal-03180565
https://hal.sorbonne-universite.fr/hal-03180565
Submitted on 25 Mar 2021

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers. L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.
ABSTRACT. - The influence of fish feeding on New Zealand reefs is reviewed. Assemblages of seaweeds, grazers and fishes vary over latitudinal gradients and along gradients of wave exposure, and patterns in northeastern New Zealand may be distinct from those elsewhere in the North Island, and the remainder of New Zealand. There is little evidence of broadscale effects of feeding by fishes on seaweeds. At one marine reserve site, predation by fishes and/or spiny lobsters may limit the abundances of sea urchins. Further experimentation is needed to clarify the geographic consistency of predatory effects of fishes throughout New Zealand. Small mobile invertebrates which occupy seaweeds are thought to be important prey of young fishes, and perhaps to be major contributors to secondary productivity. The presence of seaweeds and harvesting by humans are thought to be major influences on the fish fauna of reefs. The conflicting requirements of replication and realism in experiments concerning the trophic impact of fishes is noted.

INTRODUCTION

Fishes are large, mobile organisms, which generally require large amounts of energy to support their existence. The high mobilities of fishes means that the spatial extent of their foraging can be great, while their size means that they are capable of consuming relatively large organisms. As fishes are also frequently abundant, their impact on benthic organisms is potentially large. Their sensory capabilities are well-developed, and they can capture highly mobile prey. It is in this context that I review recent studies regarding fishes and their prey in northeastern New Zealand. Of necessity, I consider other components of reef assemblages where they are relevant, but the primary intention is to review the evidence for trophic impacts of fishes, and to also consider the impact of habitat morphology on fish activity.

Reefs on wave exposed coasts in northeastern New Zealand have been relatively thoroughly investigated (reviews of Andrew 1988, Creese 1988, Jones 1988, Schiel 1988). Much of this work has been carried out at Goat Island, which is in the Cape Rodney to Okakari Point Marine Reserve near Leigh (Fig. 1). The main habitat formers (sensu Jones & Andrew 1993) are fucalian and laminarian seaweeds, whose distributions the echinometrid sea urchin *Evechinus chloroticus* may alter (Andrew & Choat 1982). The behaviours and abundances of some fishes are in turn affected by seaweeds (Jones 1984a, Choat & Ayling 1987, Syms & Jones 1999).
Although seaweed – echinoid – fish interactions are relatively well-known, and reviews have drawn together summaries for many geographic regions (e.g. Chapman & Johnson 1990, Foster 1990, Santelices 1990, Schiel 1990, Underwood & Kennelly 1990), more recent observations from northeastern New Zealand reefs (Cole & Keuskamp 1998, Babcock et al. in press, Willis et al. ms) provide a rather different outlook from the 1988 reviews (see above). One focus here is to identify the geographic range over which extrapolation from experimental studies should be confined.

Biogeographic patterns

Schiel (1990) noted that as more sites were visited, the number of similarities and generalisations decreased. His work (Schiel 1990, Schiel et al. 1995) has greatly increased the knowledge of more southern areas of New Zealand. On the west coast of Northland (Brook unpubl), and near Raglan/Kawhia (Cole pers obs) (see Fig. 1 for localities), reefal assemblages are quite different from those in northeastern New Zealand, with limited numbers of brown seaweeds except in the sublittoral fringe, and turfing red seaweeds, mussels, ascidians and sponges dominating the substratum. While the Coromandel coast in the early 1990s had a broadly similar appearance to the site described in the late 1970s by Choat and Schiel (1982), observations near Tauranga, Gisborne, and New Plymouth (Cole, pers obs) suggest that those areas too are quite different from those further north. One interesting observation in northeastern New Zealand is the absence of the dominant laminarian *Ecklonia radiata* on some very exposed and isolated pinnacles (Brook unpubl, Cole unpubl). Within the Marlborough Sounds, particularly Queen Charlotte Sound (Fig. 1), macrophytes other than *Carpophyllum flexuosum* and *C. maschalocarpum* are relatively rare, though the introduced seaweed *Undaria pinnatifida* occurs in shallow areas subject to wave disturbance. On the coasts of Abel Tasman National Park, large seaweeds are also rare, and grazers dominate (Davidson & Chadderton 1994). Curiously, given the intervening distance without mid-depth barrens, a pattern of mid-depth barrens bordered above and below by macroalgal stands, as found in northeastern New Zealand, has been described for Dusky Sound, Fiordland (Villouta et al. ms), though other Fiordland sites may differ (Schiel 1990).

Patterns along gradients of wave exposure

Observations by Brook & Carlin (1992) in Northland, and others elsewhere (Grâce 1983, Cole & Taylor unpubl, Cole pers obs) suggest that the vertical extent and lower depth limits of urchin barrens tend to decrease in shelter from wave action (Grâce 1983). For example barrens habitat occurs on the western shores of Great Barrier Island, but not of southwestern Little Barrier Island, which has a shorter wave fetch from the southwest (Cole pers obs). Generally there is an increase in the abundance of *Carpophyllum flexuosum* and a decrease in the prevalence of *Ecklonia radiata*, as more sheltered areas are
encountered. This decrease of *Ecklonia* in shelter may be owing to several mechanisms: wave action limiting the effectiveness of grazing by sea urchins in shallow water (e.g. Himmelmann 1980), decreased survival of recruit or juvenile sea urchins in more sheltered water (Andrew & Choat 1985), wave-induced modifications to the morphology of *C. flexuosum* (Cole et al. unpubl data), and differential susceptibility of *C. flexuosum* and *Ecklonia* to a mass mortality agent (Cole & Babcock 1996).

Descriptions of the fish fauna

Choat & Ayling (1987) described reef fish populations from a wide geographic range of sites in the North Island of New Zealand, although the emphasis was on those in northeastern areas. Francis (1996) drew on a large database of qualitative observations to divide the reef fish fauna of New Zealand (a priori separated into 16 regions) into eight geographic regions, on the basis of seven species distributional groups. Meekan & Choat (1997) documented differences in the abundances of herbivorous fish faunas on New Zealand, Australian, and Caribbean reefs, noting differences between mainland and offshore island faunas in northeastern New Zealand (see also Jones 1984, Choat & Ayling 1987). Subtropical currents are thought to be responsible for those patterns. Herbivorous fishes are clearly more speciose in the north, but may be abundant in some southern areas (Meekan & Choat 1997). Comparisons of this nature are difficult because of differing sample unit sizes among studies. Population size structures of fishes may differ between offshore islands and mainland coasts (Choat & Ayling 1987, Meekan & Choat 1997), and reserve and non-reserve areas (e.g. Cole et al. 1990, Davidson 1995, Cole & Keuskamp 1998).

Effects of herbivorous fishes on seaweeds

The true character of the diets of nominally herbivorous fishes has only recently been determined (Clements & Choat 1997), with the most abundant “herbivore” on northeastern New Zealand coasts, *Girella tricuspidata*, being found to have a proportion of animal material in its diet. Silver drummer *Kyphosus sydneyanus*, and butterfish *Odax pullus* have been verified as true herbivores (Clements & Choat 1997). Meekan’s (1986) study suggested that feeding by butterfish *O. pullus* (Odacidae) was too patchy in time and space to control the distribution of *Ecklonia* (cf. the related *O. cyanomelas* in New South Wales, Australia – Andrew & Jones 1990). At north-
Perhaps the most comprehensive investigation of feeding by a reef fish is the study of *Cheliodactylus spectabilis* by McCormick (1998), which investigated diet, morphology, and activity in relation to size and sex. McCormick (1998) also noted the dearth of similar studies generally in the temperate literature. The standard approach of removing a predator species has proven difficult, though Jones (1984a) successfully reduced the density of adults of the very abundant spotty *Notolabrus celticus* by spearing, an approach which would probably work for a sedentary, approachable species such as *C. spectabilis*. However, given the mobile nature of the prey of *C. spectabilis*, and the fact that large numbers of a species that is sensitive to exploitation (McCormick & Choat 1987) would have to be killed in a marine reserve, that experiment is unlikely to be carried out. Kingsford & MacDiarmid (1988) suggested that lower densities of plankton downstream of dense populations of planktivorous fishes associated with islands might be due to feeding by fishes, but there are obvious technical difficulties with establishing a causal link.

Experimental exclusions of fishes

To date, fish exclusions have had varying results. Choat & Kingett (1982) and Andrew & Choat (1982) excluded fish from 2 m² areas of coralline flats, while Ayling (1981) prevented a monacanthid fish from feeding in 0.0625 m² areas at two sites. Choat & Kingett (1982) failed to detect any effect of excluding fish, though Jones (1988) suggested that this related to the mobility of the prey taxa. Ayling (1981) detected an effect at the site where the target fish species was abundant but not at another where it was not. Stocker (1986) showed that large benthic carnivorous fishes were unlikely to influence the abundance of the ascidian *Pseudocystoma novaezelandiae*, though small blemnoids which sheltered within cages were suggested as a cause of a caging effect. Andrew & Choat (1982) suggested that the effect of fish predation on the echinoid *Evechinus chloroticus* which they detected was not important at the habitat level, as enough echinoids survived to maintain the habitat.

Experiments in which predators have been excluded require careful interpretation regarding possible caging effects (e.g. Kennelly 1983, Stocker 1986, Connell 1997). Jones (1981) encountered difficulties with differentiating caging effects from the effects of spotties feeding on epifaunal crustaceans of seaweeds. Taylor (1991) attempted to exclude fish from individual kelp heads in a design that included partial exclusions, but similar difficulties with epifaunal movement were encountered as in other systems (e.g. Edgar & Aoki 1993). Approaches such as tethering (Danilowicz & Sale 1999), and video monitoring of reefs (Hixon & Carr 1997) have been used in studies of predation by fishes elsewhere, and to clearly separate handling artifacts from those of predation will require careful use of such techniques. Artifacts of experimentally investigating predation by fishes require further investigation on New Zealand reefs. Taylor (1998b) found that large proportions of the epifauna of a seaweed moved at night, so that any experimentally-induced increase in epifaunal abundance that might arise would likely dissipate across treatment area borders on a diel basis. The most successful experiments concerning predation have used isolated patch reefs (e.g. Hixon & Carr 1997). In coral reef lagoons such an environment may be natural, but isolated *Atrina zelandica* shells in soft sediments are one of the few parallels in temperate subtidal New Zealand of which I am aware.

Cole & Keuskamp (1998) assumed that fish predation was responsible for the greater rate of loss of experimentally transplanted *E. chloroticus* at reserve than at non-reserve sites, but without independent verification. They also presented a 10-year time-series of density of *Evechinus* at the same site as Andrew and Choat’s (1982) study (which itself contained a series for 8 years), in which mean density of free-ranging adults declined from about 4 m⁻² to about 1 m⁻². Differences in population size structure and crevice occupancy of the sea urchin between reserve and nearby coast consistent with a fish predation effect were evident 5 years earlier than Cole and Keuskamp’s investigation (Fig. 3). Spiny lobsters (*Jasus edwardsii*) are usually the only potentially important invertebrate predators of echinoids in northeastern New Zealand, as starfish are seldom abundant. Andrew & MacDiarmid (1991) concluded that there existed little evidence of an important effect of feeding by *Jasus* on the abundance of *Evechinus*. An experiment separating the effects of crustacean and piscine predators of echinoids remains to be carried out, though it should be technically possible (MacDiarmid pers comm).

The geographic consistency of marine reserve effects on large carnivores and subsequent trophic cascades is uncertain, and obviously influenced by the suite of predators present. Recent investigations suggest that blue cod are considerably larger, and perhaps more abundant, in the Long Island – Kokomohua Marine Reserve than on nearby non-reserve reefs (Davidson 1997, Davidson, Villouta, Cole unpubl data). Surveys of epibenthic gastropods (Gregory unpubl data) and triplefin fishes (Fig. 4) inside and outside the reserve, produced several patterns consistent with predation effects. A predator exclusion caging experiment over reefs is currently at the pilot study stage, but bioturbation, presumably by fish,
is also prominent in sandy areas adjacent to reefs. However, in another South Island marine reserve, Tonga Island (Fig. 1), clear effects on the abundances of fishes have been slower to emerge (Davidson unpubl. data, Cole pers obs), although clear effects on the abundance of spiny lobsters have been documented (Davidson, Villouta & Cole unpubl. data). The Long Island - Kokomohua Marine Reserve and Tonga Island Marine Reserve also afford opportunities to examine fish behaviour in an environment where the fish are neither strongly diver-negative nor strongly diver-positive (pers obs).

The role of small mobile invertebrates

The review of Jones (1988) documented the importance of small mobile invertebrates to the diets of juvenile fishes, finding that juveniles of almost all New Zealand benthic carnivorous fishes eat gammarid amphipods. Taylor (1998a) further showed that small mobile invertebrates which occupy seaweeds also contribute most of reefal secondary productivity (animals > 0.5 mm sieve mesh size). Recent evidence that seaweed habitats dominate the Cape Rodney to Okakari Point Marine Reserve is consistent with higher secondary productivity in marine reserve areas than on the adjacent, harvested coast (Babcock et al. in press), a comparison which has been made in few other areas. However, the loss of virtually all of the kelp forest deeper than 10 m during kelp dieback in 1992/93 (Cole & Babcock 1996) did not lead to profound changes to the fish fauna (Cole pers obs). Though unquantified, this suggests that deeper kelp forests at least may not have as great an effect on piscine activity as some have interpreted (e.g. Holbrook et al. 1990).

Other investigations have probed the contribution that epifaunal organisms might make to seaweed growth. Taylor & Rees (1998) investigated the contribution of excretion from such epifaunal communities to the nitrogen budget of the fucalian *Carpophyllum plumosum* var. *capillifo-
Urchins feeding on drift macroalgae

Fig. 5. - Feeding by *Evechinus chloroticus* on drift and attached seaweeds. Data derive from observations at 3 sites in the central part of the Cape Rodney to Okakari Point Marine Reserve. The frequency with which *Evechinus* were found feeding on 5 seaweeds (*E. rad* = *Ecklonia radiata*; *C. ang* = *Carpophyllum angustifolium*; *C. flex* = *Carpophyllum flexuosum*; *C. masch* = *C. maschalocarpum*; *C. plum* = *C. plumosum*; Other = miscellaneous species) in early 1990 is indicated.

Various fucaieans (Fig. 6. - General structure of macroalgal assemblages down depth gradients on wave exposed reefs in northeastern New Zealand in the 1990s. Various fucaieans (*Carpophyllum* spp., *Sargassum sinclairii*, *Landsburgia quercifolia*) dominate the immediate subtidal, with the laminarian *Ecklonia radiata* slightly deeper. Sea urchins *Evechinus chloroticus* maintain areas clear of seaweeds except for the fucalean *Carpophyllum flexuosum*, which may be common on those reefs, whereas it was absent or uncommon in the late 1970s and early 1980s (Schiel 1988). *Evechinus* grazes among *C. flexuosum* stipes to depths of 8-10 m, where monospecific stands of *E. radiata* commence.

Habitat structure, seaweeds, epifauna, sea urchins, and fishes

Taylor & Cole (1994), and Taylor (1998c) documented the fauna of seaweeds in greater detail, suggesting that phytal architectures were important in determining the abundance and composition of the epifauna. While secondary productivity may be strongly driven by such physical structuring locally (Taylor 1998a), food webs on coralline-dominated areas may be enhanced by kelp debris from other habitats. In northeastern New Zealand the dominant component of drift seaweeds on subtidal reefs and shores is entire individuals and fragments of the laminarian *Ecklonia radiata* (Fig. 5). As in regions of South Africa (Bustamante et al. 1995) and California (Harrold & Reed 1985) the dominant laminarian of northeastern New Zealand reefs appears to export primary production beyond the borders of its stands. The New Zealand fucaieans are less widespread within reefs (e.g. Schiel 1988), their pneumatocysts may convey them out of the benthic subtidal when dislodged (Kingsford & Choat 1985, Kingsford 1992), and some species at least appear able to withstand considerable wave shock (e.g. Fig. 1 of Schiel 1988). The input of drift seaweed may modify the behaviour of sea urchins (Dean et al. 1984, Harrold & Reed 1985), thus contributing to the stability of habitats, and ultimately influencing fish presence and feeding rates (e.g. Choat & Alying 1987). The greater prevalence of turfing corallines on flat sandstone reefs than on greywacke reefs near Goat Island (e.g. Alying 1978, Alying et al. 1981) is consistent with reduced grazing by *Evechinus*. It may be that the more rapid alteration of coralline flats to kelp forest in the western reserve (Babcock et al. in press, Cole pers obs) is due to greater delivery of drift from kelp forests onto coralline flats because of the shallower reef slope. Provision of seaweed food reduces movement of sea urchins (e.g. Harrold & Reed 1985), and agitation of sea urchins by kelp (real and artificial) may discourage entry of sea urchins into kelp stands (Vasquez & McPeak 1998).

Although not prevalent in early descriptions of the reefs of exposed coasts (Alying 1974, Alying et al. 1981, Choat & Schiel 1982), *Carpophyllum flexuosum* is currently moderately abundant on
consistent with expectations from early studies, rous fishes in the kelp-dominated reserve between habitats for some fishes (Table I). At the times of the year have suggested différences known to have a slightly différent epifauna from the potential effects on epifauna and Eklelonia. The available evidence concerning the influence of predation by fishes has been the Manukau Harbour, where myliobatid rays feed on intertidal sand flats at high tide (Thrush et al. 1991, Thrush et al. 1994). The rays may influence the fauna of intertidal sandflats there seasonally, though again, the mobility of prey organisms and the high energy environment ensure that patterns at the scale of individual feeding scars are rapidly obscured (Thrush et al. 1991). A subsequent study there suggested that both rays and birds might have effects on infauna (Thrush et al. 1994), though interpretation of their relative importance was difficult because the rays were only present seasonally, whereas the birds were present year-round. Their conclusion that careful consideration needs to be given to the spatial and temporal context of an experiment (Thrush et al. 1994: p. 221) has been amplified in investigations of predation elsewhere (e.g. Hixon & Beets 1993, Hixon & Carr 1997). Mobility of prey has necessitated careful choice of scale and method of exclusion, and a knowledge of the behaviour of the prey.

Historical patterns

Recent reviews have emphasised that the predatory fauna of reefs may have been considerably modified by humans, over a timescale of centuries for large mammals such as sea otters, and probably a timescale of decades for most fishes (e.g. Witman & Sebens 1992, Jackson 1997, Dayton et al. 1998). Archaeological analyses suggest that New Zealand Maori are unlikely to have had important effects on the marine fish species they exploited in pre-European times (e.g. Leach et al. 1997). A resident at Goat Island in the 1930s described going down to the shore with a garden fork to get crayfish for lunch, by wading (Mathe-son pers comm), and anecdotal evidence from personal acquaintances suggests that as recently as the 1960s the nearshore fish fauna in northeast New Zealand may have been considerably more abundant. Whether high abundances of carnivores might have had flow – on effects on the benthic fauna and flora remains conjecture, though the earliest descriptions of macroalgal assemblages at Goat Island (Bergquist 1960) bear little resemblance to subsequent descriptions. Such temporal

<table>
<thead>
<tr>
<th>Fish species</th>
<th>Visits to C. flexuosum</th>
<th>Visits to coralline flats</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pagrus auratus</td>
<td>69</td>
<td>111</td>
</tr>
<tr>
<td>Parapercis colias</td>
<td>28</td>
<td>81</td>
</tr>
<tr>
<td>Parika scaber</td>
<td>14</td>
<td>18</td>
</tr>
<tr>
<td>Notolabrus celidion</td>
<td>62</td>
<td>71</td>
</tr>
<tr>
<td>Notolabrus fusicol a</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>Cheliodactylus spectabilis</td>
<td>1</td>
<td>3</td>
</tr>
<tr>
<td>Upeneichthys lineatus</td>
<td>0</td>
<td>22</td>
</tr>
</tbody>
</table>

which suggested an association of those fishes with urchin-dominated habitats (Kingett & Choat 1981, Choat & Ayling 1987). However, Kingett & Choat (1981) emphasised the seasonal occurrence of small snapper on coralline flats, and most of Choat & Ayling’s (1987) sampling was also done in summer.
Table II. Published studies which include subtidal experiments concerning fishes and invertebrates, which were carried out in northeastern New Zealand. MR indicates experiments done in the Cape Rodney to Okakari Point Marine Reserve, NMR indicates experiments done outside the marine reserve, CMR indicates experiments done in the central marine reserve (between Knot Rock and Waterfall Reef - see Cole 1994 for sites), BMR indicates experiments done within the marine reserve but outside the core area. x indicates experiment done in this area, - indicates no experiment done in this area.

<table>
<thead>
<tr>
<th>Study</th>
<th>MR</th>
<th>NMR</th>
<th>CMR</th>
<th>BMR</th>
</tr>
</thead>
<tbody>
<tr>
<td>Andrew 1986</td>
<td>x</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Andrew & Choot 1982</td>
<td>x</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Andrew & Choot 1985</td>
<td>x</td>
<td></td>
<td>x</td>
<td></td>
</tr>
<tr>
<td>Andrew & MacDiarmid 1991</td>
<td>x</td>
<td></td>
<td>x</td>
<td></td>
</tr>
<tr>
<td>Andrew & Stocker 1986</td>
<td>x</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ayling 1981</td>
<td>x</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Choot & Andrew 1986</td>
<td>x</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Choot & Ayling 1987</td>
<td>x</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Choot & Kingett 1982</td>
<td>x</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cole & Keuskamp 1998</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>x</td>
</tr>
<tr>
<td>Conneil & Jones 1991</td>
<td>x</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Jones 1981</td>
<td>x</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Jones 1984a</td>
<td>x</td>
<td>x</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Jones 1984b</td>
<td>x</td>
<td></td>
<td>x</td>
<td></td>
</tr>
<tr>
<td>Jones & Thompson 1980</td>
<td>x</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Kingett & Choot 1981</td>
<td>x</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Schiel 1982</td>
<td>x</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Stocker 1986</td>
<td>x</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Stocker & Bergquist 1986</td>
<td>x</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Stocker & Bergquist 1987</td>
<td>x</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Syms & Jones 1999</td>
<td>x</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Thompson & Jones 1983</td>
<td>x</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

fluctuations are distinct from events such as the decline in abundance of subtropical labrids through time at the Poor Knights Islands (Choo et al. 1988), which appears to mainly be controlled by larval supply, and longer-term alterations to the range of *Macrocystis pyrifera* which also appear to be linked to oceanographic events (Hay 1990). No-harvest marine reserves offer the opportunity to assess the capacity of existing populations to respond to cessation of harvesting, though a “global” effect of larval supply (fewer larvae settling due to fewer eggs being spawned) is unable to be addressed.

Geographic extrapolation

Of the 22 published subtidal experimental manipulations in northeastern New Zealand, almost all were done within one area of about 1 km longshore extent within the Cape Rodney to Okakari Point Marine Reserve (Table II). Numerous studies (Cole et al. 1990, Cole 1994, Cole & Keuskamp 1998, Babcock et al. in press) showed that that area is now quite different from most of the rest of (a) the Cape Rodney to Okakari Point Marine Reserve, and (b) the remainder of the coast. It is visited by large numbers of people, some of whom feed either fish they have brought with them, or benthic organisms found within the reserve, to fish. The *Modiolus* beds noted in Andrew & Stocker (1986) were no longer present in the late 1980s, possibly due to divers breaking up the mussels to attract fish (pers obs). The decline of the abundance of the sea urchin *Evechinus* in some areas of the marine reserve (e.g. Cole & Keuskamp 1998) may have also been accelerated by such activities (pers obs). Numerous commentaries have noted the advantages of conducting research in marine reserves (Ballantine 1991, Creese & Jeffs 1993), and clearly if the goal is to understand natural systems, research in such areas is essential. However, extrapolating the results of some research from marine reserves to other areas may be misleading, and the results of experiments in marine reserves need not necessarily apply to the wider coast. Comparisons of experiments conducted inside and outside marine reserves will be instrumental in revealing the type of impact human harvesting is having on reef systems.

Scales of natural disturbance: replication vs realism

An appreciation of the importance of scale for interpreting the results of experiments has developed in recent years (e.g. Dayton & Tegner 1984, Thrush et al. 1996). One experiment examining the effects of different scales of macroalgal clearance has been carried out in northeastern New Zealand (Syms & Jones 1999, Cole unpubl), along with another examining the response of different sized defaunations of triplefins (Syms & Jones 1999). Like similar studies (e.g. Thrush et al. 1996) those experiments addressed a relatively small range of spatial scales (in the case of Syms & Jones 1999 and Cole unpubl, 4 m2 – 100 m2).

The scale of the experimental macroalgal clearances were greatly exceeded by the scale of subsequent natural macroalgal mortalities (e.g. Cole & Babcock 1996). Generally there are practical constraints on the size of area that can be manipulated with replication. For researchers whose results may lead to management decisions, the possibility that their experiments are carried out at scales that render their results irrelevant to managers must be a concern. The alternative is to carry out very large unreplicated studies, and sacrifice replication to realism (e.g. Pridmore et
people have very efficiently modified the abundances and population size structures of reef fishes at very large scales. It might therefore be expected that fish exclusions in marine reserves would produce dramatic effects on the abundance and population structure of their prey. To date most of the experimental exclusions have been small (e.g. 2 m² – Andrew and Choat 1982, Choat & Kingett 1982), and it is at these scales that experimental artifacts are most likely to emerge rapidly. As marine reserves are established in areas with wave climates that permit larger cages to be deployed, more sophisticated methods of assessing artifacts develop, and an appreciation of the difficulties of scaling experimental results accrues, better evidence will be gathered regarding the influence of humans.

CONCLUSIONS

Studies of the impacts of fish-feeding on reefs in New Zealand have mainly been done in one small area of northeastern New Zealand where both fishes and spiny lobsters are abundant. Much of the rest of New Zealand has a quite different fauna and flora. There is little evidence that herbivorous fishes influence seaweeds in northeastern New Zealand. There is clear evidence that predation at one well-studied site is responsible for patterns of sea urchin size structure, and perhaps the distribution of habitats, but it is not clear whether fish or lobsters are the predators. The location of most reefal investigations to date is a marine reserve, and marine reserves will continue to be a focus for investigations of fish feeding. However, a greater emphasis on geographical consistency of effects, and comparisons of experiments carried out in reserves with those done outside reserves will afford a greater understanding of the influence of the feeding of fishes on benthic organisms.

ACKNOWLEDGEMENTS. – I am grateful to D. Keuskamp and R.B. Taylor for criticism, and the staff and students of the Leigh Marine Laboratory for their assistance, tolerance and goodwill. The Nelson office of National Institute of Water and Atmospheric Research supported the preparation of this manuscript.

REFERENCES

Davidson RJ, Chadderton WL 1994. Marine reserve site

Davidson RJ, Kingett PD 1982. The influence of fish

Davidson RJ 1997. Biological monitoring of Long

Danilowicz BS, Sale PF 1999. Relative intensity of

Connell SD 1997. Exclusion of predatory fish on a coral

Cole RG, Keuskamp D 1998. Indirect effects of pro-

Cole RG, Babcock RC 1996. Mass mortality of a do-

Cole RG, Ayling AM, Creese RG 1990. Effects of

Cole RG 1994. Abundance, size structure, and diver-

Cléments KD, Choat JH 1997. Comparison of herbivory

Choat JH, Kingett PD 1983. The influence of fish

Cole RG 1994. Abundance, size structure, and diver-

Cole RG, Babcock RC 1996. Mass mortality of a do-

Danilowicz BS, Sale PF 1999. Relative intensity of predation on the French grunt, Haemulon flavolinea-

Foster MS 1990. Organization of macroalgal assem-

Hay CH 1990. The distribution of Macrocystis (Phaeo-

Himmelman JH 1980. The role of the green sea urchin, Strongylocentrotus droebachiensis, in the rocky sub-

Jones GP 1981. Interrelationships between ecology, behaviour and life history in the protogynous herma-

Lytechinus anamesus) on

Macrocystis pyrifera

Pterygophora californica

Pseudolabrus celidotus

Strongylocentrotus droebachiensis

Hixon MA, Carr MH 1997. Synergistic predation, den-

Foster MS 1990. Organization of macroalgal assem-

Hay CH 1990. The distribution of Macrocystis (Phaeo-

Himmelman JH 1980. The role of the green sea urchin, Strongylocentrotus droebachiensis, in the rocky sub-

Hixon MA, Carr MH 1997. Synergistic predation, den-

Reçu le 19 mai 1999; received May 19, 1999
Accepté le 10 août 1999; accepted August 10, 1999