

Review of the Current Literature and Our Experience on the Value of OCT-angiography in White Dot Syndromes

Céline Mebsout-Pallado, Raphaëlle Orès, Céline Terrada, Kunal Dansingani, Jay Chhablani, Andrew Eller, Joseph N Martel, Alexander Anetakis, Jean Harwick, Evan Waxman, et al.

▶ To cite this version:

Céline Mebsout-Pallado, Raphaëlle Orès, Céline Terrada, Kunal Dansingani, Jay Chhablani, et al.. Review of the Current Literature and Our Experience on the Value of OCT-angiography in White Dot Syndromes. Ocular Immunology and Inflammation, 2021, pp.1-15. 10.1080/09273948.2020.1837185 . hal-03182427

HAL Id: hal-03182427 https://hal.sorbonne-universite.fr/hal-03182427v1

Submitted on 26 Mar 2021

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers. L'archive ouverte pluridisciplinaire **HAL**, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d'enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

Review of the current literature and our experience on the value of OCT-angiography in white dot syndromes

Journal:	Ocular Immunology and Inflammation
Manuscript ID	NOII-2020-0038.R2
Manuscript Type:	Invited Review
Date Submitted by the Author:	27-Sep-2020
Complete List of Authors:	Mebsout-Pallado, Céline; Quinze-Vingts National Eye Hospital, UPMC- Sorbonne Universities, Paris, France. Ores, Raphaëlle; Quinze-Vingts National Eye Hospital, UPMC-Sorbonne Universities, Paris, France. Terrada, Céline; Pitié-Salpêtrière Hopital, Ophthalmology Dansingani, Kunal; Department of Ophthalmology, University of Pittsburgh School of Medicine, Chhablani, Jay K; Department of Ophthalmology, University of Pittsburgh School of Medicine, Eller, Andrew; University of Pittsburgh Medical Center, Ophthalmology Martel, Joseph; Department of Ophthalmology, University of Pittsburgh School of Medicine, anetakis, Alexander; Department of Ophthalmology, University of Pittsburgh School of Medicine, Harwick, Jean; Department of Ophthalmology, University of Pittsburgh School of Medicine, Harwick, Jean; Department of Ophthalmology, University of Pittsburgh School of Medicine, Harwick, Jean; Department of Ophthalmology, University of Pittsburgh School of Medicine, Waxman, Evan; University of Pittsburgh Medical Center, Ophthalmology Gallagher, Denise; Department of Ophthalmology, University of Pittsburgh School of Medicine, Prensky, Colin; Department of Ophthalmology, University of Pittsburgh School of Medicine, Sedira, Neila; Quinze-Vingts Hospital, Department of Internal Medicine Héron, Emmanuel; Quinze-Vingts National Eye Hospital, UPMC-Sorbonne Universities, Paris, France. Paques, Michel; Quinze-Vingts National Ophthalmology Hospital, Ophthalmology IV Brignole-Baudouin, Françoise ; Quinze-Vingts Hospital, DHU Sight Restore, Laboratory; Universite Paris Descartes Bodaghi, Bahram; Hopital Pitie-Salpetriere Sahel, José-Alain; Centre Hospitalier National d'Ophtalmologie des

4	
5	
6	
7	
8	
0	
9 10	
10	
11	
12	
13	
14	
15	
16	
17	
18	
19	
20	
21	
22	
22	
23	
24	
25	
26	
27	
28	
29	
30	
31	
32	
33	
34	
35	
36	
37	
38	
30	
10	
40	
41	
42	
43	
44	
45	
46	
47	
48	
49	
50	
51	
52	
53	
54	
55	
55	
50	
5/	
58	

	Quinze-Vingts. Ophthalmology Department and Laboratory and DHU Sight Restore; Sorbonne Universités, UPMC Univ Paris VI Gaudric, Alain; Department of Ophthalmology, Lariboisière Hospital, Université Paris Diderot, Sorbonne Mrejen, Sarah; Quinze-Vingts National Eye Hospital, UPMC-Sorbonne Universities, Paris, France. Errera, Marie-Helene; Quinze-Vingts National Eye Hospital, UPMC- Sorbonne Universities, Paris, France.,
Keywords:	Birdshot chorioretinopathy, multifocal choroiditis, multifocal placoid pigment epitheliopathy, MEWDS, OCT-A, serpiginous-like choroiditis, serpiginous choroiditis, syphilitic placoid chorioretinitis, uveitis
	SCHOLARONE [™] Manuscripts

3 4	1	
5 6	2	Review of the current literature and our experience on the value of OCI-
7	3 4	anglography in white dot syndromes
8 9	5	Céline Mebsout-Pallado, ¹ Raphaëlle Orès, ¹ Céline Terrada, ^{2,3} Kunal K. Dansingani, ⁴ Jay
10 11	6	Chhablani, ⁴ Andrew W. Eller, ⁴ Joseph N. Martel, ⁴ Alexander Anetakis, ⁴ Jean C. Harwick, ⁴
12 13	7	Evan L. Waxman, ⁴ Denise S. Gallagher, ⁴ Colin Prensky, ⁴ Chad Indermill, ⁴ Neila Sedira, ¹
14 15	8	Emmanuel Héron, ¹ Michel Paques, ^{1,5} Françoise Brignole-Baudouin, ^{1,6} Bahram Bodaghi, ⁷ José-
16 17	9	Alain Sahel, ^{1,4,5} Alain Gaudric, ² Sarah Mrejen, ¹ Marie-Hélène Errera, ^{1,4,5}
18 19	10	
20 21	11	1. Centre Hospitalier National des Quinze-Vingts, DHU Sight Restore, Paris, France
22	12	2. Department of Ophthalmology, Lariboisière Hospital, Université Paris Diderot, Sorbonne,
23 24 25	13	Paris, France
25 26	14	3. Centre Ophtalmologique Roule Peretti, 169 avenue Achille Peretti, 92200 Neuilly sur
27 28	15	Seine, France
29 30	16	4. Department of Ophthalmology, University of Pittsburgh School of Medicine, Pittsburgh,
31 32	17	Pennsylvania, USA
33 34	18	5. INSERM-DHOS CIC, Sorbonne Universités, UPMC Univ Paris VI, France
35 36 37	19	6. Université Paris Descartes (Sorbonne Paris Cité), Paris V, France
38	20	7. Department of Ophthalmology, Hopital Pitié-Salpêtrière, DHU Sight Restore, Sorbonne
39 40 41	21	Universités, UPMC Univ Paris VI, France
42 43 44	22	
45 46	23 24	
47 48	25	Corresponding author: Marie-Hélène Errera, UPMC Eve Center, University of Pittsburgh
48 49	26	School of Medicine. Pittsburgh, Pennsylvania, USA
50 51	27	erreram@upmc.edu
52 53	28	
54 55	29	Abstract: 150 words
56 57	30	Words: 5240
58 59 60	31	

1		
3	1	
4 5 6 7 8 9	2	Abstract
	3	Purpose: The aim of this study is to describe the application of OCT-A in various posterior
	4	uveitis disorders in our experience and to compare it with the available literature.
10 11	5	Methods: Literature searches were performed using electronic medical databases on
12	6	posterior uveitis and OCT-A. Eighteen eyes (16 patients) with the following diagnoses:
13 14	7	multifocal choroiditis (MFC), multifocal placoid pigment epitheliopathy (APMPPE), multiple
15 16	8	evanescent white dot syndrome (MEWDS), tuberculous serpiginous-like choroiditis (SLC),
17 18	9	serpiginous choroiditis (SC), and birdshot chorioretinopathy (BSCR) were studied.
19 20	10	Results: We found flow void of the choriocapillaris in patients with APMPPE, SC, MFC, BSCR
21 22	11	and in SLC. In contrast, perfusion of the choriocapillaris seemed normal in patients with
23 24	12	MEWDS.
25	13	Conclusions: We confirmed that OCT-A contributes new information on the physiopathology
20	14	of white dot syndromes and other inflammatory chorioretinopathies, notably on whether or
28 29	15	not the choriocapillaris is involved. Comparing the OCTA features of those entities allowed
30 31 32 33	16	us to suggest that both entities APMPPE and SLC might be part of the same spectrum of
	17	inflammatory disease with primary involvement of the level of the choriocapillaris and
34 35	18	secondary RPE damage.
36 37	19	
38	20	
39 40	21	
41 42	22	
43 44	23	Keywords: Birdshot chorioretinopathy, multifocal choroiditis, multifocal placoid pigment
45 46	24	epitheliopathy, MEWDS, OCT-A, serpiginous-like choroiditis, serpiginous choroiditis, uveitis,
40 47 48 49	25	No potential conflict of interest was reported by the authors.
	26	Financial interest: non
50 51	27	
52 53	28	
54 55	29	
56 57	30	
58 50	31	
60	32	

1 INTRODUCTION

The term "white dot syndromes" is used to refer to a heterogenous group of chorioretinal inflammatory diseases. Apart from grouping these conditions and reminding us that they can feature multiple inflammatory lesions in various configurations, the term "white dot syndrome" is of limited value as it does not convey useful information about etiology, classification or treatment of these conditions. In addition, other uveitis may take on the appearance of white spot syndrome such as those associated with tuberculosis or syphilis for example. It is important to try to distinguish the etiologies underlying "white dot syndromes" because their causes may vary and their treatments differ. Some patients can develop a clinical picture which resembles more than one type of inflammatory process, suggesting that overlap can occur between different inflammatory disease entities. One example of this is multifocal choroiditis (MFC) and multiple evanescent white dot syndrome (MEWDS) occurring simultaneously. Another example is MFC that is complicated by acute zonal occult outer retinopathy (AZOOR).¹⁻³ From the pathophysiological point of view, patterns of tissue involvement also seem to differ among "white dot syndromes." Certain entities seem primarily to involve the retinal pigmentary epithelium (RPE) while others seem to show predilection for the choriocapillaris. Furthermore, the development of new imaging modalities sometimes reveals characteristics that require etiological hypotheses to be revised. For example, Gass originally described multifocal placoid pigment epitheliopathy (APMPPE) in terms of RPE involvement, but more recent multimodal imaging studies seem to place its primitive origins in the choriocapillaris.⁴⁻ New imaging techniques make it possible to describe different signs corresponding to different pathophysiological mechanisms. Indocyanine green angiography (ICGA) can analyze choroidal vascularization more precisely than can fluorescein angiography (FA). However,

26 ICGA cannot provide a topographic layer-by-layer analysis of the retina and the choroid, and

the images provide a summation of several layers of information. The advent of Spectral

28 domain-Optical coherence tomography (SD-OCT) and choroidal imaging with Enhanced

29 depth imaging optical coherence tomography (EDI-OCT) have made it possible to correlate

30 data on tissue and choroidal vascularization with cross-section data. Analysis of the

31 choriocapillaris has notably always been a challenge for conventional imaging.

o 32

The recent use of en face OCT, which provides depth-resolved layer-by-layer analysis of the

retina and the choroid, and OCT-A which can image vessels based on motion contrast, have

added new informations regarding the pathophysiological processes involved in MEWDS and

in other white dot syndromes.⁷ OCTA integrated into a multimodal approach has already

seems to be a tool that can refine the analysis of the choriocapillaris.

helped distinguish between inflammatory and neovascular lesions in MFC.^{4,8-11} Also, OCT-A

This objective of this review was to review the available literature on the physiopathology of

white dot syndromes and posterior uveitis through the contribution of OCT-A and to

incorporate our experience into the current knowledge. The retinochoroidal

microvasculature was therefore studied using OCT-A in a selection of cases with

inflammatory white dot syndrome or inflammatory chorioretinopathies at initial

Literature searches were performed using PubMed as the database for the electronic

literature search on the OCT-A features of the following entities: white dot syndromes,

APMPPE, MEWDS, tuberculosis (TB) -related serpiginous-like choroiditis (SLC), serpiginous

choroiditis (SC), punctate inner choroiditis (PIC), MFC, birdshot chorioretinopathy (BSCR),

and posterior uveitis. In addition, the bibliographies of existing literature reviews and key

articles, were reviewed to identify other relevant articles appropriate for inclusion. The key

search question being : "Evaluation of the pathophysiology of uveitis by OCTA." The goal of

the literature search strategy was to identify published articles for which the topic of interest

was the primary focus, rather than all articles on the topic. Internet searches provided

supplemental information, thus ensuring that interpretation of the identified articles was

consistent with current knowledge. We excluded studies that were not published in the

English language and those that did not report research results related to the key question.

We described the OCT-A findings in a selection of cases presenting consecutively for uveitis

consultation at the Quinze-Vingts National Ophthalmology Hospital, Paris, France, between

chorioretinopathy in the acute phase. The data set was subsequently expanded to include

May 2016 and March 2017, with white dot syndrome and/or inflammatory

2	
3	1
4 5	2
6 7	3
8	1
9 10	-
11 12	5
12	6
14 15	7
16	8
17 18	9
19 20	10
21	11
22 23	12
24 25	12
26	13
27 28	14
29	15
30 31	16
32 33	17
34	18
35 36	19
37 38	20
39	20
40 41	21
42	22
43 44	23
45 46	24
47	25
48 49	26
50 51	27
52	- /
53 54	28
55	29
56 57	30
58 50	31
60	32

presentation.

MATERIAL AND METHODS

patients seen at in UPMC Eye Center, Pittsburgh, PA, USA and in Hopital Pitié-Salpêtrière, Paris between February 2019 and November 2019. All imaging results were reviewed by the authors. Disagreements in interpretation were reconciled by one of the authors (S.M.). Ophthalmic findings at the time of presentation were recorded, including best-corrected visual acuity and findings on slit-lamp examination and dilated fundus examination. Fundus Photography Color and monochromatic red-free photographs were acquired using a Topcon TRC-50IX fundus camera (Topcon Medical Systems, Tokyo, Japan). Near-infrared reflectance images were acquired with the Heidelberg Spectralis system (HRA Heidelberg Engineering, Heidelberg Germany) using a 30° square field of view at a resolution of 1,536 square pixels following the standard procedure for image acquisition including focus of the retinal image in the infrared reflection mode with an 820-nm wavelength. In the same sitting, a 30° × 30° BluePeak laser fundus autofluorescence (FAF) image was captured. Acute, early, FA and ICGA of the posterior pole and the nine peripheral fields were obtained using a confocal scanning laser ophthalmoscope (Spectralis-HRA +OCT; Heidelberg Engineering) for all patients. FA was obtained after intravenous injection of 10 mL of 5% fluorescein dye and ICGA images were acquired after intravenous injection of 50 mg of indocyanine green dye. Spectral domain optical coherence tomography (SD-OCT) imaging was performed with the Spectralis HRA + OCT (Heidelberg Engineering). This equipment provided simultaneous OCT scans and near-infrared reflectance, short-wavelength fundus autofluorescence (SW-AF), FA, or ICGA imaging. Subsequent image superimposition allowed point-to-point correlation between the en-face and cross-sectional images. The OCT imaging was acquired with a broadband 870-nm superluminescent diode that scanned the retina at 40,000 A-scans per second with an optical axial depth resolution of 7 µm. The standard protocol included at least 12 OCT scans averaged to reduce the signal-to-noise ratio by a factor of 5 and at least one 9-mm horizontal line scan through the fovea (volume acquisition, 6 mm × 6 mm; 60 scans (dense)). Enhanced-depth imaging OCT was acquired following the methodology previously described in the literature.¹² En-face macular mapping was obtained with Optovue OCT, three-dimensional 6×6-mm macular cube raster scans with 400×400 axial scans were obtained. For each patient, two

volumetric scans with orthogonal fast scan directions were acquired, processed with

software for motion correction, and merged into a single volumetric data set to increase the

signal. Scans were repeated during the early and late recovery phase. The Optovue RTVue

centered on the fovea was captured for blood flow measurements. In the fast transverse

scanning direction, 200 axial scans were sampled along a 3-mm region to obtain a single B-

proceeding to the next sampling location. A total of 200 locations along a 3-mm region in the

slow transverse direction were sampled to form a 3D data cube. With a B-scan frame rate of

455 frames per second, the 1,600 B-scans in each scan were acquired in approximately 3.5 s.

Four volumetric raster scans, including two horizontal priority fast transverse (x-fast) scans

and two vertical priority fast transverse (y-fast) scans, were obtained consecutively in one

We also performed a 3x3, 6x6mm and 12x12mm acquisition on the retina with the OCT-A

microangiography-complex, which incorporates differences in both the phase and intensity

OCT-A was performed in all patients' eyes at initial presentation, and at final presentation in

The OCT-A findings in the selection of our cases was compared to the available literature and

applied to the understanding of the physiopathology of white dot syndromes and posterior

This study was conducted in accordance with the Declaration of Helsinki and was

approved by the Ethics Committee of the French Society of Ophthalmology and by the

one patient's eye with APMPPE, in 4 patients' eyes with MFC, and in 2 patients with BSCR

session. The SSADA algorithm was used to distinguish blood flow from static tissue.

Angioplex (Zeiss) for 3 patients. This OCT-A uses an algorithm known as OCT

information contained within sequential B-scans at the same position.¹³

with a follow-up duration from one month up to eight months.

University of Pittsburgh IRB#: PRO18020162.

Clinical features and Imaging

scan. Eight consecutive B-scans (M-B frames) were captured at a fixed position before

XR Avanti (Optuvue, Inc.) was used to obtain OCTA images. A 3×3-mm scanning area

3 4	1
5	2
6 7	3
8 9	4
10 11	5
12	6
13 14	7
15 16	8
17 18	9
19 20	10
20	11
22 23	12
24 25	13
26 27	1/
28	14
29 30	12
31 32	16
33 34	17
35	18
36 37	19
38 39	20
40 41	21
42	22
45 44	23
45 46	24
47 48	25
49 50	26
51	-0 27
52 53	2,
54 55	20
56 57	29
58	30
59 60	

uveitis.

RESULTS

URL: http://mc.manuscriptcentral.com/noii E-mail: Manfred.Zierhut@med.uni-tuebing	en.de

This study included 18 eyes (16 subjects; 8 females) diagnosed with "white dot syndromes"

evaluated at presentation before treatment: APMPPE (n=2 patients, 2 eyes), MEWDS (n=3patients, 3 eyes), tuberculosis (TB) -related serpiginous-like choroiditis (SLC) (n=1 patients, 1 eye), serpiginous choroiditis (n=1 patient, 1 eye), MFC (n=7 patients, 7 eyes), BSCR (n=2 patients, 4 eyes). The mean age of the subjects was 38 ± 18 years (range, 12-72 years). Table 1 shows demographics and the retinal imaging testings performed, as well as the any treatments initiated. Patients were evaluated through follow-up after treatment. Table 2 shows the OCT-A findings before and during follow-up, when performed. Two patients with APMPPE • The fundus colour photograph showed deep white lesions distributed in the posterior pole and mid-periphery in two cases. The APMPPE lesions were mainly located in the posterior pole but spreading outside the vascular arcades. FAF showed hyperautofluorescent lesions co-localizing with the white lesions seen in the fundus colour photograph (Figure 1). FA showed an early hypofluorescent lesion and then hyperfluorescence at the intermediate and late frames. ICGA showed multiple hypofluorescent lesions at the early and late frames. SD-OCT showed IS-OS layer disruption and thickened areas as well as outer retinal hyperreflectivity. OCT-A showed no flow abnormalities at the superficial and deep retinal plexuses of the patients with APMPPE; at the level of the choriocapillaris, they presented areas of hypoperfusion on OCT-A, which were superimposed on the areas which were hypofluorescent in the early frames of FA and ICGA, and then hyperfluorescent in the late frames of FA. Comparing the lesions on OCT-A, the en face OCT and the hypoautofluorescent areas, we observed that the circulatory defects of the choriocapillaris seen on OCT-A and the en face OCT were more extensive than the lesions of the RPE seen on FAF, which demonstrates that they are not optical masking artifacts or shadows, but rather occlusive vasculitis lesions with the primitive origin in the choriocapillaris (Figure 2', supplemental material). En-face OCT in two patients with APMPPE showed hyporeflective areas at the outer retina (asterisks Figure 2) and hyper-reflective dots at the choriocapillaris.

2	_	
3 4	1	During the follow-up 2 months after systemic corticosteroid therapy, in the plane of the
5 6	2	choriocapillary layer, on OCT-A we observed regression of the hypoperfusion areas of the
7	3	choriocapillaris (Figure 2', supplemental material).
8 9	4	In multimodal imaging, two different classes of APMPPE lesions appeared, which also
10 11	5	seemed to progress differently.
12 13	6	The first were lesions that were visible at the early and late frames of the FA as well as on
14 15	7	autofluorescence. These same lesions appeared as hypoperfusion of the choriocapillaris on
16	8	OCT-A (shown as a red circle in Figure 2'). These lesions seemed to be related to RPE lesions,
17	9	and they showed up as scars on SD-OCT during progression.
19 20	10	In addition, the second type of lesion appeared either isoautofluorescent or
21 22	11	hyperautofluorescent on FAF imaging (shown as yellow circles in Figure 2'). These lesions
23 24	12	appeared to be hypofluorescent on FA at the early frames and were nonapparent at the late
25	13	frames of FA, whereas they were hyporeflective on OCT-A. The latter lesions were self-
20	14	limiting under corticosteroid treatment and seemed to be related to the more extensive
28 29	15	occlusive vasculitis lesions of the choriocapillaris, and were potentially reversible (Figure 2').
30 31	16	
32 33	17	Three patients with MEWDS
34 35	18	Fundus examination of the affected eyes demonstrated deep yellow or white spots in the
36 27	19	posterior pole in two eyes, spreading to the midperiphery in one eye.
38	20	On FAF the lesions were hyperautofluorescent and more numerous than on clinical
39 40	21	examination. Some subclinical lesions were detected on FAF.
41 42	22	On FA, early frames showed wreath-like hyperfluorescence of lesions that persisted into the
43 44	23	late frames. ICG angiography showed hypofluorescent spots at these locations in late
45 46	24	frames.
47	25	SD-OCT showed disruption of photoreceptors, most particularly the ellipsoid zone and
40 49	26	interdigitation zone, in areas corresponding to individual lesions.
50 51	27	En-face OCT showed hyper-reflective dots in the outer nuclear layer (ONL). En-face OCT
52 53	28	centered on the ellipsoid zone showed hyporeflective areas corresponding to ellipsoid layer
54 55	29	disruption and were superimposed on hypofluorescent lesions visible in the late frames of
56 57	30	ICGA (Figure 3).
58	31	OCT-A of the superficial and deep retinal capillary plexus and the choriocapillaris and en-face
59 60	32	OCT-A of the choriocapillaris were normal in these 3 patients (Figure 4).

1 2		
3	1	
4 5	2	- APMPPE versus MEWDS
6 7	3	OCT-A showed hypoperfusion of the choriocapillaris in two patients with APMPPE, contrary
8 9	4	to those who were diagnosed with MEWDS. Hypoperfusion of the choriocapillaris on OCT-A
10 11	5	has already been demonstrated in the literature in patients with APMPPE. ^{8,14}
12 13	6	
13 14 15	7	The hypofluorescence of APMPPE in the early phase of the FA and throughout the ICGA
16	8	sequence suggests multifocal choroidal hypoperfusion as the cause of the opacification of
17 18	9	the outer retina corresponding to its hyper-reflectivity on SD-OCT.
19 20	10	
21 22	11	We observed that hypofluorescent lesions in the late frames of ICGA in MEWDS are
23 24	12	superimposed on hyporeflective lesions on en-face OCT centered on the ellipsoid and
25	13	correspond to ellipsoid disruption areas on SD-OCT.
20	14	
28 29	15	One patient with TB-related serpiginous-like choroiditis (SLC)
30 31	16	Fundus examination showed multiple irregular serpiginous lesions involving the posterior
32 33	17	pole and periphery. On FAF, the lesions presented as hyperautofluorescent.
34 35	18	FA showed the hyperfluorescence at intermediate frames more accurately. The
36 37	19	hyperfluorescence was increased in the later frames. ICGA showed confluent
38	20	hypofluorescent lesions in the early and late frames.
40	21	SD-OCT demonstrated areas of IS/OS layer disruption and areas of hyperreflectivity of the
41 42	22	RPE, atrophy of the outer retina with cystoid edema, and hyperreflectivity of the choroid
43 44	23	(Figure 5). En-face OCT revealed hyporeflective areas at the outer retina and hyper-
45 46	24	reflective dots of the choriocapillaris (patient 6).
47 48	25	The superficial and deep plexuses on OCT-A showed no anomalies. OCT-A showed
49	26	hypoperfusion areas of the choriocapillaris (or choriocapillaris flow void areas).
50 51	27	Superimposition between the choriocapillaris hypoperfusion lesions on OCT-A and the
52 53	28	hyperfluorescent lesions on FA, hypofluorescent lesions on ICGA were noted (Figure 5), as
54 55	29	described by other authors. ^{15,16} OCT-A showed areas of possible flow void at the level of the
56 57	30	choriocapillaris.
58 59 60	31	

Page 11 of 48

1 2		
2 3 4	1	SD-OCT found outer retinal hyper-reflective deposits with knob-like elevations of RPE;
5	2	ellipsoid and ELM disruption, atrophy of RPE-Bruch's complex, increased choroidal
o 7	3	reflectance, choroidal thinning, and loss of choriocapillaris.
8 9	4	- APMPPE versus tuberculosis (TB) - related SLC
10 11	5	In both APMPPE and SLC, we observed more extensive areas of choriocapillaris
12 13	6	hypoperfusion on OCT-A than RPE lesions on FAF. We believe that these are two separate
14 15	7	entities with different pathogenesis but with similar layers of inflammatory involvement. SLC
15 16 17	8	presents as a more extensive disease at baseline compared to APMPPE with more confluent
17	9	areas of choriocapillaris ischemia on OCT-A. And SLC has a more severe progressive and
19 20	10	sometimes recurrent chronic course compared to APMPPE, with more extensive RPE
21 22	11	damage.
23 24	12	Moreover, in both entities, at final exam, there were areas where the initial lesions had
25 26	13	completely resolved without any RPE atrophy and areas where there was a legacy of
27 20	14	complete RPE atrophy. On FAF, the areas of RPE atrophy were more widespread in SLC than
20 29	15	in APMPPE at both baseline and final exam.
30 31	16	
32 33	17	One patient with serpiginous choroiditis
34 35	18	The fundus examination showed serpiginous lesions of different ages.
36 37	19	FA showed hypofluorescent confluent lesions in the early frames, which became
38 30	20	hyperfluorescent on the late frames with incomplete hyperfluorescent edges indicating
40	21	active disease. ICGA showed these same lesions as remaining hypofluorescent throughout
41 42	22	the sequence (on the early and late frames (Figure 6')). SD-OCT found areas with atrophy of
43 44	23	the outer retina and ellipsoid disruption.
45 46	24	OCT-A showed no flow abnormalities of the superficial and deep plexuses and the outer
47 48	25	retina. There were hypoperfusion lesions of the choriocapillaris ⁸ , suggesting choriocapillary
49 50	26	ischemia in this disease. ¹⁷ The hypoperfusion areas of the choriocapillaris on OCT-A were
50 51 52	27	superimposed with the hyperfluorescent lesions in the late frame of FA (Figure 6) and the
52 53	28	hypofluorescent areas on ICGA.
54 55	29	
56 57	30	Seven patients with MFC/ PIC
58 59 60	31	- Three patients with MFC with no associated choroidal neovascularization (CNV)

Fundus color showed yellowish focal lesions. FAF showed multiple areas of hypoautofluorescence corresponding to the areas of lesions on ophthalmoscopy. FA showed the focal lesions to be hypofluorescent in the early and hyperfluorescent in the late stages of the angiogram. ICGA showed rounded hypofluorescent lesions. SD-OCT showed of localized RPE elevations with underlying hyporeflective space and sub-RPE hyperreflective deposits. OCT-A showed hypoperfusion areas on the choriocapillaris but appearing less extensive than it appeared on FAF and early ICGA (Figure 7'). The choriocapillaris was involved in the MFC cases. At resolution, final OCT-A was stable in one patient (patient 8) at 2 months of follow-up, after IV solumedrol and oral prednisone treatment. The other patient (patient 11) showed an hypoperfusion area appearing less extensive on OCT-A after a course of oral prednisone (final images not shown). Four patients with choroidal neovascularization (CNV) associated with MFC/ PIC -Fundus color showed a yellow subretinal lesion. FAF showed an area of hypoautofluorescence in the same area. FA evidenced a hyperfluorescent lesion with late staining. SD-OCT revealed a subretinal lesion associated with subretinal fluid in 3 patients. OCT-A showed flow signal in the morphology of a CNV lesion at the outer retina and the choriocapillaris. ICGA demonstrated late hyperfluorescence of the CNV surrounded by a hypofluorescent border that was superimposed on the vascular network visualized on OCT-A (Figure 7). One patient's eye (with MFC and CNV) had repeated OCT-A imaging showing mixed CNV membrane enlargement when having a recurrence. Each relapse was treated with monthly anti-VEGF injections and triamcinolone subtenon injections every 3 months. Another patient's eye had no sign of vascular network one month after a single anti-VEGF intravitreal injection for CNV related to PIC, though (Figure 7'). -**Two patients with BSCR** We imaged the eyes of one patient with recent symptoms related to uveitis and before any treatment for BSCR. Reflectivity of both the EZ and the IZ at SD-OCT B-scan passing through the foveas were altered or reduced (Figure 8'). The other patient who had imaging for BSCR had been known with the disease for the last 12 years and BSCR was inactive currently under systemic immunosuppressive treatment. FA

showed hyperfluorescent foci from early frame to late frames. With ICGA, these lesions were

(choriocapillaris) with capillary rarefaction of the superficial plexus and the deep plexus

(Figure 8). The advanced BSCR lesions that are atrophic with FA colocalized with areas of

flow reduction with OCT-A due to the absence of choriocapillaris beneath the disrupted RPE.

BSCR is known to cause lesions that might evolve to atrophy of the stroma and the overlying

OCT-A performed in the patient with atrophic BC lesions showed blood flow impairment at

We confirm the pathophysiology of APMPPE, i.e., it is a "primarily choroidal inflammatory"

disorder leading to outer retinal involvement" because en-face OCT scans at the level of the

choriocapillaris in APMPPE showed choroidal infiltration and dilation of choroidal vessels.¹⁸

Other authors have shown evidence of inner choroidal or choriocapillaris flow reduction or

ischemia defects in APMPPE lesions.^{19,20} For instance, those anomalies were demonstrated

hypoperfusion areas of the choriocapillaris regressed with time in a patient with APMPPE,

along with his clinical improvement. Similar disappearance of the initial lesions at the level of

From a pathophysiological viewpoint, APMPPE is a true choroidopathy, whereas MEWDS is

in 96% of the eyes with APMPPE for Klufas et al.¹⁴ In addition, we showed that the

instead an epitheliopathy with RPE involvement.¹⁸ This explains why there is only

choriocapillaris have been shown by Burke et al. in a series of 10 eyes.^{19,20}

the level of the choriocapillaris below retinal pigment epithelium disruption (Figure 8).

hypofluorescent. The lesion's masking effect was visible at the level of OCT-A

choriocapillaris unless promptly treated.

Discussion

2	
3	1
4 5	2
6 7	3
8 9	4
10	5
11 12	6
13 14	7
15 16	,
17	8
18 19	9
20	10
21 22	11
23 24	12
25	13
26 27	14
28 29	15
30 31	16
32	17
33 34	18
35 36	19
37 38	20
39	20
40 41	21
42 43	22
44	23
45 46	24
47 48	25
49	26
50 51	27
52 53	28
54 55	29
56	30
57 58	31
59 60	22
00	52

hypofluorescence in the late frames of the ICGA given the lack of ICG uptake by RPE cells, visible on the late phase of ICGA as suggested by Gaudric and Mrejen and Pichi et al.^{18,21} However, the early phases are normal because there is no choriocapillaris involvement.⁵ There was no choroidal filling defect. Several authors showed completely normal choriocapillaris flow in eyes with MEWDS, with no vessel dilation even in the hyporeflective areas seen in en-face OCT, thus supporting the hypothesis that the choriocapillaris may not be involved in this disease.^{21,22,23} We also confirm their findings that OCT-A analysis of the superficial and deep retinal capillary plexuses was within normal limits. These observations have already been mentioned in the literature.⁷ Pichi et al. suggest that MEWDS primarily results from inflammation at the RPE and outer photoreceptor level

2		
3 4	1	leading to "photoreceptoritis" causing loss of the inner and outer segments ²¹ and
5	2	inflammation of the photoreceptor segments, with disarray of the ellipsoid. Involvement of
6 7	3	the outer retina's microstructures has been described in SD-OCT ^{24,25} associated with thicker
8 9	4	choroid ⁷ . These hyporeflective "spots" on en-face OCT correspond to the classical yellow-
10 11	5	white lesions identified with fundus photography. ²¹
12 13	6	Moreover, we confirmed the findings of Pichi et al on imaging of MEWDS. The
14 15	7	hypofluorescent lesions in the late frames of ICGA are superimposed on hyporeflective
16 17	8	lesions on en-face OCT centered on the ellipsoid and corresponding to ellipsoid disruption
17	9	areas on SD-OCT. ²¹
19 20	10	On en-face OCT, the ONL showed tiny hyper-reflective dots corresponding to the punctate
21 22	11	hyperreflective material seen in the ONL on SD-OCT. ²¹
23 24	12	OCT-A can therefore act as an instrument to differentiate APMPPE and MEWDS, by looking
25 26	13	for involvement of the choriocapillaris in APMPPE alone.
27	14	
20 29	15	In TB-related SLC, our OCTA images showed that choroidal inflammation results in areas of
30 31	16	possible flow void at the level of the choriocapillaris. Mandadi et al. hypothesized that these
32 33	17	areas may represent either capillary loss/hypoperfusion, or sluggish flow that may be below
34 35	18	the limits of detection by OCT-A. ²² They also concluded that OCTA might be useful in
36 37	19	detection of progression of tubercular serpiginous-like choroiditis lesions. ²⁶
38	20	
40	21	Antituberculous treatment is required in SLC ²⁷ , and therefore tuberculosis must be sought
41 42	22	with clinical manifestations mimicking serpiginous choroiditis. Classically, serpiginous-like
43 44	23	choroiditis presents on FA as a hypofluorescence with late hyperfluorescence due to RPE
45	24	window defects. ICGA showed early and late hypocyanescence with fuzzy margins suggestive
46 47	25	of activity.
48 49	26	SD-OCT found outer retinal hyper-reflective deposits with knob-like elevations of RPE;
50 51	27	ellipsoid and ELM disruption, atrophy of RPE-Bruch's complex, increased choroidal
52 53	28	reflectance, choroidal thinning, and loss of choriocapillaris.
54	29	
55 56	30	Choroid ischemia with loss of the choriocapillaris and choroidal vessel rarefaction has been
57 58	31	suggested as one of the pathophysiological mechanisms of serpiginous choroiditis. Another
59 60	32	hypothesis advanced for these abnormalities visualized on OCT-A would be inflammatory

1 2							
$\begin{array}{c}1\\2\\3\\4\\5\\6\\7\\8\\9\\10\\11\\12\\13\\14\\15\\16\\17\\18\\19\\20\\21\\22\\23\\24\\25\\26\\27\\28\\29\\30\\31\\32\\\end{array}$	1	edema or that high-speed/low-speed flow can make visualization of the vascular networks					
	2	more difficult. ²⁸					
	3	Khan and Shahzad's observations on OCT-A further support the role of choriocapillaris loss					
	4	and hypoperfusion as a contributing factor towards the development of choroidal					
10 11	5	neovascularization in the later course of resolved serpiginous choroiditis. ²⁹					
12 13	6	Therefore, in serpiginous choroiditis, lack of decorrelation signal in OCT-A is probably due to					
8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28	7	choriocapillaris non perfusion. It is unknown whether this lack of perfusion is due to the					
	8	obstruction of the capillary lumen or by a compression of capillaries by surrounding					
17	9	inflammation. It is noteworthy that the inner choroid did not appear thinned in areas of					
19 20	10	serpiginous lesion.					
21 22	11	We hypothesize that the lesions at the level of the choriocapillaris may correspond to					
23 24	12	infiltrates of inflammatory cells that obliterate or compress the choriocapillaris. A way to					
25 26	13	answer this question of hypoperfusion on OCT-A would be to be able to follow the evolution					
27	14	of the choriocapillaris lesions on OCT-A after the inflammatory process has resolved.					
28 29	15	Unfortunately, we had no follow-up on OCT-A for these cases in our study and we are					
30 31	16	concerned that the RPE lesions would obscure the analysis of OCT-A at the level of pigment					
32 33	17	clumps with posterior shadowing (one of our coauthors made that hypothesis in a previous					
34 35	18	publication ³⁰).					
36 37	19	Those hypoperfused area on OCT-A have been shown to correspond topographically to					
38	20	hypofluorescent areas visible on ICGA, although in a case report, El Ameen stated that ICGA					
39 40	21	remains preferable because it more clearly delineates choriocapillaris lesions. ¹⁷					
35 36 37 38 39 40 41 42 43 44 45 46 47	22	OCT-A showed no decorrelation signal in active lesions in choriocapillaris and the whole					
	23	choroid. Vessel density of the outer border of inactive lesions seemed to be lower than					
45 46	24	vessel density of unaffected areas. ²⁸ Pakzad-Vaezi et al. showed larger lesions on OCT-A in					
47 48	25	the choriocapillaris during active disease than in the outer nuclear layer and FAF areas.					
49	26	Resolution of those lesions occurred, where OCTA findings were not associated with					
50 51	27	corresponding abnormal FAF after treatment. Those findings also to support the theory that					
52 53	28	the choriocapillaris is the primary site of pathology. ³¹					
54 55	29	Of note, one case report showed those areas of "decreased vascularity" in the					
56 57	30	choriocapillaris, photoreceptor/RPE defects remaining persistent on OCT-A following					
58 50	31	systemic corticosteroid therapy. ³²					
60	32						

In both patients with MFC with no associated CNV, OCT-A showed hypoperfusion areas on

the choriocapillaris. At resolution, final OCT-A was either stable or showed an hypoperfusion area appearing less extensive than before steroid treatment. Previous studies showed that in active lesions, OCT-A indicates the presence of a small highly organized dense high-flow neovascular network in the outer retina also described as "a collection of capillaries with crippled whitening".^{8,33} Inactive lesions on OCT-A, present with lack of flow in the outer retina and the choriocapillaris .⁸ In patients with CNV associated with MFC and PIC, OCT-A showed flow signal in the morphology of a CNV lesion at the outer retina and the choriocapillaris, as shown previously^{8,34} with reduced flow signal in the immediately adjacent choriocapillaris. The contribution of OCT-A in the neovascularization associated with MFC has been described in the literature.³⁵ OCT-A might be particularly useful in CNV secondary to posterior uveitis known to be distinct from the classic appearance of active CNV on multimodal imaging. Intra-retinal and subretinal fluids on OCT can be missing in the setting of inflammatory CNV like in one eye in our series (as shown in figure 11') and fluorescein angiography often present a mixed staining and leakage from inflammatory lesions.⁹ Therefore, OCT-A could be helpful in distinguishing CNV from inflammatory lesions keeping in mind that in some recurrent cases OCTA cannot not reliably give information about CNV activity (in contrast to FA) and thus, FA might still necessary to make therapy decisions in such cases.³⁶ Based on preexisting OCT-A stratification of different CNV patterns/shapes, Pohlman et al. have described the ones associated with active PIC diseases as 'lacy wheel shape', 'pruned large-trunk vessels' or just hypoperfusion with one vessel formation, while most stable eyes presented with 'dead tree aspect' vessels. Moreover, 'lacy wheel shape' and 'pruned large-trunk' vessels were found above the RPE, whereas 'dead tree aspect' vessels were observed below the RPE.³³ For Zahid et al, although OCTA seems sensitive for detecting neovascular flow within MFC lesions, it seems to have low specificity in determining which lesions are clinically active. Indeed, they showed that neovascular flow persists in the large majority of MFC lesions, including those that appear inactive on clinical examination and most other imaging modalities. They detected neovascular flow in 83% of the macular chorioretinal active and inactive MFC lesions (subretinal, and mixed) evaluated, while purely sub-RPE lesions did not demonstrate neovascular flow on OCT-A. This represents a much higher

frequency than that reported by other authors using different imaging methods. Of the subretinal lesions that were judged to be inactive based on clinical examination, FA and structural OCT, they found that 88% showed neovascular flow when analyzed with OCTA. They concluded that the FA patterns of inactive MFC lesions containing fibrovascular tissue might not be interpreted as representing NV when there is no angiographic leakage.³⁴

De Carlo et al. have hypothesized that the areas of perceived choriocapillaris "loss" in the birdshot lesions may represent either true vessel atrophy or, alternatively greatly reduced blood flow in these regions.³⁷ We also confirmed that OCT angiograms demonstrated that larger choroidal vessels bordered the atrophic birdshot lesion. De Carlo et al. also speculated about whether these larger vessels represent a compensatory response by the choroid or if they are simply vessels from Sattler's layer being pushed into an atrophic choriocapillaris plane.

On contrary, acute choroidal lesions in BSCR, are composed of infiltrates of epithelioid cells, and therefore they are not visible on OCT-A because not showing alterations of the choriocapillaris flow and OCT-A only visualizes the flow (movements of the cellular blood components).^{4,38} However, the patient in our series who presented a recent diagnosis of birdshot, showed only choroid flow voids by OCT-A and hypofluorescent dots on ICG without any white dots on color pictures nor choriocapillaris alteration (Figure 10'). Pohlman et al. have analyzed the OCT-A findings in 64 eyes with BSCR and they described capillary loops in 58%, telangiectatic vessels in 44%, increased intercapillary spaces in 52%, and altered vascular architecture in 53% of eyes in superficial capillary plexus (SCP). Interestingly, the authors observed non-perfused areas with a decreased number of vessels in all retinal layers; however, they were not visible in deeper layers. In total, a rarefication of C-scans (or en face images derived from the B-scans) was seen in 63% of eyes in SCP and in 52% of eyes in DCP in their study. There found no significant differences in capillary loops, telangiectatic vessels, or increased intercapillary spaces whatever was the stage of the disease was, recent active to advanced inactive stages. However, the alteration of vascular architecture and the increased rarefication were increased with time of duration of disease.³⁹ For de Carlo et al. the most noticeable change in the retinal vasculature was an increased intercapillary space in all eyes, 75% in their study.³⁷ We also noticed this change in both eyes along with telangiectatic vessels in our patient with 12 years history of

advanced, yet inactive, birdshot disease and capillary loop in both of our patients with
 recent and old BSCR disease (Figures 9' and 10').

The main limitation of our study is the low number of subjects for each pathology
because the study was conducted in specialized uveitis centers from referrals. Nonetheless,
we strongly believe that the study provides a thorough description of a number of cases
which might be grouped as "white dot syndromes," by OCT-A. This report is strengthened
by the fact that we have extensive retinal imaging, including OCT-A, color pictures,
autofluorescence, fluorescein angiography and ICGA.

We found that OCT-A allows to distinguish 2 types of inflammatory disorders. The one
involving primarily the choriocapillaris including serpiginous choroiditis, tuberculosis (TB) related SLC, and APMPPE. And the one involving the outer retina and RPE including MEWDS
that can spontaneously heal without sequelae.
In APMPPE, OCT-A shows 2 different classes of lesions: 1/ some lesions appear as

16 hypoperfusion of the choriocapillaris on OCT-A showing up as scars on SD-OCT during
 2 17 progression, 2/ the other lesions show up as hyporeflective on OCT-A, and are potentially
 4 18 reversible.

Comparing the OCT-A features of those entities allowed us to suggest that both entities
 APMPPE and SLC might be part of the same spectrum of inflammatory disease with primary
 involvement of the level of the choriocapillaris and secondary RPE damage, which is a new
 finding. In AMPPE, the lesions are often serpiginous in their distribution, though.

In summary, to be able to assess an involvement of the RPE without hypoperfusion of the
choriocapillaris, the following are needed: no hypofluorescence on early FA and late FA, no
hypofluorescence on early ICGA but presence of a hypofluorescence on late ICGA (at 30
minutes). If OCT-A is contradictory with the result of ICGA as regard as a flow void in the
choriocapillary, OCT-A need to be analyzed keeping in mind that an opacification of EPR can
give a shadowing effect on the choriocapillaris.

1 ว			
2 3 4	1	Fin	ally, OCT-A contributes pathophysiological information in "white dot syndromes" and
5	2	ch	oroiditis and can detect hypoperfusion of the choriocapillaris as well as associated CNV.
0 7	3	00	T-A can therefore be integrated into multimodal imaging of these diseases.
8 9	4		
10 11	5		
12 13	6	Re	ferences
14 15	7	1.	Schaal S, Schiff W, Kaplan H, Tezel T. Simultaneous appearance of multiple evanescent
16	8		white dot syndrome and multifocal choroiditis indicate a common causal relationship.
17 18	9		Ocul Immunol Inflamm. 2009;17(5):325-7.
19	10		
20 21	11	2.	Zweifel S, Kim A, Freund B. Simultaneous presentation of multifocal choroiditis and
22	12		acute zonal occult outer retinopathy in one eye. <i>Br J Ophthalmol</i> . 2011;95(2):288, 297-8.
23	13		
24 25	14		
26	15	3.	Bryan R, Freund K, Yannuzzi L, Spaide R, Huang S, Costa D. Multiple evanescent white
27 28	16		dot syndrome in patients with multifocal choroiditis. <i>Retina</i> . 2002;22(3):317-22.
29	17		
30 21	18	4.	Pichi F, Sarraf D, Arepalli S, et al. The application of optical coherence tomography
32	19 20		angiography in uveitis and inflammatory eye diseases. <i>Prog Retin Eye Res.</i> 2017;59:178-
33	20		201.
34 35	21	5.	Mangeon M, Zett C, Amaral C, Novais E, Muccioli C, Andrade G, et al. Multimodal
36	22		Evaluation of Patients with Acute Posterior Multifocal Placoid Pigment Epitheliopathy
37 38	23		and Serpiginous Choroiditis. Ocul Immunol Inflamm. 2017;1-7.
39	24	6.	Heiferman MJ, Rahmani S, Jampol LM, et al. Acute posterior multifocal placoid pigment
40 41	25		epitheliopathy on optical coherance tomography angiography. <i>Retina</i> . 2017;37(11):2084
42	26		-94.
43	27	7	Do Date F. Walff D. Versey W. et al. " En face " creature demain action actions
44 45	27 28	7.	tomography findings in multiple evanescent white dot syndrome I Ophthalmol
46	29		2014:2014:928028.
47 48			
49	30	8.	Astroz P, Miere A, Mrejen S, et al. Optical coherence tomography angiography to
50 51	31		distinguish choroidal neovascularization from macular inflammatory lesions in multifocal
52	32		choroiditis. <i>Retina.</i> 2018;38(2):299-309.
53	33	9.	Levison AL, Baynes KM, Lowder CY, Kaiser PK, Srivastava SK. Choroidal
54 55	34	nec	ovascularisation on optical coherence tomography angiography in punctate
56	35	inn	er choroidopathy and multifocal choroiditis. Br J Ophthalmol. 2017;101(5):616–622.
57 58	36		
59			
60			

2		
3	1	10. Zahid S. Chen KC. Jung II. Balaratnasingam C. Ghadiali O. Soreson I. et al. Ontical
4	2	coherence tomography angiography of chorioretinal lesions due to idionathic multifocal
5	2	concrete to the partice and the store that the store that the store to the partice multi-
6	5	CHOFOIDIUIUS. Relina. 2017, 57(8).1451-1405
7	4	
8	5	11. Astroz P, Miere A, Mrejen S, Sekfali R, Souied EH, Jung C, et al. Optical coherence
9 10	6	tomography angiography to distinguish choroidal neovascularization from macular
10	7	inflammatory lesions in multifocal choroiditis. <i>Retina</i> . 2018;38(2):299-309.
12	8	
13	9	
14	10	12. Spaide RF, Koizumi H, Pozzoni MC, Pozonni MC. Enhanced depth imaging spectral-
15	11	domain optical coherence tomography Am I Ophthalmol 2008:146(4):496-500
16		
17	12	13 Rosenfeld PL Durbin MK Roisman L et al. 7EISS Angionlex™ Spectral Domain Optical
10	12	Coherence Tomography Angiography: Technical Aspects Dev Onhthalmol 2016;56:18-29
20	1/	concrence romography Anglography. recimical Aspects. Dev Ophthalmol. 2010,50.10 25.
21	14	14 Klufes MA Dhesukkii watana N Jefe NA Drasad DC Agamura A Cunta V et al Optical
22	15	14. Kiulas IVIA, Phasukkijwatana N, lale NA, Prasad PS, Agarwal A, Gupta V, et al. Optical
23	16	coherence tomography angiography reveals choriocapillaris flow reduction in placoid
24	17	chorioretinitis. <i>Ophthalmol Retina</i> 2017:1: 77–91.
25	18	
26	19	15. Agarwal A, Aggarwal K, Deokar A, et al. Optical Coherence Tomography Angiography
27	20	Features of Paradoxical Worsening in Tubercular Multifocal Serpiginoid Choroiditis. Ocul
20 29	21	Immunol Inflamm. 2016;24(6):621-30.
30		
31	22	
32	23	16. Wang H. Tan SZ. Aslam T. Jones NP. Steeples LR. Multimodal Evaluation of Presumed
33	24	Tuberculous Serniginous-Like Charoiditis, Ocul Immunol Inflamm, 2018:1-5
34	27	
35	25	17 El Ameen A. Herbort CP. serniginous choroiditis imaged by ontical coherence
37	26	tomography angiography. Retin Cases Brief Rep. 2016;12(4):279-28516
38	20	
39	27	
40	27	
41	28	18. Gaudric A. Mreien S. why the dots are black only in the late phase of the indocyanine
42	29	green angiography in multiple evanescent white dot syndrome Retin Cases Brief Ren
43	20	2017:11 Suppl 1:591-E
44 45	50	2017,11 Suppi 1.381 S.
46	21	
47	27	10 Durke TD, Chu CL, Calustere C, Deiley C, Diek AD, Lee DM/L et al. Application of OCT
48	32	19. Burke TR, Chu CJ, Salvatore S, Balley C, Dick AD, Lee RWJ, et al. Application of OCT-
49	33	angiography to characterize the evolution of chorioretinal lesions in acute posterior
50	34	multifocal placoid pigment epitheliopathy. <i>Eye</i> . 2017;31, 1399–1408
51	35	
52	36	20. Werner JU, Enders C, Lang GK, Lang GE. Multi-Modal Imaging Including Optical
53 54	37	Coherence Tomography Angiography in Patients With Posterior Multifocal Placoid Pigment
55	38	Epitheliopathy. Ophthalmic Surg Lasers Imaging Retina. 2017;48(9):727-733.
56	39	
57	40	21. Pichi F, Srvivastava SK, Chexal S. et al. En face optical coherence tomography and optical
58	41	coherence tomography angiography of multiple evanescent white dot syndrome. New
59	12	Insights Into Dathogenesis Reting 2016:26 Suppl 1:S178-00
60	42	magnia into ratiogenesis. <i>netinu.</i> 2010,30 30phi 1.3170 00.

1		
2		
3	1	
4 5	2	22. Yannuzzi NA, Miller A, Gregori G, Davis JL, Rosenfeld PJ. Swept-source
5	3	OCT angiography shows sparing of the choriocapillaris in multiple evanescent white
7	4	dot syndrome. <i>Ophthalmic Sura Lasers Imagina Retina</i> , 2017;48(1):69–74
8	5	
9	5	22 Dereira E Lima Lh. De Azevedo Agh. Zett C. Earah Me. Belfert B. Jr. Swent source OCT in
10	7	23. Pereira I, Linia Lii, De Azevedo Ago, Zett C, Faran Me, Benort R, Jr. Swept-source OCF in
11	/	patients with multiple evanescent white dot syndrome. J Ophthalmic Inflamm Infect.
12	8	2018;8(1):16.
13	9	
14	10	24. Amin HI. Optical coherence tomography findings in multiple evanescent white dot
15 16	11	syndrome. <i>Retina</i> 2006;26(4):483–484.
10		
18	12	25. Sikorski BL, Wojtkowski M, Kaluzny JJ, Szkulmowski M, Kowalczyk A. Correlation of
19	13	spectral optical coherence tomography with fluorescein and indocyanine green
20	14	angiography in multiple evanescent white dot syndrome. Br J Ophthalmol
21	15	2008:92(11):1552–1557
22	10	2000)52(11).1002 10071
23	16	26 Mandadi SKR Agarwal A Aggarwal K et al. for OCTA Study Group, novel findings on
24	17	ontical coherence tomography angiography in patients with tubercular serniginous-like
25	10	choroiditic Rating 2017:27(0):1647 1650
20	10	Chorolallis. <i>Nethia</i> . 2017,57(9).1047-1039.
28	19	
29	20	27. Bansal R, Gupta A, Gupta V, Dogra MR, Sharma A, Bambery P. Tubercular serpiginous-
30	21	like choroiditis presenting as multifocal serpiginoid choroiditis. Ophthalmology.
31	22	2012;119(11):2334-42.
32		
33	23	28. Montorio D, Giuffrè C, Miserocchi E, et al. Swept-source optical coherence tomography
34 25	24	angiography in serpiginous choroiditis. <i>Br J Ophthalmol</i> . 2018;102(7):991-995.
35 36	25	
37	26	29. Khan HA, Shahzad MA. Multimodal Imaging of Serpiginous Choroiditis. Optom Vis Sci.
38	27	2017:94(2):265-269.
39	28	
40	20	20 Mission & Sarraf D. Choval & Wald K. Fround KR. Choroidal Involvement in Acute
41	20	So: Wrejen S, Sanar D, Criexar S, Wald K, Fredrick KB. Chorologar involvement in Acute
42	30	Posterior Multifocal Placold Pigment Epitheliopathy. Opithulinic Surg Lusers Indging Retinu.
43	31	2016;47(1):20-6.
44 15	32	
46	33	31. Pakzad-Vaezi K, Khaksari K, Chu Z, Van Gelder RN, Wang RK, Pepple Kl. Swept-source OCT
47	34	angiography of serpiginous choroiditis. <i>Ophthalmol Retina</i> . 2018;2(7):712–9.28.
48	35	
49	36	32. Ahn SJ, Park SH, Lee BR. Multimodal Imaging Including Optical Coherence Tomography
50	37	Angiography in Serpiginous Choroiditis. Ocul Immunol Inflamm. 2017;25(2):287-291.
51	38	
52	39	33 Pohlmann D. Plever I. Joussen AM. Winterhalter S. Ontical coherence tomography
53 54	10	anging raphy in comparison with other multimodal imaging techniques in punctate inner
54 55	4U 41	angiography in comparison with other multimodal inaging techniques in punctate inner a second s
56	41 42	choroluopathy. <i>Br J Ophthalmol</i> 2019;103:60-66
57	42	
58	43	34. Zahid S, Chen KC, Jung JJ, et al. optical coherence tomography angiography of
59	44	chorioretinal lesions due to idiopathic multifocal choroiditis. Retina. 2017;37(8):1451-
60	45	63.

2		
3	1	35. Baumal CR, de Carlo TE, Waheed NK, Salz DA, Witkin AJ, Duker JS. Sequential Optical
4 5	2	Coherence Tomographic Angiography for Diagnosis and Treatment of Choroidal
6 7	3	Neovascularization in Multifocal Choroiditis. JAMA Ophthalmol. 2015;133(9):1087-90.
8	4	36. Cheng L, Chen X, Weng S, Mao L, Gong Y, Yu S, et al. Spectral-domain optical coherence
9	5	tomography angiography findings in multifocal choroiditis with active lesions. Am J
10	6	<i>Ophthalmol</i> . 2016;169:145–61.
12	7	
13	8	37. De Carlo TE, Bonini Filho MA, Adhi M, Duker JS. Retinal and choroidal vasculature in
14	9	birdshot chorioretinopathy analyzed using spectral domain optical coherence tomography
15 16	10	angiography. <i>Retina</i> . 2015;35(11):2392-9.
17	11	
18	12	48. Invernizzi A, Cozzi M, Staurenghi G. Optical Coherence Tomography and Optical
19	13	Coherence Tomography Angiography in Uveitis: A Review. <i>Clin Exp Ophthalmol.</i>
20 21	14	2019;47(3):357-371.
22	15	
23	16	
24 25	1/	39. Pohlmann D, Macedo S, Stubiger N, Pleyer U, Joussen AM, Winterhalter S. Multimodal
25 26	18	Imaging in Birdshot Retinochorolditis. Ocul Immunol Inflamm. 2017;25(5): 621–632
27	19	
28	20	
29 30	21	
31	22	
32	23	
33 34	24	
34 35 36	25	Acknowledgments
37 38	26	The authors thank Mrs Linda Northrup for her assistance in translation and Mr. Chad
39	27	Indermill from the Imaging Department of Ophthalmology at UPMC, Pittsburgh, PA, USA.
40	28	
41 42	29	Figure 1. Multimodal imaging of a patient with APMPPE (Patient 1): (A) On fundus FAF,
43 44	30	active lesions are mostly hyperautofluorescent. (B) Early phase of FA showed
45 46	31	choriocapillaris hypoperfusion with a similar pattern. (C) The border of those lesions
47 48	32	appeared hyperfluorescent at later phase. (D) OCT-A revealed areas of hypoperfusion of
49 50	33	the choriocapillaris on OCT-A, which was superimposed on the hypofluorescent areas in the
51 52	34	early frames of ICGA (E,F,G). (H) SD-OCT showed areas of IS-OS layer disruption and
53 54	35	thickened areas as well as outer retinal hyperreflectivity.
55 56	36	FAF: autofluorescence; IS-OS: Inner segment-outer segments
57 58	37	
59 60	38	Figure 2. OCT Angiography of two patients with APMPPE: (A,B,C,D) OCT-A showed no flow

2							
3 4	1	abnormalities at the superficial and deep plexuses of the two patients with APMPPE. (G, H)					
5 6	2	They presented areas of hypoperfusion of the choriocapillaris on OCT-A, visible as a					
7	3	circulatory defect on the choriocapillary plane (yellow stars), which was superimposed on					
o 9	4	the hypofluorescent areas in the early frames of ICGA (I, J).					
10 11	5	(E, F) Outer retina on OCT-A.					
12 13 14 15	6						
	7	Figure 3. Multimodal imaging of a patient with MEWDS (Patient 3): (A,B,C,D,E) The lesions					
16	8	appear hyperautofluorescent, hyperfluorescent on the late frames of FA and					
2 3 4 5 6 7 8 9 10 11 2 13 14 15 16 7 8 9 10 11 2 13 14 15 16 7 8 9 20 21 22 32 4 5 26 27 28 9 0 12 23 4 5 6 7 8 9 0 11 22 23 4 5 6 7 8 9 0 11 22 23 4 5 6 7 8 9 0 11 22 23 4 5 6 7 8 9 0 11 22 23 4 5 6 7 8 9 0 11 22 23 4 5 6 7 8 9 0 11 22 23 4 5 6 7 8 9 0 11 22 23 4 5 6 7 8 9 0 12 23 4 5 6 7 8 9 0 12 23 4 5 6 7 8 9 0 12 23 4 5 6 7 8 9 0 12 23 4 5 6 7 8 9 0 12 23 4 5 6 7 8 9 0 12 23 4 5 6 7 8 9 0 12 23 4 5 6 7 8 9 0 12 23 4 5 6 7 8 9 0 12 2 3 3 4 5 6 7 8 9 0 12 2 3 4 5 6 7 8 9 0 12 2 3 3 4 5 6 7 8 9 0 1 2 2 3 4 5 5 6 7 8 9 0 1 2 2 3 4 5 5 6 7 8 9 0 1 2 2 3 4 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	9	hypofluorescent on the late frames of ICG. (G) SD-OCT showed disruption of ellipsoid and					
	10	interdigidation zone, meaning disruption of photoreceptors. (H) En-face OCT showed hyper-					
21 22	11	reflective dots in the ONL. (I) En-face OCT centered on the ellipsoid zone showed					
23 24	12	hyporeflective areas corresponding to IS/OS layer disruption and were superimposed on					
25 26	13	hypofluorescent lesions visible in the late frames of ICGA (F).					
27	14	FAF: autofluorescence; IS/OS: Inner segment-outer segment; ONL: outer nuclear layer					
28 29	15						
30 31	16	Figure 4. OCT Angiography of two patients with MEWDS (Patients 3 & 4): (A,B,C,D,E,F)					
32 33 34 35	17	OCT-A showed no flow abnormalities at superficial (A,B), deep capillary plexus (C,D), outer					
	18	retina (E,F) and (G,H) at choriocapillaris levels.					
36 37	19						
38	20	Figure 5. Multimodal imaging of a patient with presumed TB-related serpiginous-like					
39 40	21	choroiditis (Patient 6): (A) On initial FAF, the lesions presented as hypoautofluorescent					
41 42	22	surrounded by an hyperautofluorescent border. (B,C) FA showed hyperfluorescence at					
43 44	23	intermediate frames and increased in the later frames. (E,F)					
45 46	24	ICGA showed confluent hypofluorescent lesions in the early and late frames. (D) OCT-A					
47	25	showed hypoperfusion areas of the choriocapillaris larger than the lesions at the level of the					
49	26	RPE on FA. Although some hypointensities were reversible on FAF after appropriate					
50 51	27	treatment (shown as yellow stars on OCT-A), other lesions failed to recover (surrounded in a					
52 53	28	red circle on OCT-A). (G) Superimposition between the choriocapillaris hypoperfusion					
54 55	29	lesions on OCT-A and the hyperfluorescent lesions on ICG were noted. (H) SD-OCT					
56 57	30	demonstrated areas of IS/OS layer disruption and areas of hyperreflectivity in the outer					
57 58 59 60	31	nuclear layer (arrows), atrophy of the outer retina with cysts, and hyper-reflectivity of the					

3 ⊿	1	opposite choroid. (I). On final FAF after treatment, the lesion failed to recover showed up as					
5	2	hypoautofluorescent (red circle), whereas the other lesions were iso or					
7 8 9 10 11 12 13	3	hyperautofluorescent (yellow circles).					
	4	FAF: autofluorescence; RPE: Retinal Pigment Epithelium; IS/OS: Inner segment-outer					
	5	segments					
	6						
14	7	Figure 6. Multimodal imaging of a patient with serpiginous choroiditis (Patient 7): (A) FA					
16	8	showed hypofluorescent confluent lesions in the early frames, which became					
17 18	9	hyperfluorescent on the late frames (C) with an incomplete hyperfluorescent edges					
19 20	10	indicating the disease activity. (B,D) ICGA showed these same lesions as remaining					
21 22	11	hypofluorescent throughout the sequence. (E) Fundus colour picture showing the yellowish					
23	12	lesions. (F) OCT-A showed hypoperfusion lesions of the choriocapillaris that superimposed					
25	13	with the hyperfluorescent lesions in the late frame of FA.					
26 27	14						
28 29 30 31 32 33 34 35 36 37 38 39 40	15						
	16	Figure 7. Patients 8, 9, 10 with MFC: In eyes of the two patients (patients 9: 'MFC 1' and					
	17	11: 'MCF 2') without CNV, (J,K) OCT-A showed hypoperfusion areas on the choriocapillaris					
	18	superimposed on hypofluorescence lesions on ICGA (M,N).					
	19	In the eye of patient 10 ('MFC with neovascularization'), OCT-A showed the CNV at the outer					
	20	retina (I) as a hyper-reflective glomerule with a choriocapillary hyperreflective area (L). The					
	21	superimposed ICGA showed an hypofluorescent lesion (O).					
41 42	22	(A,B,C,D,E,F) OCT-A showed normal superficial and deep capillary plexuses.					
43 44	23	MFC: multifocal choroiditis					
45 46	24						
47	25						
48 49	26	Figure 8. Patient 16 with birdshot chorioretinopathy :					
50 51	27 28	ICGA showed widespread hypofluorescence dots in the left eye (A). En face OCT at the level					
52 53	20	of the IS/OS Ellipsoid showed decreased hyperreflectivity at the forea (B). Equal OCT_A 6 x					
54 55	20	6 mm of retinal vasculature showed changes in deep capillary pleases (DCP) showing capillary					
56 57	21	loops (white arrows) OCT-A does no showed charics capillaris alteration in maculae (D) and					
58	2J 2T	choroid flow voids at the birdshot losion inferior to the fouse and to the optic parts (crosses					
59 60	52	choroid now volus at the birdshot lesion interior to the loved and to the optic herve (oralige					

1 2		
3 4 5 6 7	1	arrows (E). The SD-OCT scans shows diffuse slight reduction of the reflectivity of both the EZ
	2	and the IZ (area between arrows), although both are intact.
	3	IS/OS: inner segment/outer segment junction
8 9	4	
10 11	5	
12 13	6	Supplemental Material :
14 15	7	Figure 2' OCT Angiography evolution of the lesions in patient with APMPPE (Patient 1).
16 17	8	Most lesions are hyperautofluorescent or isofluorescent and some are hypoautofluorescent
17	9	(red circle) at initial FAF. The hyperautofluorescent and isofluorescent lesions seen on FAF
19 20	10	correspond to the lesions that fade away on OCT-A over time. B,C,D. OCT-A at the level of
21 22 23 24	11	the choriocapillaris. During 2 months of follow-up, two different patterns of active lesions
	12	were detected. Although lesions at the level of the choriocapillaris (yellow circles) are
25 26	13	reversible, the lesion that fails to recover on OCT-A (red circle) appears hypoautofluorescent
27 28	14	initially and was located at the level of RPE and choriocapillaris. E. At final FAF,
29	15	hypofluorescent lesions are smaller than at initial FAF but persistent. The persistent lesion
30 31	16	on OCT-A (red circle) does not show up on final FAF. F,G,H. En face OCT at the level of
32 33	17	choriocapillaris/ choroid. Lesions at the level of the choriocapillaris/ choroid (yellow circles)
34 35 36 37 38 39	18	are reversible, the lesions that fails to recover (red circle) appear hyperreflective.
	19	APMPPE: Acute posterior multifocal placoid pigment epitheliopathy
	20	
40 41	21	Figure 4'. OCT Angiography of one patient with MEWDS (Patient 5): (A-K)
41	22	OCT-A showed no flow abnormalities at superficial (A,B), deep capillary plexus (C,D), outer
43 44	23	retina (E,F) and (G,H) at choriocapillaris levels.
45 46	24	
47 48	25	Figure 6'. SD-OCT and OCT Angiography of a patient with serpiginous choroiditis (Patient
49 50	26	7): (A,B,C) OCT-A showed no flow abnormalities of the superficial (A) and deep capillary
51 52	27	plexuses (B) and the outer retina (C). (D) There were flow impairment at the level of the
53	28	choriocapillaris (yellow and red circles). Larger choroidal vessels have been pushed inward
54 55	29	into the area of choriocapillaris alteration so are seen (red circles on OCT-A). (F)
56 57	30	Corresponding SD-OCT scan shows the loss of RPE causing increased intensity below Bruch's
58 59	31	membrane which is characteristic RPE atrophy. (F) SD-OCT found areas with atrophy of the
60	32	outer retina and ellipsoid disruption with retinal cysts regarding RPE atrophy (yellow arrow).

3	1	(E) These lesions associated with RPE atrophy appeared hypoautofluorescent on FAF (red					
4 5	2	circles) although other lesions were rather hyperautofluorescent (yellow circles).					
6 7	3	FAF: autofluorescence; RPE: Retinal Pigment Epithelium					
8 9	4						
10 11	5	Figure 7'. Patient 11 with MFC without CNV : (A) On OCT-A the lesion was less extensive					
12 13	6	than it appeared on AF (B) and early ICGA (C). (D) The OCT-A images were superimposed on					
14 15	7	the hypofluorescent areas in the early frames of ICGA.					
16 17	8	AF : autofluorescence; CNV: chorioretinal neovascularization					
17	9						
19 20	10	Figure 7". Patients 12 (A-G) and 13 (H-N) with MFC and CNV:					
21 22	11	OCT-A showed the CNVs at the outer retina (C, J) as hyper-reflective glomerules with a					
23 24	12	choriocapillary hyperreflective area (red circles). Note also hypoperfusion areas on the					
25 26	13	choriocapillaris (yellow circles). The fluorescein angiography showed late leakage from the					
27	14	CNVs (G,N) better seen than on the early frame (F). (A,B,H,I) OCT-A showed normal					
20	15	superficial and deep capillary plexuses. SD-OCT showed CNVs with subretinal fluid (E,L).					
30 31	16	Fundus color picture (patient 13) showed widespread chorioretinal lesions without					
32 33	17	hemorrhage (M).					
34 35	18	MFC: multifocal choroiditis; CNV: chorioretinal neovascularization					
36 37	19						
35 36 37 38 39 40	20	Figure 7". Patient 14 (A-B) with PIC and CNV:					
	21	OCT-A showed the CNV at the choriocapillaris (A, top) as a hyper-reflective glomerule area.					
41 42	22	On B, the CNV is no longer seen one month after anti-VEGF ocular injection. SD-OCT (A)					
43 44	23	showed CNV without intraretinal or subretinal fluid.					
45 46	24	MFC: punctate inner choroiditis; CNV: chorioretinal neovascularization					
47 48	25						
49 50	26 27	Figure 9'. Patient 15 with birdshot chorioretinopathy :					
51 52	28	En face OCT at the level of the IS/OS ellipsoid superimposed with ICGA (in background)					
53 54	29	showed decreased hyperreflectivity nasal from the optic nerves in both eyes (A,B) and in the					
55 56	30	birdshot lesion at the fovea in the left eye (B). OCT-A showed choriocapillaris alteration in					
57 58	31	both maculae (C,D) and decreased blood flow at the birdshot lesion in the fovea in the left					
59 60	32	eye (D). The 6 x 6mm OCT-A of the left (D) eye showing larger choroidal vessels bordering					

the birdshot lesion (yellow arrow). (G,I) Foveal OCT-A 6 × 6 mm of retinal vasculature

changes in superficial capillary plexus (SCP) showing telangiectatic vessels (red circles),

capillary loops (white arrows), and abnormally increased intercapillary spaces or rather non-

perfused areas (blue asterisk). The SD-OCT scans are presented below the OCT-A (H,J) and

showed altered reflectivity of both the EZ and the IZ.

IS/OS: inner segment/outer segment junction

3 ⊿	1
5	2
6 7	3
8	Д
9 10	- -
11 12	5
13	6
14 15	7
16 17	8
17	9
19 20	10
21	11
22 23	12
24 25	12
26	
27 28	
29	
30 31	
32 33	
34	
35 36	
37	
38 39	
40 41	
42	
43 44	
45	
46 47	
48 ⊿9	
50	
51 52	
53	
54 55	
56 57	
58	
59 60	

Figure 1. Multimodal imaging of a patient with APMPPE (Patient 1): (A) On fundus FAF, active lesions are mostly hyperautofluorescent. (B) Early phase of FA showed choriocapillaris hypoperfusion with a similar pattern. (C) The border of those lesions appeared hyperfluorescent at later phase. (D) OCT-A revealed areas of hypoperfusion of the choriocapillaris on OCT-A, which was superimposed on the hypofluorescent areas in the early frames of ICGA (E,F,G). (H) SD-OCT showed areas of IS-OS layer disruption and thickened areas as well as outer retinal hyperreflectivity.
 FAF: autofluorescence; IS-OS: Inner segment-outer segments

115x120mm (150 x 150 DPI)

Figure 2. OCT Angiography of two patients with APMPPE: (A,B,C,D) OCT-A showed no flow abnormalities at the superficial and deep plexuses of the two patients with APMPPE. (G, H) They presented areas of hypoperfusion of the choriocapillaris on OCT-A, visible as a circulatory defect on the choriocapillary plane (yellow stars), which was superimposed on the hypofluorescent areas in the early frames of ICGA (I, J). (E, F) Outer retina on OCT-A.

51x121mm (150 x 150 DPI)

Figure 3. Multimodal imaging of a patient with MEWDS (Patient 3): (A,B,C,D,E) The lesions appear hyperautofluorescent, hyperfluorescent on the late frames of FA and hypofluorescent on the late frames of ICG. (G) SD-OCT showed disruption of ellipsoid and interdigidation zone, meaning disruption of photoreceptors. (H) En-face OCT showed hyper- reflective dots in the ONL. (I) En-face OCT centered on the ellipsoid zone showed hyporeflective areas corresponding to IS/OS layer disruption and were superimposed on hypofluorescent lesions visible in the late frames of ICGA (F).

FAF: autofluorescence; IS/OS: Inner segment-outer segment; ONL: outer nuclear layer

113x122mm (150 x 150 DPI)

Figure 5. Multimodal imaging of a patient with presumed TB-related serpiginous-like choroiditis (Patient 6): (A) On initial FAF, the lesions presented as hypoautofluorescent surrounded by an hyperautofluorescent border. (B,C) FA showed hyperfluorescence at intermediate frames and increased in the later frames. (E,F) ICGA showed confluent hypofluorescent lesions in the early and late frames. (D) OCT-A showed hypoperfusion areas of the choriocapillaris larger than the lesions at the level of the RPE on FA. Although some hypointensities were reversible on FAF after appropriate treatment (shown as yellow stars on OCT-A), other lesions failed to recover (surrounded in a red circle on OCT-A). (G) Superimposition between the choriocapillaris hypoperfusion

lesions on OCT-A and the hyperfluorescent lesions on ICG were noted. (H) SD-OCT demonstrated areas of IS/OS layer disruption and areas of hyperreflectivity in the outer nuclear layer (arrows), atrophy of the outer retina with cysts, and hyper-reflectivity of the opposite choroid. (I). On final FAF after treatment, the lesion failed to recover showed up as hypoautofluorescent (red circle), whereas the other lesions were iso or hyperautofluorescent (yellow circles). FAF: autofluorescence; RPE: Retinal Pigment Epithelium; IS/OS: Inner segment-outer segments

266x189mm (150 x 150 DPI)

Figure 6. Multimodal imaging of a patient with serpiginous choroiditis (Patient 7): (A) FA showed hypofluorescent confluent lesions in the early frames, which became hyperfluorescent on the late frames (C) with an incomplete hyperfluorescent edges indicating the disease activity. (B,D) ICGA showed these same lesions as remaining hypofluorescent throughout the sequence. (E) Fundus colour picture showing the yellowish lesions. (F) OCT-A showed hypoperfusion lesions of the choriocapillaris that superimposed with the hyperfluorescent lesions in the late frame of FA.

82x123mm (150 x 150 DPI)

Figure 7. Patients 8, 9, 10 with MFC: In eyes of the two patients (patients 9: 'MFC 1' and 11: 'MCF 2') without CNV, (J,K) OCT-A showed hypoperfusion areas on the choriocapillaris superimposed on hypofluorescence lesions on ICGA (M,N).

In the eye of patient 10 ('MFC with neovascularization'), OCT-A showed the CNV at the outer retina (I) as a hyper-reflective glomerule with a choriocapillary hyperreflective area (L). The superimposed ICGA showed an hypofluorescent lesion (O).

(A,B,C,D,E,F) OCT-A showed normal superficial and deep capillary plexuses.

MFC: multifocal choroiditis

68x121mm (150 x 150 DPI)

Figure 8: ICG showed widespread hypofluorescence dots in the left eye (A). En face OCT at the level of the IS/OS Ellipsoid showed decreased hyperreflectivity at the fovea (B). Foveal OCT-angiograms 6 × 6 mm of retinal vasculature showed changes in deep capillary plexus (DCP) showing capillary loops (white arrows), OCT-A does no showed choriocapillaris alteration in maculae (D) and choroid flow voids at the birdshot lesion inferior to the fovea and to the optic nerve (orange arrows (E). The SD-OCT scans shows diffuse slight reduction of the reflectivity of both the EZ and the IZ (area between arrows), although both are intact.IS/OS: inner segment/outer segment junction

199x184mm (150 x 150 DPI)

240x59mm (150 x 150 DPI)

201x198mm (150 x 150 DPI)

Figure 7"'. Patient 14 (A-B) with PIC and CNV: %"OCT-A showed the CNV at the choriocapillaris (A, top) as a hyper-reflective glomerule area. On B, the CNV is no longer seen one month after anti-VEGF ocular injection. OCT (A) showed CNV without intraretinal or subretinal fluid.%"MFC: punctate inner choroiditis; CNV: chorioretinal neovascularization%"

121x109mm (150 x 150 DPI)

297x212mm (150 x 150 DPI)

URL: http://mc.manuscriptcentral.com/noii E-mail: Manfred.Zierhut@med.uni-tuebingen.de

patient	Age, gender	diagnosis	Initial BCVA	Imaging	Follow-up duration at time of 1st imaging (M)	Final BCVA	treatment	complication
1	M/26	APMPPE	20/50 LE	FAF, FA, ICG, SD- OCT, OCT-A	1	20/20 LE	PO steroids 0.5 mg/kg/d	none
2	M/33	APMPPE	20/100 LE	FA, ICG, SD- OCT, OCT-A	0.5	20/40 LE	PO steroids 0.5 mg/kg/d	none
3	F/21	MEWDS	20/40 RE	FAF, FA, ICG, SD- OCT, OCT-A	<0.5	20/25 RE	none	none
4	F/15	MEWDS	20/70 LE	Color fundus, FAF, FA, ICG, SD- OCT, OCT-A	<0.5	20/20 LE	none	none
5	M/25	MEWDS	20/30 LE	FAF, FA, ICG, SD- OCT, OCT-A	<0.5	20/20 LE	none	none

6	M/33	TB-SLC	20/32	FAF.	1	20/32	PO steroids +	Increase oral
•	, 00			FA. ICG.	_		quadritherapy	steroids due
				SD-			anti-TB	to
				OCT.				progression
				OCT-A				of CR lesions
7	M/50	SC	20/32 LE	FA, ICG,	1	20/60	PO steroids +	none
				SD-		LE	PO	
				OCT,			azathioprine	
				OCT-A				
8	F/25	MFC	20/32 RE	FA, ICG,	1	20/20	IV solumedrol	none
		without		SD-		RE	and PO Pred.	
		CNV		OCT,				
				OCT-A				
9	F/63	MFC	20/60	FA, ICG,	2	20/40	PSTK + anti-	none
		with		SD-		LE	VEGF	
		CNV		OCT,				
				OCT-A		N.		
10	F/26	MFC	20/40 LE	FA, ICG,	1.5	20/30	PSTK +	azathioprine
		without		SD-		LE	azathioprine	intolerance
		CNV		OCT,				
				OCT-A	~ -			
11	M/23	MFC	20/32 RE	FA, ICG,	<0.5	20/32	Oral Pred.	none
		without		SD-		RE		12
		CNV						
10	E/40		20/6015		6	20/60	DO produicono	Delance of
12	F/40	IVIFC	20/60 LE		0		PO prednisone,	CNV switch
							PO	civ, switch
							15mg weekly	for
							anti-VEGE	adalimumah
								Side effects
								of
								methotrevate
							1	memoriexate

 URL: http://mc.manuscriptcentral.com/noii E-mail: Manfred.Zierhut@med.uni-tuebingen.de

13	M/63	MFC	20/60 OS	FAF,	5	20/100	PSTK 1 month	Need for x 6
		with		FA, SD-		OS	ago, repeated	anti-VEGF,
		CNV		OCT,			anti-VEGF	then
				OCT-A				adalimumab
14	M/30	PIC with CNV	20/20 RE	Color fundus, FAF, SD- OCT, OCT-A	<0.5. Active choroiditis diagnosed 3 months ago	20/20 RE	anti-VEGF, increase PO Pred. to 0.5mg/Kg/daily. Pt on PO Pred. 10mg and PO methotrexate 20mg weekly for recent choroiditis	none
15	F/66	BSCR	20/50 BE (LE amblyopia)	Color fundus, FAF, FA, ICG, SD- OCT, OCT-A	6	20/30 RE, 20/40 LE	Repeated intravitreal triamcinolone injections BE, plan: for fluocinolone acetonide intravitreal implant BE	Lenses opacification
16	F/72	BSCR	unknown	Color fundus, FAF, FA, ICG, SD- OCT, OCT-A, ERG	144	20/40 RE, 20/30 LE	Mycophenolate mofetil PO(1.5 gram daily), PO Pred. 2.5mg daily	Steroids responder, antiglaucoma eye drops BE

BE: both eyes, birdshot chorioretinopathy (BSCR), CR: chorioretinal, CNV: chorioretinal neovascularization, ERG: electrophysiology, FAF: fundus autofluorescence FAF, LE: left eye, M: Months, multifocal choroiditis (MFC), multiple evanescent white dot syndrome (MEWDS), Pred. : prednisolone, PO: per os, PSTK: subtenon triamcinolone injection, Pt: patient, punctate inner choroiditis (PIC), RE: right eye,

serpiginous choroiditis (SC), tuberculosis (TB) -related serpiginous-like choroiditis (SLC)

patient	diagnosis	Imaging	Initial OCT-A findings	Final OCT-A findings
1	APMPPE	FAF,	areas of hypoperfusion of	one lesion fails to recover located at the level of RPE and
		FA, ICG,	the choriocapillaris	choriocapillaris. The persistent lesion on OCT-A does not
		SD-		show up on final FAF at 2 months
		OCT,		
		OCT-A		
2	APMPPE	FA, ICG,	OCT-A revealed areas of hypoperfusion of	NP
		SD-	the choriocapillaris	
		OCT,		
		OCT-A	UL	
3	MEWDS	FAF,	OCT-A showed no flow abnormalities at superficial,	NP
		FA, ICG,	deep capillary plexus, outer retina and at	
		SD-	choriocapillaris levels	
		OCT,		
		OCI-A		
4	MEWDS	Color	no flow abnormalities at superficial, deep capillary	NP
		tundus,	plexus, outer retina and at choriocapillaris levels.	
				1
				V
5			no flow abnormalities at superficial deep capillary	ND
5			nlexus outer retina and at choriocanillaris levels	
		OCT		
		OCT-A		
6	TB-SLC	FAF,	hypoperfusion areas of the choriocapillaris larger	NP
		FA, ICG.	than the lesions at the level of the RPE on FA	
		SD-		
		ОСТ,		
		OCT-A		
7	SC	FA, ICG,	flow impairment at the level of the	NP
		SD-	choriocapillaris	

8 MFC FA, ICG, without SD- CNV SD- OCT, A Stable in one patient at 2 months, after IV solumedu oral prednisone	ol and
OCT-A OCT-A 8 MFC FA, ICG, without SD- CNV OCT, Stable in one patient at 2 months, after IV solumeds oral prednisone	ol and
8 MFC FA, ICG, stable in one patient at 2 months, after IV solumedia without SD- oral prednisone CNV OCT, OCT,	ol and
without SD- oral prednisone CNV OCT,	
CNV OCT,	
OCT-A	
9 MFC FA, ICG, hypoperfusion areas on the choriocapillaris NP	
with SD- superimposed on hypofluorescence lesions on ICGA	
CNV OCT,	
OCT-A	
10 MFC FA, ICG, CNV seen as a hyper-reflective glomerule with a NP	
without SD- choriocapillary hyperreflective area	
CNV OCT,	
OCT-A	
11 MFC FA, ICG, hypoperfusion areas on the choriocapillaris hypoperfusion area appearing less extensive after a	course
without SD- superimposed on hypofluorescence lesions on ICGA of oral prednisone	
CNV OCT,	
OCT-A	
12 MFC FA, ICG, normal superficial and DCP. CNV appearing as NP	
with SD- hyper-reflective glomerule with a choriocapillary	
CNV OCT, hyperreflective area. Hypoperfusion areas on the	
OCT-A choriocapillaris	
13 MFC FAF, normal superficial and DCP. CNV appearing as mixed CNV membrane enlargement at recurrence	
with FA, SD- hyper-reflective glomerule with a choriocapillary	
CNV OCT. hyperreflective area. Hypoperfusion areas on the	
OCT-A choriocapillaris	
14 PIC with Color CNV at the choriocapillaris as a hyper-reflective CNV is no longer seen one month post anti-VEGF in	ection
CNV fundus, glomerule area	
FAF,	
SD-	
OCT,	
OCT-A	
15 BSCR Color choriocapillaris alteration in maculae (BE) and Unchanged OCT-A findings	
fundus, decreased blood flow at the birdshot lesion in the	

		FAF, FA, ICG, SD- OCT, OCT-A	fovea (LE). Larger choroidal vessels bordering the birdshot lesion. Retinal vasculature changes in SCP with telangiectatic vessels, capillary loops, abnormally increased intercapillary spaces or rather non- perfused areas	
16	BSCR	Color fundus, FAF, FA, ICG, SD- OCT, OCT-A, ERG	changes in DCP: showing capillary loops, no choriocapillaris alteration in maculae (BE) and choroid flow voids at the birdshot lesion inferior to the fovea and to the optic nerve	Unchanged OCT-A findings

BE: both eyes, birdshot chorioretinopathy (BSCR), CNV: chorioretinal neovascularization deep capillary plexus (DCP), ERG: electrophysiology, FAF: fundus autofluorescence FAF, LE: left eye, M: Months, multifocal choroiditis (MFC), multiple evanescent white dot syndrome (MEWDS), punctate inner choroiditis (PIC), RE: right eye, SCP: superficial capillary plexus, serpiginous choroiditis (SC), tuberculosis (TB) -related serpiginouslike choroiditis (SLC)