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ABSTRACT: To improve the prognosis of cancer patients, methods of local cancer detection and 19 

treatment could be implemented. For that, iron-based nanomaterials (IBN) are particularly well-suited 20 

due to their biocompatibility and the various ways in which they can specifically target a tumor, i.e. 21 

through passive, active or magnetic targeting. Furthermore, when it is needed, IBN can be associated with 22 

well-known fluorescent compounds, such as dyes, clinically approved ICG, fluorescent proteins, or 23 

quantum dots. They may also be excited and detected using well-established optical methods, relying on 24 

scattering or fluorescent mechanisms, depending on whether IBN are associated with a fluorescent 25 

compound or not. Systems combining IBN with optical methods are diverse, thus enabling tumor 26 

detection in various ways.. In addition, these systems provide a wealth of information, which is 27 

inaccessible with more standard diagnostic tools, such as single tumor cell detection, in particular by 28 

combining IBN with near-field scanning optical microscopy, dark-field microscopy, confocal microscopy 29 

or super-resolution microscopy, or the highlighting of certain dynamic phenomena such as the diffusion 30 

of a fluorescent compound in an organism, e.g. using fluorescence lifetime imaging, fluorescence 31 

resonance energy transfer, fluorescence anisotropy, or fluorescence tomography. Furthermore, they can 32 

in some cases be complemented by a therapeutic approach to destroy tumors, e.g. when the fluorescent 33 

compound is a drug, or when a technique such as photo-thermal or photodynamic therapy is employed. 34 

This review brings forward the idea that iron-based nanomaterials may be associated with various optical 35 

techniques to form a commercially available toolbox, which can serve to locally detect or treat cancer 36 

with a better efficacy than more standard medical approaches.  37 
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ABREVIATIONS: 41 

: wavelength used to excite the fluorescent compound associated to the iron-based nanomaterial; 42 

AF: Alexa fluor; 43 

AFM: Atomic force microscopy; 44 

BBB: Blood brain barrier; 45 

BP: Body part; 46 

CAs: Cerebral aneurysms; 47 

CCD: Charge-coupled device; 48 

CD: carbon dot; 49 

Cy: Cyanine; 50 

ctDNA: cicrculating tumor DNA ; 51 

CT: computed tomography; 52 

CTDR: Cell Tracker Deep Red; 53 

CM: confocal microscopy; 54 

CTC: Circulating tumor cells; 55 
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DAPI: 4',6-diamdino-2phenylindeo; 56 

DFM: Dark field microscopy; 57 

DiI: 1,1′-dioctadecyl-3,3,3′,3′-tetramethylindocarbocyanine; 58 

DMSA: Dimercaptosuccinic acid 59 

DOX: Doxorubicin; 60 

EpCAM: epithelial cell adhesion molecule; 61 

EPI: Epirubicin; 62 

EPR effect: Enhanced permeability and retention effect; 63 

FA: Fluorescence anisotropy; 64 

FC: Fluorescent compound; 65 

FDR: fluorescent decay rate; 66 

FGS: Fluorescence guided surgery; 67 

FI: Fluorescence imaging; 68 

FLIM: Fluorescence lifetime imaging; 69 

FIBN: Fluorescent iron-based nanomaterials; 70 

FITC: Fluorescein isothiocyanate; 71 

FLIM: Fluorescence lifetime imaging; 72 

FRET: Fluorescence resonance energy transfer; 73 
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GBM: Glioblastoma multiform; 74 

GFP: Green fluorescent protein; 75 

HD: Hydrodynamic diameter; 76 

HS: Hydrodynamic size; 77 

IBN: Iron based nanomaterials;  78 

IONP: Iron oxide nanoparticles; 79 

IR: Infra-red 80 

ICG: Indocyanine green; 81 

LB: Liquid biopsy; 82 

LSPR: Localized surface plasmon resonance; 83 

MHT: Magnetic hyperthermia; 84 

MRI: Magnetic resonance imaging; 85 

NFIBN: Non-fluorescent iron-based nanomaterials; 86 

NP: Nanoparticles; 87 

NSOM: Near-field optical microscopy; 88 

PDT: Photodynamic therapy; 89 

PEI: Polyethylenimine; 90 

PEG: Polyethylene glycol; 91 
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PFR: Phenol Formaldehyde Resin; 92 

PL: Photoluminescence; 93 

PMA: Poly(methyl acrylate); 94 

PMT: Photo multiplier; 95 

PS: Photosensitizer; 96 

PTT: Photo-thermal therapy; 97 

PVLA: Polyvinylbenzyl-O-beta-D-galactopyranosyl-D-gluconamide; 98 

QD: Quantum dot; 99 

RhB: Rhodamine B; 100 

RITC: Rhodamine B isothiocyanate; 101 

SAXS: Small angle X-ray diffraction; 102 

SERS: Surface enhanced Raman spectroscopy; 103 

SIM: Structured illumination microscopy; 104 

SPECT: Single photon emission computed tomography; 105 

SPM: Single photon microscopy; 106 

SPION: Superparamagnetic iron oxide nanoparticle; 107 

TPM: Two photon microscopy; 108 

US: Ultrasound; 109 
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WFEM: Wide field epifluorescence microscopy; 110 

XRD: X-ray diffraction; 111 

 112 
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INTRODUCTION 114 

To improve the prognostic of cancer patients, two inter-connected aspects deserve to be considered, i.e. 115 

first, cancer should be detected at the earliest possible stage, and second, tumors should be treated locally 116 

when they are sufficiently small, non-invasive, and non-metastatic. This double aim can be achieved by 117 

using nanomaterials that specifically target tumor cells and are detected or excited locally by various 118 

optical methods, [1]. Among the different types of markers, iron based nanomaterials (IBN) present a 119 

large number of advantages characterized by: i) their ability to detect a wide range of different cancer 120 

biomarkers, e.g. tumor cells, Protein, ctDNA, microRNA, DNA methylation, circulating tumor cells, [2], 121 

ii) their contrasting properties in various traditional cancer detection techniques, such as computed 122 

tomography (CT), Magnetic Resonance Imaging (MRI), Ultrasound (US), where they yield improved 123 

sensitivity, [3], iii) their faculty to act as multimodal imaging tools, [4], notably in magnetic resonance 124 

imaging (MRI), (5), single-photon emission computed tomography (SPECT), [6], X-Ray diffraction 125 

(XRD), [7, 8], or Small-Angle X-Ray Scattering (SAXS), [9], iv) their biocompatibility, i.e. they were 126 

safely administered to humans and used in the clinic either as contrast agents, or for the treatment of iron 127 

anemia diseases, [10], v) their capability to locally heat tumors, e.g. through magnetic hyperthermia 128 

(MHT), [11, 12], or photo-thermal therapy (PTT), [13], vi) their movement in the organism that can be 129 

adjusted via the application of an external magnetic field, [14], vii) their potential to target tumor,  e.g. 130 

through passive targeting via enhanced permeability and retention (EPR) effect or active targeting by 131 

attaching to IBN a molecule that specifically recognizes a tumor cell receptor, [15], and viii) their capacity 132 

to carry a chemotherapeutic drug or photosensitizer (PS) to tumor site, [16]. Two types of IBN can be 133 

distinguished. The first one consists of non-fluorescent IBN, whose properties are reviewed elsewhere 134 

both for naturally and chemically synthesized IBN, [17, 18]. They can be used as nanoscale local detector 135 

tools operating through a light scattering mechanism. The second one, designated as FIBN, comprises 136 

iron-based nanomaterials associated with a fluorescent compound. FIBN can be used in various 137 

fluorescence imaging techniques and are most often conceived to avoid fluorescence quenching by iron 138 
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oxide, e.g. by introducing an intercalating material between the fluorescent compound and the iron 139 

complex, which is characterized by a wide band gap or a thickness that is sufficiently thick to avoid 140 

electron transfer between the fluorescent compound and the iron-based nanomaterial, [19, 20, 21]. Recent 141 

studies have also introduced FIBN working through another mechanism of fluorescence de-quenching 142 

upon release of the fluorescence substance from FIBN magnetic core, [22, 23]. It enables visualizing the 143 

release of the fluorescence substance from the nanoparticle, a mechanism that is especially interesting 144 

when the fluorescence substance is a drug whose activity is triggered upon release. Here, the various types 145 

of light detection methods operating in combination with IBN/FIBN are described as well as their 146 

applications in the oncology field. Most of them operate in the infrared (IR), since fluorescent compounds 147 

often absorb/emit light within this range of wavelengths, light tissue penetration is enhanced at IR long 148 

wavelengths, and tissue absorption can be partly avoided in the IR, specifically between 650 and 900 nm, 149 

where tissue autofluorescence and water/hemoglobin absorptions are minimized, [24]. In addition to 150 

being able to optically detect tumors, FIBN can be used in light-induced cancer treatment, essentially 151 

through PDT or PTT. This review covers the description of optical methods operating within the 152 

tissular/cellular environment in the visible/infrared region for which most scattering/fluorescent 153 

mechanisms are reported to occur. Characterizations methods used to estimate IBN sizes, shapes, 154 

compositions outside of their biological environment, such as X-RD, [25, 8, 26, 9, 7, 27], SAXS, [28], 155 

dynamic light scattering (DLS), [29-31], FT-IR, [32-34], or optical-based techniques operating in the UV 156 

or radio-frequency wavelength range, such as SPECT, CT, or MRI, are described in other detailed 157 

reviews, [4].  158 

I. OPTICAL PROPERTIES OF IRON OXIDE NANOPARTICLES 159 

Iron oxide nanoparticles (IONP), composed of maghemite (Fe2O3) or magnetite (Fe3O4), are the most 160 

commonly studied IBN. Generally, they significantly absorb light between 200 and 600-800 nm, and 161 

display an absorption strength that strongly increases with decreasing wavelength, displaying specific 162 

absorption bands at 400 and 420 nm for Fe3O4 and 300 nm for Fe2O3, [35]. In addition, IONP can yield 163 
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photoluminescence (PL), although such effect was rarely reported, most probably due to a weak PL signal. 164 

In one study, IONP with sizes lying between 10 nm and 5 μm were observed to display PL peaks at 560 165 

nm, 695 nm, and 840 nm, under excitation at 350 and 407 nm. These peaks were attributed to various 166 

recombination of electrons at IONP tetrahedral and octahedral sites, [36]. Furthermore, IONP has a band 167 

structure that directly impacts its fluorescence properties. Indeed, the presence of an unfilled shell of Fe3+ 168 

and Fe2+ at IONP surface, [37], where electrons can transfer from the fluorescent compound (FC) attached 169 

to them, leads to a mechanism of fluorescence quenching under laser excitation, [38]. As described in the 170 

next section, strategies have been employed to develop various FIBN, in which this quenching mechanism 171 

is suppressed. Light interaction with IBN can also lead to a scattering phenomenon, which is enhanced 172 

when the incident light couples with so-called surface plasmon waves. This is the reason why, when the 173 

detection of a scattering signal is sought for, the surface of IBN is often adjusted to result in an efficient 174 

surface plasmon wave effect. To this end, it was suggested to design mixed structures containing iron 175 

with a plasmonic material (gold or silver), i.e. by incorporating iron in Au NP (nanoparticle), [39], by 176 

designing gold–iron oxide Janus magnetic–plasmonic nanoparticles, [40], by coating IBN with gold, [41], 177 

or silver, [42]. Although the nature of the material located at IBN surface appears crucial to optimize the 178 

plasmonic effect, other parameters should also be taken into consideration for such endeavor, such as the 179 

shape, size, and type of assembly/interactions of IBN, [43]. 180 

II. DIFFERENT TYPES OF FLUORESCENT IRON-BASED NANOMATERIALS 181 

Fluorescent iron-based nanomaterials (FIBN), whose composition, type of assembly, fluorescent 182 

properties, and various operating mechanisms are summarized in table 1 and Figure 1, consist of a first 183 

metallic part, which is composed of Fe2O3 (maghemite) or Fe3O4 (magnetite), or of an alloy made of iron 184 

mixed with different metals, such as cobalt ferrite, FePt, or Zinc ferrite. Concerning pure iron oxides, 185 

although most studies report that they are composed of magnetite, it is possible that they in fact consist of 186 

maghemite, since on the one hand magnetite should oxidize into maghemite in the absence of a specific 187 

treatment/layer protecting magnetite against oxidation, and on the other hand magnetite and maghemite 188 
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structures are very close to each other, i.e. their electron diffraction patterns are very similar, [44], making 189 

these two structures difficult to distinguish one from the other in the absence of a specific characterization 190 

method such as Raman scattering, [45]. Maghemite is very stable and should not be prone to a phase 191 

transition in the absence of a specific harsh treatment such as heating at 900 °C, which can oxidize 192 

maghemite into hematite, [34]. Cobalt ferrite composition presents the advantage of yielding improved 193 

magnetic properties, [46]. Although preliminary assessment of the toxicity of cobalt doped IBN led to a 194 

reassuring safety profile, [46], it is not certain that regulatory agencies will allow their administration to 195 

humans due to the well-known toxicity of cobalt, [47]. FePt has shown good biocompatibility, resistance 196 

to oxidation, and high chemical stability [368], while the doping of ferrite with zinc increases IBN 197 

magnetization values, [48].  198 

Besides their metallic portion, FIBN comprise a fluorescent part that can be classified in four different 199 

categories. The first one consists of classic fluorescent compounds, mainly dyes or fluorescent proteins, 200 

e.g. ICG, [16], RhB, [49-,51], RITC, [52-55], Cy, [56-58], ATTO, [59, 60], fluorescein/FITC, [61-68], 201 

which usually emit/absorb in the visible, near infrared or far infrared, i.e. mainly between 380 and 1000 202 

nm. Among all these compounds, ICG presents the advantage of being authorized for human injection for 203 

a number of imaging applications, [69], hence suggesting that FIBN comprising ICG may be authorized 204 

for clinical application provided their safety is established. The second one is made of quantum/carbon 205 

dots, [70-87], whose absorption/emission wavelengths vary between 200 and 800 nm depending on their 206 

composition and size. These materials present the advantages of displaying absorption/emission peaks 207 

with wavelengths that can be tuned through size adjustment and stock shifts that are often larger than for 208 

dyes due to light quantum confinement. These properties yield efficient imaging. However, some of these 209 

materials also suffer from the presence of toxic elements in their composition, e.g. CdSe, [72, 88, 77, 89], 210 

CdTe, [90, 91, 77, 75], CdSe/CdS, [70], CdSe/ZnS, [72, 83], CdTe/ZnS, [73], CdTe/CdSe, [76], 211 

CdTe/CdS, [79], ZnS, [81], and from a blinking effect, i.e. intermittent light emission, [92]. The third type 212 

of fluorescent materials consists of luminescence up-conversion compounds such as Yb3+/Er3 +, [93], Yb3 213 
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+/Tm3+ co-doped NaYF4, [93], NaYF4:Yb, Er, [94], which emit light at shorter wavelength than their 214 

excitation wavelength. The use of long excitation wavelengths with large tissue penetration paves the way 215 

towards deep in vivo fluorescence. Fourth, metallic compounds different from iron such as chromium can 216 

be incorporated in FIBN, e.g. in Cr2O3 FIBN, and yield fluorescent properties with emission/absorption 217 

at 460 nm/360 nm, [95].  218 

Metallic and fluorescent compounds are assembled together to form a complex in the following different 219 

manners. In most cases, a fluorescent compound is attached to the metallic part of the complex, either 220 

directly, i.e. without an intermediate layer [72, 88, 54], or via a coating made of various organic layers 221 

such as chitosan, [63], carboxy-methyl-chitosan, [63, 73], dextran, [79], DMSA, [49], PEI, [96], 222 

polyelectrolytes, [75], PLMA, [32], PEG, [16, 55], or inorganic compounds such as SiO2, [95, 97, 70, 52, 223 

93, 98, 99]. The coating can be made of a single layer/matrix, e.g. of silica, [100], or of several layers, 224 

e.g. polyelectrolytes of opposite charges within a so-called layer by layer assembly, [50]. The coating 225 

material surrounds the metallic part of the complex and the fluorescence substance is attached at its 226 

surface. In some cases, a coating, which is fluorescent by nature, such as a carbon shell, is used to stabilize 227 

the metallic part of the IBN complex, [101]. Moreover, a coating composed of mesoporous silica was 228 

suggested to enable the insertion of fluorescence substance within its inner pores, [97, 98]. In addition to 229 

a fluorescent compound, IBN can comprise a targeting agent and a chemotherapeutic drug such as folic 230 

acid and β-cyclodextrin, [102], providing additional functionalities to IBN but making this complex more 231 

difficult to fabricate under pharmaceutical standards. The distance between the fluorescent compound and 232 

the iron-based metallic part is often maintained sufficiently large to prevent fluorescence quenching and 233 

below a certain threshold to avoid the loss of the complex stability. When the fluorescent substance is an 234 

inorganic QD, it is possible to grow it directly on top of IBN external surface, and hence to avoid the 235 

presence of an organic coating, [72, 88, 54]. Finally, different types of super-structures have been 236 

proposed, which are composed of micelles, [103], filled or empty vesicles/spheres, [91, 74, 89, 86], 237 

matrix, [71], nanowires, [104], graphene oxide, [90], inside or at the surface which FIBN are inserted or 238 
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attached. Such super-structures maintain several FIBN complexes on or within the same support, hence 239 

providing a means to collectively send several FIBN towards a desired location, e.g. a tumor, hence 240 

possibly improving the targeting efficacy compared with a strategy relying on the movement of individual 241 

FIBN.  242 

Most often, the FIBN complex is designed to prevent the release of the fluorescent compound and hence 243 

to ensure that the fluorescence remains stable as a function of time, e.g. by attaching the fluorescent 244 

compound (FC) by strong/covalent bonds to the coating of IBN metallic part, [102, 49, 61, 97, 63, 98, 79, 245 

57, 65, 55, 68, 83, 32, 84, 105, 106], or by maintaining the FC inside the FIBN complex by encapsulating 246 

it inside a vesicle, [91). However, in one recent case, it was suggested to maintain a weak bond between 247 

FC and FIBN, [22, 23], to allow the operation of the probe through the release of FC from the FIBN 248 

complex, hence yielding an increase of the fluorescence intensity of FC through a de-quenching 249 

mechanism, i.e. the fluorescence of FC is initially quenched when FC is attached to FIBN and is then de-250 

quenched when FC is released from FIBN, [22, 23]. This method was conceived to yield enhanced 251 

sensitivity, due its operating conditions relying on the detection of fluorescence increase instead of 252 

constant fluorescence. In addition, it can detect the release of a fluorescent anti-cancerous drug, e.g. 253 

Doxorubicin, paclitaxel, or bleomycin, [107], hence possibly enabling the monitoring of 254 

chemotherapeutic drug activity when the latter is triggered upon release of the drug from FIBN.  255 

Several types of FIBN are commercially available, at prices that differ depending on the product between 256 

7 and 300 euros per mg of FIBN. FIBN are available in the following different configurations : i) dyes 257 

are covalently bound to FIBN, eventually coated with dextran/hyroxyl-starch, i.e. Absolute Mag from 258 

CD,  Magdye from Ocean Nanotech, nanomag®-CLD-redF and synomag®-CLD-far redF from 259 

Micromod, MP25/350-FC/RB/Cy3/Cy5/Cy5.5 from NANOCS, ii) dyes are sandwiched between a 260 

magnetic core and a polysaccharide matrix, i.e. nano-screen MAG (affinity) from Chemicell, iii) dyes are 261 

comprised in a polystyrene/silica matrix surrounding FIBN magnetic core, i.e. SPHERO™ Carboxyl 262 

Fluorescent Magnetic Particles from Spherotech, iv) dyes are weakly bound to magnetosome surface and 263 
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could be released from this surface under the application of a stimulus to yield an increase in fluorescence 264 

intensity (table 1). 265 

III. DETECTION METHODS OF NON-FLUORESCENT IRON-BASED NANOMATERIALS 266 

Dark-field optical microscopy (DFM), is a relatively cheap/simple method that can image IBN down to 267 

single IBN resolution, using a microscope shining light, e.g. white one, on IBN with the help of a 268 

condenser to ensure accurate light focusing, and the scattered light then travels through an objective lens 269 

before being observed/recorded. In DFM, the light scattered by IBN is recorded at localized surface 270 

plasmon resonance (LSPR) wavelength, e.g. using a spectrometer connected to a CCD camera, [108]. 271 

DFM relies on Rayleigh scattering by IBN, which occurs under conditions where the wavelength of the 272 

incident light beam is large compared with IBN sizes resulting in elastic interactions between this beam 273 

and IBN and in an absence of energy loss. This method can be used to visualize an assembly of IBN 274 

through an image built from the intensity of light scattered by this assembly after removal of un-scattered 275 

light. The region, which surrounds IBN and where scattering does not occur in the absence of a scattering 276 

object should appear dark in the image, shedding light on the name ‘’dark-field microscopy’’. To reach a 277 

high scattering efficacy, a material with strong surface plasmonic resonance, i.e. essentially gold, can be 278 

added at the surface of IBN, [101]. Hence, nanoparticle complexes made of Au nano-seeds organized at 279 

IBN surface were brought into the presence of human fibroblast cells. It was possible to observe 280 

assemblies of these IBN in these cells using a dark-field microscope, apparently with a better resolution 281 

than the bright field microscope although this aspect was not discussed in this study, [109].  282 

Near Field Scanning Optical Microscopy (NSOM) uses laser light that travels through an aperture with a 283 

diameter smaller than the laser wavelength to create an evanescent field, which then excites and images 284 

IBN down to individual IBN level. NSOM presents the double advantage of reaching very high resolution 285 

down to 10 nm, [110], which is well below the diffraction limit of /2 estimated for an objective with 286 

numerical aperture of 1, and of enabling to extract topographical information of the measured sample 287 
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when NSOM is combined with atomic force microscopy (AMF). NSOM microscopes usually consist of 288 

a laser light beam, which travels through an optical fiber, whose ending part, which serves to illuminate 289 

IBN and to collect the scattered light, i.e. the so-called scanning tip, is coated with a metal, pulled or 290 

stretched. The laser light beam further crosses a polarizer and a beam splitter to remove light not 291 

interacting with FIBN from the scattered light. The scattered signal is further detected by standard optical 292 

detectors, such as avalanche photodiode, photomultiplier tube (PMT) or CCD camera. A so-called feed-293 

back mechanism can be used to achieve high resolution images without artifacts. Thus, it was 294 

demonstrated that IBN internalized in MCF7 breast cancer cells could be visualized by NSOM, giving 295 

rise to dark spots in transmission NSOM images, resulting from IBN light absorption at 488 nm. 296 

Furthermore, AFM images, which displayed the geography of the cell surface through which IBN were 297 

engulfed, were also provided as sisters images of NSOM images, [111]. 298 

Raman spectroscopy (RS) is another method, whose principle relies on inelastic light scattering by a 299 

nanomaterial notably following light energy absorption through lattice vibration of this material. It 300 

consists in recording a Raman Spectrum, whose peaks positions and intensities depend on the 301 

composition/structure of the studied material, further highlighting its presence or absence. Raman 302 

phenomena can be triggered by several different laser sources operating within a wide range of different 303 

wavelengths, i.e. typically between 488 nm (Argon laser) and 1064 nm (Nd:YAG laser), where a tradeoff 304 

between long wavelengths resulting in the most efficient tissue/cell penetration and low wavelength 305 

yielding the strongest Raman signal, which is proportional to 1/4, should be determined, [112]. A Raman 306 

microscope typically contains a laser for IBN excitation, filters to remove laser light not interacting with 307 

IBN, a spectrometer or monochromator for scanning the different wavelengths of the scattered light, and 308 

standard detectors for measuring the strength of the scattered light. It measures so-called Raman Shifts, 309 

resulting from the light scattered by IBN, and operates either in standard or hyperspectral mode, where it 310 

detects wavenumber(s) associated with one or several type(s) of IBN, further providing images 311 

determining IBN location. Carrying out RS in the presence of IBN covered by a plasmonic material such 312 
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as gold, leads to surface enhanced Raman spectroscopy (SERS) effect, i.e. an amplification of the Raman 313 

signal due to plasmonic resonance at NP surface. Without such mechanism, it may be difficult to record 314 

a Raman spectrum with good resolution/sensitivity. By using various SERS based IBN, ultrasensitive 315 

detection of various cancer biomarkers could be reached, e.g. Fe3O4@Ag  NP associated with DNA 316 

detected miRNA let-7b down to 0.3 fM, [113], SPION-PEI associated with Au NP and Folic Acid enabled 317 

the detection of a single HeLa cell per mL of collected blood, [114], while a sandwiched type 318 

immunoassay, consisting of Fe3O4 IONP coated by a silica shell attached to antibodies capturing tumor 319 

exosomes enabled to reach rapid detection, i.e. within 2 hours, of tumor exosomes via a SERS signal, 320 

[115]. 321 

IV. DETECTION METHODS OF FLUORESCENT IRON-BASED NANOMATERIALS 322 

The methods described in the previous section, which don’t necessitate the presence of a fluorescent 323 

compound associated with IBN, can be of insufficient resolution to observe individual or weakly 324 

concentrated IBN. Thus, to improve the signal quality, visible/infra-red light detection methods have been 325 

developed in which FIBN are excited by an incident light beam, resulting in light emission used for 326 

reconstituting a fluorescence image. The description of the different existing types of fluorescent 327 

microscopy (FM) are reviewed elsewhere, [116]. With FIBN, certain drawbacks of FM can be overcome 328 

such as fluorophore photobleaching [117], weak dye quantum yield [118], and a narrow absorption band 329 

of many fluorescent compounds, (FC), [119]. Indeed, FIBN enable the attachment of several FC to a 330 

single FIBN hence increasing their concentration, a strong absorption in particular below 500 nm, the 331 

adjustment of fluorescence mechanisms through the design of the nanoparticulate complex, which can 332 

result in the presence or absence of electron transfer between the crystalized part of FIBN and the 333 

fluorescent compound and in FC being associated to the FIBN complex by weak or strong bonds, 334 

depending on whether or not the release of FC is desired. 335 
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Wide field epifluorescence microscopy (WFEM) is the easiest fluorescent imaging method. Following 336 

laser light illumination, it yields a fluorescent image of FIBN, which is a superposition of images obtained 337 

at all different focal planes. WFEM contrasts with confocal microscopic images, where fluorescence 338 

originates from a specific focal plane. WFEM loses in resolution as the sample gets thicker and is best 339 

suited for thin sample with minimal autofluorescence, such as FIBN internalized in cells. It also requires 340 

the removal with adequate filters of laser light not originating from FIBN fluorescence. It can be combined 341 

with FIBN to yield efficient imaging at sub-cellular level, as has been shown for DMSA coated FIBN 342 

covalently attached to dyes, which produced membranous fluorescence when FIBN adsorbed on cell 343 

membrane and intracellular vesicular fluorescence when FIBN internalized inside cells, where these two 344 

distinct types of fluorescence could be achieved by varying FIBN incubation time and by deciding to 345 

apply (or not) a magnetic field, [49].  346 

To further improve the detection of FIBN position within cells, confocal microscopy (CM) may be used. 347 

In CM, the combination of a microscope objective and a pinhole enables to focus a laser light beam on 348 

different focal planes localized at various depths of a sample containing FIBN, a method called optical 349 

sectioning. It yields a series of images from which a three-dimensional sample image can be reconstructed. 350 

In CM, the fluorescence originating from other planes than the focal one, is removed, hence resulting in 351 

a sharper and better resolved image with enhanced resolution compared with WFEM, i.e. typically 160-352 

180 nm and 600 nm in lateral and vertical directions. Depending on FIBN sizes, on FIBN fluorescent 353 

properties, and on the optical quality of the used confocal microscope, such resolution could in principle 354 

allow the detection of a minimum of 1 to 100 FIBN. Using this method, it was clearly shown that 355 

fluorescent PVLA-coated FIBN were located inside hepatocyte cells and not at cell surface, [120]. 356 

Furthermore, CM, which is a widely used microscopy technique, enabled to distinguish the various blocks 357 

of a FIBN complex consisting of SPION (block 1), PEG (block 2), and antibody (block 3), where blocks 358 

1, 2, and 3 appeared in black, green, and red, respectively, hence clearly showing the different locations 359 

of these blocks within the nanoparticulate complex, [52]. 360 
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To reach a microscopic resolution below 200 nm, super-resolution light microscopy, (SRM), can be used, 361 

[121]. The term SRM encompasses a large number of different techniques, an example of which being 362 

structured illumination microscopy (SIM). SIM can reach a resolution of 100 nm in lateral directions by 363 

reconstructing an image, which is a superposition of images obtained for illuminations at different phases 364 

and angles. Due to its high resolution, SRM enables to obtain images in 3D of FIBN in interaction with 365 

cells, cell compartments or cell membrane, using different colors for labeling various entities at nanometer 366 

scale, [121]. To obtain highly contrasted images with this method, fluorescent CTDR and DAPI 367 

compounds were directly mixed with Hela cells, leading to beautiful images of the cell nucleus and its 368 

surrounding with IBN appearing in the reflectance mode as white dots localized inside (blue) and around 369 

(red) cell nucleus, [122].  370 

Fluorescence resonance energy transfer (FRET) relies on the detection of the variation of fluorescence of 371 

a donor induced by the appearance or disappearance of a transfer of electrons between so-called donors 372 

and acceptors in close proximity, i.e. typically separated by less than 10 nm. To carry out optimal FRET 373 

measurements, specific properties are required both for the microscope used for imaging and for the FRET 374 

pair. On the one hand, most inverted microscopes could in principle be used for FRET microscopy, 375 

provided that they include a camera, which is sensitive enough to detect the fluorescence signal of FIBN, 376 

e.g. a high-resolution CCD camera, as well as interference filters allowing to block the light not arising 377 

from the fluorescence signal of FIBN. On the other hand, the FRET pair contained in FIBN should be 378 

characterized by: i) a well-adjusted ratio between the concentration of donors and acceptors, ii) an absence 379 

of photobleaching, iii) a sufficient overlap between donor fluorescence emission and acceptor absorption, 380 

iv) a minimal overlap between donor absorption and donor emission, v) no excitation of acceptor at donor 381 

excitation wavelength, v) a sufficiently long donor lifetime, and vi) a low donor polarization anisotropy. 382 

Most interestingly, these properties can be optimized in FIBN, e.g. by accurately selecting the FC, by 383 

adjusting the distance between the FC and IBN magnetic core through a tuning of the coating thickness, 384 

by controlling the number/position of FC bound to IBN magnetic core. In most FRET studies, a FRET-385 
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based IBN complex was activated through the binding of FC to IBN or via the structural change of the 386 

FRET IBN complex, which took place without FC release from IBN. FIBN can contain FRET pairs 387 

consisting of a donor such as GFP, [123], Carbon dots, [124], FITC, [125], PFR, [126], and an acceptor 388 

such as CdTe QD, [123], Au [124, 126], or iron oxide nanoparticle (IONP), [125]. When FC gets linked 389 

to IBN to form a FRET IBN complex, it yields a fluorescence decrease of the FC donor and the binding 390 

of FC to this complex can then be detected. Hence, FRET can be used to detect the binding of a substance 391 

of interest such as sarcosine, [123], histamine, [124], thiol, [126], to IBN with a high sensitivity, i.e. 392 

typically in the nM range, [123], resulting in a highly sensitive diagnostic test. FRET can also serve to 393 

monitor the release of a cancer drug such as platinum (IV), following the action of an enzyme triggering 394 

such mechanism in the presence of FITC whose fluorescence changes are measured with FITC 395 

detachment from IBN, [125].  396 

Although microscopic techniques often allow to obtain well-resolved images, they can hardly monitor 397 

very localized phenomena at the nanometer scale and suffer from the dependence of the fluorescence 398 

intensity on tissue light absorption/scattering. To overcome this hurdle, fluorescence lifetime imaging 399 

(FLIM) was developed. FLIM provides microscopic images, in which each pixel intensity is determined 400 

by the fluorescent decay rate (FDR) of the material that it contains, hence allowing to clearly differentiate 401 

between materials of different FDR through a contrast in the FLIM image. FLIM could be used to detect 402 

FIBN associated with photosensitizers inside tumor cells or FIBN internalized in tumors. It could also 403 

provide a method for FRET measurement described above, which does not rely on fluorescence intensity 404 

but on fluorescence lifetime, hence making FRET outcome potentially less dependent on tissular 405 

environment. FLIM measurements on FIBN consisting of an iron oxide core coated by polymers bound 406 

covalently via imine bonds to DOX and incubated (or not) with MCF-7 breast / H1299 lung cancer cells 407 

showed that DOX lifetime was lower for incubated FIBN complexes, i.e. ∼1 ns, than for non-incubated 408 

FIBN complexes, i.e. 4.6 ns. Such behavior may be attributed to DOX release from FIBN complexes 409 

under acidic intracellular pH, [127]. 410 
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Fluorescence anisotropy (FA) is a light detection method, which measures fluorescence anisotropy, i.e. 411 

the intensity of fluorescence for different light emission directions. Its mechanism is based on the 412 

existence of photon polarization in light emitted by a FC when the exciting photons are polarized in a 413 

specific direction. Hence, a microscope used for FA measurements contains polarizers to polarize the light 414 

illuminating FIBN and to record the strength of the fluorescence intensity signal as a function of the light 415 

polarization direction. FA further relies on the principle that a molecule leads to less FA when it is in 416 

movement than when it is immobilized, since a molecule can more easily emit light in all directions when 417 

it is free to rotate than when it is fixed. Thus, this method was first used to measure the melting temperature 418 

of the membrane of a liposome containing IONP, by making such membrane fluorescent and by 419 

measuring FA as a function of increasing temperature under alternating magnetic field application, [128]. 420 

It could also be employed to determine the heating mechanism of IBN during magnetic hyperthermia. For 421 

example, IBN encapsulated in a silica matrix were shown to heat through a dominating Néèl contribution 422 

[129].  423 

Two-photon microscopy (TPM) usually requires the use of a fluorescence microscope containing a laser 424 

of sufficiently large power, e.g. a femtosecond pulsed laser, with typical emission in the near infrared. It 425 

has been developed to image FIBN in regions that are inaccessible/too deep for the microscopy methods 426 

described above. Its principle relies on the use of an excitation light source with a wavelength that is twice 427 

that of single photon excitation (SPE). Two-photon excitation (TPE) presents the advantage of limiting 428 

tissue light scattering due to the use of long wavelengths, thus making it possible to image tissues at a 429 

certain penetration depth, i.e. typically 1 mm compared with only a few micrometers for single photon 430 

microscopy. The power required for TPE is however much larger than for SPE, requiring the use of a 431 

pulsed laser, since the number of photons reaching the region to be imaged should be sufficiently large so 432 

that the probability for the energies of two photons of energies E/2 to be simultaneously absorbed by the 433 

FC and result in its excitation, should be sufficiently large for fluorescence excitation to occur. As an 434 

example, FeS QD conjugated with HER2 antibodies were injected intravenously in mice bearing MCF7 435 
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subcutaneous tumors, and their presence in the tumor was revealed by TPE at 800 nm at a depth of up to 436 

500 µm by a cyan color due to FeS QD fluorescence, [130]. Some FIBN such as FePt NP associated with 437 

NOPS fluorescent dye, which are non-fluorescent under SPE due to fluorescence quenching, can be made 438 

fluorescent under TPE and used for in vivo imaging, e.g. to image the mouse neocortex, [131]. 439 

Interestingly, it was suggested that TPE efficacy could be optimized, not necessarily by choosing an 440 

adapted dye that is incorporated in FIBN, which is always a complex thing to do, specially to reach a good 441 

FIBN stability, but by tailoring the surface of FIBN to make this material a strong absorber of NIR-IR 442 

light, as demonstrated for Fe3O4 NP with a surface modified by trimesic acid (TMA) [132]. 443 

To follow the fate of FIBN in an organism, fluorescence tomography (FT) can be used. In FT, the body 444 

part of a small animal (rat, mouse) in which FIBN are located is trans-illuminated with an IR/NIR laser. 445 

The fluorescent light transmitted through the animal is then detected after removal of the excitation signal 446 

not due to fluorescence, hence enabling to reconstruct a 2D or 3D fluorescence image (depending on FT 447 

apparatus) of a body part (BP) containing FIBN by gathering the fluorescence of different portions of the 448 

BP recorded at different angles. In this case, fluorescence is generated by a fluorescence compound 449 

associated to FIBN, e.g. Cy5.5 or NIR emitting semiconducting polymer with excitation/emission 450 

wavelengths of 670/695 nm, [133], or 360/660 nm, [134], respectively. Thus, when FIBN associated with 451 

specific targeting agents such as anti-EGFR, [135] or folic acid, [134] were administered intravenously 452 

to mice, they specifically targeted MDA-MB-231 breast and A549 lung subcutaneous tumors, [133, 134], 453 

reaching maximum FIBN tumor accumulation at 6 and 36 hours following FIBN administration, as 454 

revealed by the strongest fluorescent signal observed at these time points, [133, 134]. 455 

IV. FLUORESCENT IRON OXIDE NANOPARTICLES FOR DETECTING TUMOR 456 

MICRO-ENVIRONMENT 457 

The tumor micro-environment consists of a wide range of different molecules, cells, or entities contained 458 

in tumor, such as angiogenic blood vessels, immune cells or fibroblasts, various signaling molecules, or 459 

the extracellular matrix. Its detection is important to yield accurate tumor diagnosis. In an interesting 460 
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study, a probe was fabricated to detect metalloprotease-9 (MMP-9), which are known to be activated in 461 

TME. Such probe consisted of Fe3O4 NP linked to a Cy5.5 through a bond that was cleaved in the presence 462 

of MMP-9, thus suppressing the FRET mechanism between the NP and Cy5.5. In other words, this probe 463 

indirectly enabled to detect the TME by highlighting the loss of FRET, a method that was then elegantly 464 

applied for the detection of colon cancer, [136]. 465 

V. RECENT INNOVATIONS OF LIGHT INTERACTING IRON-BASED 466 

NANOMATERIALS IN ONCOLOGY 467 

In addition to the fluorescent probes already described, which operate through a fluorescence de-468 

quenching mechanism, [22, 23], and studies which are in line with or complement older works, [137-469 

147], some recent papers in the field of FIBN have brought to light some remarkable innovations. First, 470 

radio-luminescent FIBN produce a luminescence intensity proportional to the x-ray dose at which they 471 

are exposed. They could therefore potentially be used to monitor the doses of X-rays administered to a 472 

cancer patient, [148]. Secondly, an original detection system for cathepsin L was described. It operates 473 

by detecting the fluorescence quenching caused by the aggregation of FIBN associated with polymer dots 474 

in the presence of cathepsin, [149]. Thirdly, IBN associated with thermo-responsive fluorescent polymer 475 

(TFP) which can release DOX in response to temperature changes, were shown to be taken up by 476 

prostate/skin tumor, resulting in tumor fluorescence that could serve for their detection. Furthermore, 477 

DOX release led to efficient tumor cell destruction at 41 °C. Hence, such nano-systems displayed a 478 

controlled drug release mechanism, which could be monitored by fluorescence, [150]. The presence of a 479 

fluorescence probe in ION was also shown to enable the detection of the specific tumor targeting of these 480 

NP or their internalization in tumor cells, using a variety of different types of FIBN, [151]. 481 

VI. TOWARDS CLINICAL APPLICATIONS OF VISIBLE AND INFRA-RED LIGHT 482 

DETECTION METHODS COMBINED WITH IRON-BASED NANOMATERIALS: 483 

Early cancer detection, which is needed to yield efficient cancer prognosis, relies on certain detection 484 

methods, which could be made more sensitive by using FIBN. First, liquid biopsy (LB), which consists 485 
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in an analysis of certain blood components such as circulating tumor cells (CTC) and extracellular 486 

vesicles, has a strong cancer predictive power, since it can in principle highlight at the same time cancer 487 

occurrence, cancer heterogeneity, and cancer evolution, as demonstrated for lung, colorectal, prostate, 488 

melanoma, breast and pancreatic cancers, [152, 153]. In addition, it is less invasive than tissue biopsy. LB 489 

can be carried out using an apparatus that detects and identifies by fluorescence the presence of 490 

extracellular vesicles. It has been shown that FIBN consisting of fluorescent magnetic mesoporous silica 491 

nanoparticles conjugated to the antibody of epithelial cell adhesion molecule (EpCAM) could enable to 492 

isolate and then detect CTC, hence demonstrating its utility in LB, [154]. Second, a system of detection 493 

of superficial tumors such as those of the skin, typically consisting in a fiber optic–based fluorimeter, 494 

[155], could yield improved efficacy in the presence of FIBN, as demonstrated when SPION covalently 495 

conjugated to anti-cancer drug Epirubicin (EPI) with red fluorescence properties were shown to cross the 496 

derma under magnetic field application, enter and destroy skin WM266-4 metastatic human melanoma 497 

cells, as well as specifically release EPI through a pH dependent release mechanism, which takes 498 

advantage of the acidic tumor microenvironment, [34]. Third, fluorescent endoscopy could be carried on 499 

various cancers, e.g. gastrointestinal, [156], pancreatic, [157], gastric/stomach, [158], esophageal, [159], 500 

or kidney, [160] cancers. Combining standard endoscopic fluorescent apparatus with FIBN associated to 501 

a targeting moiety (amino-terminal fragment) could improve the quality of the fluorescence signal due to 502 

the specific tumor targeting and imaging of FIBN, [157]. In the same spirit, it was shown that the position 503 

of FIBN encapsulated in a hydrogel with upconverting materials could be adjusted via magnetic targeting 504 

to enable the fluorescent compound of FIBN to reach the desired target, hence resulting in an improved 505 

endoscopic image, [161]. Fourth, colonoscopy, which is a similar method than endoscopy but specifically 506 

targets colon tumors and requires the patients to follow a specific preparatory treatment before imaging 507 

to clear out the colon, i.e. by drinking cleansing solutions/laxatives/enemas and by observing a diet. 508 

Among the innovations in this field, it is worth mentioning a colonoscopy imaging endoscopic system 509 

that eliminates tissue autofluorescence and can distinguish between FIBN with different 510 

absorption/fluorescent properties. It combines a cysto-urethroscope, a multi-spectral imaging system, a 511 
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CCD camera, a Xenon lamp, as well as lenses/optical fibers to carry the exciting/emitted light between 512 

the apparatus and colon tumor, [162]. Furthermore, using FIBN during colonoscopy can yield a reduction 513 

in dye photobleaching as well as the specific imaging of colon tumors when FIBN are bound to a tumor-514 

targeting ligand such as peanut agglutinin and anti-carcinoembryonic antigen antibodies (αCEA), [163].  515 

One of the main interests of using FIBN in combination with optical methods resides in the faculty of 516 

these nanomaterials to specifically target tumors, hence enabling to improve tumor detection/treatment. 517 

Passive targeting, i.e. via the well-known enhanced permeability and retention effect (EPR), [164], is the 518 

most common employed strategy. Its efficacy seems to depend on the nature of the body part. On the one 519 

hand, it was shown that FIBN associated with pH-activatable NIR dyes could accumulate in 4T1 tumors 520 

three hours after their injection and trigger a fluorescence signal in these tumors due to their acid 521 

environment, which persisted for 24 hours, [165]. On the other hand, when tumors are poorly 522 

vascularized, the EPR effect is not pronounced. This is the case for SKOV3 tumors, where other methods 523 

than passive targeting, e.g. magnetic targeting, need to be used to reach FIBN tumor accumulation, [167]. 524 

Targeting could also be achieved by using FIBN associated with a molecule that targets the region of 525 

interest, as was shown first for fluorescent iron oxide-carbon hybrid nanomaterials conjugated with CD44 526 

monoclonal antibodies that specifically reach 4T1 breast cancer cells, yielding fluorescence of these cells, 527 

[167], second for FIBN associated with a protein targeting riboflavin, which is overexpressed/activated 528 

in cancer/endothelial cells, and a fluorescent moiety (flavin mononucleotide), demonstrating efficient 529 

fluorescence of PC-3, DU-145, LnCap cancer cells and activated HUVEC endothelial cells, [15], third for 530 

FIBN associated with fluorescent dye and folic acid that target KB cancer cells as demonstrated in vitro 531 

through fluorescence experiments, [168]. The targeting molecules incorporated in IBN and their 532 

associated cellular targets form pairs, whose list is provided elsewhere, [169, 170]. The presence of iron 533 

in FIBN makes these materials sensitive to the application of an external magnetic field. Thus, it was 534 

shown that FIBN administered intravenously to GBM bearing mice could be magnetically retained in 535 

tumor neovasculature and surrounding tumor tissues, using a magnetic field applied on the tumor via a 536 
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micromesh, (56). Interestingly, it was shown that FIBN could be captured by certain cells carrying FIBN 537 

to a location that needs to be imaged. For example, when FIBN were associated with ICG and injected 538 

intravenously to rats suffering from cerebral aneurysms (CAs), they were captured by macrophages that 539 

transported the nanoparticulate complex to CAs, hence providing a means to image CAs, [171]. It can be 540 

taken advantage of the imaging capacity of FIBN to efficiently deliver a molecule of therapeutic interest, 541 

e.g. FIBN surrounded by a mesoporous silica shell containing siRNA were efficiently carried to Hela cells 542 

under magnetic guidance and visualized by FI [172]. 543 

Most interestingly, FIBN can also be used in the context of cancer treatments. First, the well-established 544 

and valuable method of fluorescence guided surgery (FGS), which is most commonly used on brain 545 

tumors to improve tumor resection, avoid tumor re-growth, and prevent removal of healthy tissues, could 546 

benefit from the presence of FIBN. Practically, FGS operates under infra-red (IR) light illumination with 547 

relatively deep tissue penetration of 1-2 cm, [173]. Hence, it can serve to excite/detect FIBN that can be 548 

made fully operational in the IR range of wavelengths. As an example, FIBN associated with DiI were 549 

used to label certain microglial BV2 cells, resulting in FIBN efficiently crossing the BBB and then 550 

imaging by fluorescence tumor border demarcation for a prolonged period of 4 to 24 h following FIBN 551 

administration through the carotid artery in an orthotopic glioblastoma mouse model. In this case, FIBN 552 

also led to an inhibition of M2 markers (arginase-1 and CD206), possibly reducing immunosuppressive 553 

effects induced by M2-like phenotype of microglial cells, [174]. Compared to other types of NIR 554 

nanoparticulate fluorescent materials foreseen for this application, such as carbon dots, CuInSe QD, 555 

cornell dots, Up-converting NP, aggregation-induced emission NP, FIBN present the advantage of being 556 

bio-compatible and orientable through the application of an external magnetic field, [175]. Second, FIBN 557 

could be heated via a method called photothermal therapy (PTT), and trigger heat-induced anti-tumor 558 

activity, [176]. Thus, FIBN conjugated with certain dyes (MHI-148) were injected in subcutaneous SCC7 559 

mouse tumors and heated during 10 minutes at a maximum temperature of 50 °C under the application of 560 

a 808 nm laser of 1 W/cm2, resulting in full tumor disappearance after 8 days, [177]. Furthermore, it is 561 
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possible to combine PTT with fluorescence imaging (FI) to determine FIBN localization. For example, 562 

FIBN made of an assembly of iron oxide and carbon NP associated with fluorescent ICG enabled reaching 563 

ICG photostability and efficient long-term FI and PTT capability, i.e. intravenous injection of these FIBN 564 

on mice bearing 4T1 subcutaneous tumors followed by tumor illumination at 808 nm and 2 W/cm2 for 5 565 

minutes led to tumor temperature elevation up to a maximum temperature of 47 °C and to full tumor 566 

disappearance. Interestingly, the fate of FIBN after its injection in mouse organism could be followed by 567 

FI excited at 704 nm using an ex in vivo imaging system. FI nicely helped determining the lapse of time 568 

following FIBN injection that yielded maximal FIBN tumor accumulation, i.e. 8-10 hours, [178]. The 569 

practical application of PTT combined with IF can be made even more efficient by incorporating in FIBN 570 

a fluorescent compound with adjustable emission/excitation wavelengths and a releasable 571 

chemotherapeutic drug, as demonstrated for FIBN associated with carbon dots and DOX that yielded 572 

efficient imaging and destruction of mouse melanoma B16F10 cells through a synergy between 573 

chemotherapeutic and heating anti-tumor activity, [96]. The use of IBN with PTT further enables NP 574 

concentration at tumor cell location via the application of a magnetic field, as highlighted for IBN 575 

incorporated in PLA microcapsules functionalized with graphene oxide that were heated by a 808 nm 576 

laser of 2 W/cm2 during 10 minutes in the presence of Hella cancer cells, resulting in more efficient cancer 577 

cell destruction in the presence than in the absence of magnetic field application for optimal IBN 578 

concentration of 0.5 and 1 mg/mL, [179]. Third, Photodynamic therapy (PDT) is another modality of 579 

cancer treatment that can be implemented using iron-based nanomaterials associated with a 580 

photosensitizer (IBN-PS), which trigger anti-tumor activity via singlet oxygen generation under infra-red 581 

light excitation, and is currently in use in the clinic to treat several cancers, [180]. IBN-PS was reported 582 

to yield better PS solubility and more efficient tumor targeting compared with free PS, hence improving 583 

PDT efficacy. The latter has been demonstrated, first for mice bearing 4T1 tumors injected intravenously 584 

with Ce6-FIBN followed by tumor light exposure at 650 nm and 75 mW/cm2 during 30 minutes, [181], 585 

second for mice with A539 xenograft tumors receiving intravenously IBN conjugated with thiolated 586 

heparin–pheophorbide, which is a PS designated to be specifically activated at tumor site, followed by 587 
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several 30 minutes laser applications at 670 nm and 4 mW/cm2, [179], third for mice having subcutaneous 588 

gastric cancer tumors administered intravenously with FIBN associated with Ce-6, for which the 589 

combination of FI and PDT was reported under similar laser excitation conditions at 630 and 633 nm, 590 

enabling to monitor FIBN tumor localization before, during, and after tumor treatment, [181]. These three 591 

treatments led to tumor growth retardation, but not to full tumor disappearance. Figure 3 summarizes the 592 

various applications of light-interacting iron-based nanomaterials.  593 

CONCLUSION 594 

The detection and treatment of cancer are major public health issues. These two concepts are closely 595 

linked to each other, i.e. in general the earlier or the more precisely a cancer is detected in the body, the 596 

greater the chances of treating it effectively. Based on this observation, it appears interesting to develop 597 

methods that can improve detection and treatment of tumors through local approaches. When combined 598 

with various optical methods, iron-based nanomaterials achieve this double objective. Indeed, they are 599 

biocompatible and can target tumors by various mechanisms, i.e. passive, active, and magnetic targeting, 600 

[183-186]. When they are covered with a plasmonic material, such as gold or silver, the light diffusion 601 

that they generate under the effect of a radiation makes it possible to detect tumor cells, which contain 602 

them, in particular with the help of dark field, Raman or near-field scanning optical microscopy. A more 603 

important number of applications can be foreseen when IBN are combined with a fluorescent compound. 604 

For example, tumor cells, which are made fluorescent by the presence of FIBN, can be detected with 605 

wide-field epi-fluorescence microscopy. The sensitivity of the detection can further be improved by using 606 

confocal or super-resolution microscopy. Moreover, dynamic phenomena such as FIBN diffusion can be 607 

monitored by various microscopic methods, which measure the variation as a function of time and FIBN 608 

location of certain fluorescence parameters such as fluorescence lifetime, intensity, or anisotropy, using 609 

FRET, FLIM or FA microscopy. A method has also recently been developed to detect the release of a 610 

fluorescent drug from iron-based nanoparticles by monitoring a dequenching mechanism, i.e. the 611 

fluorescence of FIBN is initially quenched in the absence of excitation/perturbation and then de-quenched 612 
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after FC release. TF imaging is another microscopy tool for imaging FIBN at a certain tissular depth, 613 

hence providing a tool to detect non-superficial tumors. Finally, although this method is currently reserved 614 

to small animals (rats, mice), fluorescence tomography can be used to visualize FIBN within the whole 615 

organism, thus making it possible to follow FIBN trajectory inside/outside a tumor. In combination with 616 

these various optical methods, FIBN can be used in liquid biopsy to improve the detection in blood of 617 

certain cancer biomarkers, they can serve to detect superficial tumors, e.g. those of the skin, or to improve 618 

the resolution of fluorescence imaging in endoscopic/colonoscopic tumor tissue examination. FIBN can 619 

also be employed in the context of cancer treatment, where they can guide the surgeon by illuminating 620 

tumor edges, and thus potentially allow him to increase the size of the tumor portion that he can remove 621 

at tumor margin. FIBN can directly destroy the tumor, either through heat, i.e. when FIBN are exposed to 622 

a laser beam of suitable wavelength and sufficient power to produce a temperature increase via PTT, or 623 

by generating singlet oxygen, i.e. when FIBN are associated with a photosensitizer and exposed to a laser 624 

beam to yield PDT. As a whole, iron-based nanomaterials appear to be very interesting and promising 625 

materials to fight cancers when they are combined with various optical methods to yield early cancer 626 

detection and localized tumor treatment.  627 

  628 
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FIGURES AND TABLE: 629 

Figure 1: A schematic diagram showing examples of fluorescent iron-based nanomaterials (FIBN). In a 630 

first category, the fluorescent compound (FC) is either attached to the NP magnetic core, embedded in a 631 

matrix (mesoporous or not) embedding the NP magnetic sore, or sandwiched between an external layer 632 

and the NP magnetic core. In a second category, FC is weakly bound to the NP magnetic core. In the first 633 

case, FC is sufficiently strongly associated to the NP magnetic core to prevent its dissociation and the 634 

fluorescence intensity of FC remains stable over time. In the second case, the weak interaction between 635 

FC and the NP magnetic core enables FC dissociation under various physico-chemical disturbance, such 636 

as pH, temperature variation or the application of a radiation, yielding a de-quenching mechanism and an 637 

increase of the fluorescence intensity. 638 

Figure 2: The different methods of light interaction with iron-based nanomaterials as a function of 639 

wavelengths. Only optical methods operating in the infrared and visible regions through a 640 

scattering/fluorescent mechanism are covered in this review. 641 

Figure 3: Various applications of light-interacting iron-based nanomaterials for cancer treatment and 642 

detection. 643 

Table 1: For various FIBN described in the literature, magnetic composition, type of fluorescence 644 

substance that it contains, size, magnetization, coercivity, stability, type of complex that it is made of, 645 

fluorescent properties, and various applications.  646 
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