Table of Contents

1. General Information	S2
2. Organic syntheses	S3
2-1. Synthesis of compounds 3-26	S3
2-2. Synthesis of protected peptido-carbapenems 27a-n .	S14
2-3. Synthesis of peptido-carbapenems 28a-n .	S29
3. Acylation of 2 ' and compounds 28a-n monitored by MS	S35
4. Enzymatic studies	S44
5. References	S45
6. Analytical HPLC spectra of compounds 2' and 28a-n	S46
7. ¹ H NMR and ¹³ C NMR spectra	S51
7-1. ¹ H and ¹³ C NMR spectra of compounds 3-26	S51
7-2. ¹ H and ¹³ C NMR spectra of protected peptido-carbapenems 27a-n	S 90
7-3. ¹ H NMR spectra of carbapenem 2 ' and peptido-carbapenems 28a-n	S116

1. General Information

Unless otherwise specified, starting materials were purchased from commercial suppliers and used as received. ß-methyl-vinyl-phosphate was purchased from AK Scientifics, other molecules were purchased from Merck, TCI, Alfa Aesar, Fluorochem. All air and water sensitive reactions were performed under argon atmosphere. Solvents were purchased from commercial sources. If stated as dry, the solvents were distilled using standard methods or received already dried from suppliers. For the organic syntheses, the reactions were monitored by thin layer chromatography (TLC): precoated silica gel thin layer sheets 60 F254 (Merck, Darmstadt, Germany). The detection was performed by using a UV lamp (254 nm) or by staining with phosphomolybdic acid (PMA), KMnO4 or ninhydrin when appropriate. Small scale reactions were performed using a Grant-Bio thermoshaker plate (Dutscher, Brumath, France). Purifications were carried out using silica gel (60 Å, 180-240 mesh from Merck, Darmstadt, Germany). Final compounds were purified using a HPLC system with a reverse phase C18 column (Agilent, 250 mm x 21.2 mm, 5 µm) using a solvent system consisting of H₂O and acetonitrile (linear gradient, 0 to 100% over 45 minutes) at a flow rate of 12 mL.min⁻ ¹ and UV detection at 299 nm. The purity of final compounds (>95%) was established by analytical HPLC, which was performed on a Vydac C18 (250 mm x 4.6 mm, 5 µm) at a flow rate of 1.3 mL.min⁻¹ with UV detection at 299 nm. NMR spectra were recorded using Bruker spectrometers Bruker Advance II 500, and Bruker Advance III HD 4000 (Bruker Biospin, Fällanden, Switzerland). Chemical shifts (δ) are reported in parts per million (ppm) and referenced to the residual proton or carbone resonance of the solvents: $CDCl_3$ (δ 7.26), CD₃OD (δ 3.31), (CD₃)₂SO (δ 2.50) or D₂O (δ 4.79) for ¹H and CDCl₃ (δ 77.16), CD₃OD (δ 49.00), $(CD_3)_2SO$ (δ 39.52) for ¹³C. Coupling constants (*J*) are reported in Hz and splitting patterns are indicated as follows: s = singlet, d = doublet, t = triplet, q = quartet, p = pentet, m = multiplet, bs = broad signal. High-resolution mass spectroscopy (HRMS) was recorded using LTQ Orbitrap XL (Thermo Scientific, Illkirch, France). Low-resolution mass spectroscopy was also used for chemical intermediates (LCQ Deca XPMax, Thermo Scientific, Illkirch, France). Compounds 14, 17, 21, 22, and carbapenems 2 and 2' were synthetized following described procedures.¹⁻⁴

2. Organic syntheses2-1. Synthesis of compounds 3-26

General procedure for the *N*-CO₂PNB protection of *N*-terminal amine: Amino acid or aminoalkyl acid (1.0 equiv.) was dissolved in a mixture of H₂O:dioxane (1:1) and treated with NaHCO₃ (2.0 equiv.). The reaction mixture was stirred for 5 minutes at 0 °C. 4-Nitrobenzyl chloroformate (1.2 equiv.) was added in one portion and the reaction mixture was stirred for 2 hours at 0 °C and then 18 hours at room temperature. The mixture was washed with diethyl ether (x2), the aqueous phase was acidified to pH = 1.0 with a solution of 1 M HCl and the resulting solution was extracted with EtOAc (x3). The combined organic layers were washed with H₂O, brine, dried over MgSO₄, filtered and concentrated under reduced pressure to afford the expected compound used in next step without further purification.

(((4-Nitrobenzyl)oxy)carbonyl)glycine (3)

Following the general procedure for the *N*-CO₂PNB protection, glycine (1.0 g, 13.3 mmol) and 4-nitrobenzyl chloroformate (3.4 g, 16.0 mmol) were reacted in presence of NaHCO₃ (2.2 g, 26.6 mmol) to afford compound **3** as a white foam (3.3 g, 98%). The analytical data correspond to the ones found in the literature.⁵ ¹H NMR (500 MHz, DMSO): δ 8.19 (d, *J* = 8.7 Hz, 2H), 7.68 (t, *J* = 6.2 Hz, 1H), 7.59 (d, *J* = 8.7 Hz, 2H), 5.19 (s, 2H), 3.71 (d, *J* = 6.3 Hz, 2H). ¹³C NMR (126 MHz, DMSO): δ 171.7, 156.4, 147.1, 145.1, 128.2 (2C), 123.6 (2C), 64.5, 42.3. HRMS (ESI): *m*/*z* calcd for C₁₀H₁₀N₂O₆Na [M + Na]⁺ 277.0431; found: 277.0428.

3-((((4-Nitrobenzyl)oxy)carbonyl)amino)propanoic acid (4)

Following the general procedure for the *N*-CO₂PNB protection, β-alanine (1.0 g, 11.2 mmol) and 4-nitrobenzyl chloroformate (2.9 g, 13.4 mmol) were reacted in presence of NaHCO₃ (1.8 g, 22.4 mmol) to afford compound **4** as a white foam (1.5 g, 99%). The analytical data correspond to the ones found in the literature.⁶ ¹H NMR (500 MHz, DMSO): δ 12.20 (s, 1H), 8.21 (d, *J* = 8.8 Hz, 2H), 7.58 (d, *J* = 8.5 Hz, 2H), 7.41 (t, *J* = 5.6 Hz, 1H), 5.16 (s, 2H), 3.24

(q, J = 6.6 Hz, 2H), 2.41 (t, J = 6.9 Hz, 2H).¹³C NMR (126 MHz, DMSO): δ 172.8, 155.8, 147.0, 145.2, 128.1 (2C), 123.6 (2C), 66.4, 36.7, 34.2. HRMS (ESI): m/z calcd for $C_{11}H_{13}N_2O_6$ [M + H]⁺ 269.0768; found: 269.0762.

4-((((4-Nitrobenzyl)oxy)carbonyl)amino)butanoic acid (5)

Following the general procedure for the *N*-CO₂PNB protection, 4-aminobutyric acid (1.0 g, 9.7 mmol) and 4-nitrobenzyl chloroformate (2.5 g, 11.6 mmol) were reacted in presence of NaHCO₃ (1.6 g, 19.4 mmol) to afford compound **5** as a white foam (1.7 g, 63%). The analytical data correspond to the ones found in the literature.^{7 1}H NMR (**500 MHz, DMSO**): δ 12.03 (s, 1H), 8.21 (d, *J* = 8.8 Hz, 2H), 7.59 (d, *J* = 8.5 Hz, 2H), 7.41 (t, *J* = 5.8 Hz, 1H), 5.15 (s, 2H), 3.03 (q, *J* = 6.7 Hz, 2H), 2.23 (t, *J* = 7.4 Hz, 2H), 1.65 (p, *J* = 7.2 Hz, 2H). ¹³C NMR (126 MHz, DMSO): δ 174.2, 155.9, 147.0, 145.3, 128.1 (2C), 123.6 (2C), 64.0, 39.8, 30.9, 24.8. HRMS (ESI): *m*/*z* calcd for C₁₂H₁₄N₂NaO₆ [M + Na]⁺ 305.0744; found: 305.0737.

5-((((4-Nitrobenzyl)oxy)carbonyl)amino)pentanoic acid (6)

Following the general procedure for the *N*-CO₂PNB protection, 5-aminopentanoic acid (1.0 g, 8.5 mmol) and 4-nitrobenzyl chloroformate (2.2 g, 10.3 mmol) were reacted in presence of NaHCO₃ (14.3 g, 17.0 mmol) to afford compound **6** as a white foam (2.0 g, 79%). ¹H NMR (**500 MHz, DMSO)**: δ 8.22 (d, *J* = 8.8 Hz, 2H), 7.59 (d, *J* = 8.6 Hz, 2H), 7.38 (t, *J* = 5.8 Hz, 1H), 5.15 (s, 2H), 3.00 (q, *J* = 6.4 Hz, 2H), 2.21 (t, *J* = 7.2 Hz, 2H), 1.51-1.47 (m, 2H), 1.46-1.35 (m, 2H).¹³C NMR (126 MHz, DMSO): δ 174.4, 155.8, 146.9, 145.4, 128.1 (2C), 123.5 (2C), 63.9, 40.0, 33.3, 28.9, 21.8. HRMS (ESI): *m*/*z* calcd for C₁₃H₁₆N₂NaO₆ [M + Na]⁺ 319.0901; found: 319.0893.

6-((((4-Nitrobenzyl)oxy)carbonyl)amino)hexanoic acid (7)

Following the general procedure for the *N*-CO₂PNB protection, 6-aminohexanoic acid (1.0 g, 7.6 mmol) and 4-nitrobenzyl chloroformate (1.9 g, 9.1 mmol) were reacted in presence of NaHCO₃ (14.3 g, 17.0 mmol) to afford compound **7** as a whitish foam (2.3 g, 98%). ¹H NMR (**500 MHz, DMSO)**: δ 11.95 (s, 1H), 8.22 (d, *J* = 8.5 Hz, 2H), 7.59 (d, *J* = 8.3 Hz, 2H), 7.37 (t, *J* = 5.9 Hz, 1H), 5.15 (s, 2H), 2.99 (q, *J* = 6.6 Hz, 2H), 2.18 (t, *J* = 7.4 Hz, 2H), 1.49 (p, *J* = 7.5 Hz, 2H), 1.41 (p, *J* = 7.2 Hz, 2H), 1.26 (p, *J* = 7.6, 7.1 Hz, 2H). ¹³C NMR (**126 MHz, DMSO**): δ 174.5, 155.8, 146.9, 145.4, 128.1 (2C), 123.5 (2C), 63.9, 40.0, 33.6, 29.1, 25.8, 24.2. HRMS (ESI): *m*/*z* calcd for C₁₄H₁₈N₂NaO₆ [M + Na]⁺ 333.1057; found: 333.1049.

(S)-2-((((4-Nitrobenzyl)oxy)carbonyl)amino)propanoic acid (8)

Following the general procedure for the *N*-CO₂PNB protection, L-alanine (1.0 g, 11.2 mmol) and 4-nitrobenzyl chloroformate (2.9 g, 13.4 mmol) were reacted in presence of NaHCO₃ (18.8 g, 22.4 mmol) to afford compound **8** as a white foam (2.6 g, 88%). The analytical data correspond to the ones found in the literature.⁸ $[\alpha]_D^{25}$: – 6.2 (c = 1.2, EtOH). ¹H NMR (500 MHz, CDCl₃): δ 10.87 (bs, 1H), 8.19 (d, *J* = 8.7 Hz, 2H), 7.50 (d, *J* = 8.4 Hz, 2H), 5.45 (t, *J* = 6.9 Hz, 1H), 5.2 (d, *J* = 3.9 Hz, 2H), 4.49-4.25 (m, 1H), 1.48 (d, *J* = 7.3 Hz, 3H). ¹³C NMR (126 MHz, CDCl₃): δ 177.6, 155.6, 147.8, 143.7, 128.3 (2C), 123.9 (2C), 65.7, 49.7, 18.3. HRMS (ESI): *m*/*z* calcd for C₁₁H₁₂N₂O₆Na [M + Na]⁺ 291.0588; found: 291.0584.

N^2 , N^6 -bis(((4-Nitrobenzyl)oxy)carbonyl)-L-lysine (9)

Following the general procedure for the N-CO₂PNB protection, L-lysine (1.0 g, 6.8 mmol) and 4-nitrobenzyl chloroformate (3.5 g, 16.3 mmol) were reacted in presence of NaHCO₃

(22.8 g, 27.2 mmol) to afford compound **9** as a yellowish foam (1.4 g, 81%). $[\alpha]_D^{25}$: + 1.63 (c = 1.4, DMSO). ¹H NMR (500 MHz, DMSO): δ 12.58 (s, 1H), 8.22 (d, *J* = 7.8 Hz, 4H), 7.70 (d, *J* = 8.0 Hz, 1H), 7.63-7.51 (m, 4H), 7.38 (d, *J* = 6.2 Hz, 1H), 5.18 (s, 2H), 5.15 (s, 2H), 3.94-3.89 (m, 1H), 3.06-2.97 (m, 2H), 1.72-1.67 (m, 1H), 1.6-1.52 (m, 1H), 1.43-1.26 (m, 4H). ¹³C NMR (126 MHz, DMSO): δ 173.8, 155.9, 155.8, 146.9, 146.9, 145.3, 145.0, 128.1 (4C), 123.5 (4C), 64.2, 63.9, 53.9, 40.0, 30.4, 28.9, 22.8. HRMS (ESI): *m*/*z* calcd for C₂₂H₂₄N₄NaO₁₀ [M + Na]⁺ 527.1385; found: 527.1378.

N^{6} -Acetyl- N^{2} -(((4-nitrobenzyl)oxy)carbonyl)-L-lysine (10)

Following the general procedure for the *N*-CO₂PNB protection, *N*-acetyl-L-lysine (1.0 g, 5.3 mmol) and 4-nitrobenzyl chloroformate (1.4 g, 6.4 mmol) were reacted in presence of NaHCO₃ (0.9 g, 10.6 mmol) to afford compound **10** as a whitish foam (1.8 g, 91%). $[\alpha]_D^{25}$: + 1.8 (c = 0.3, EtOH). ¹H NMR (500 MHz, DMSO): δ 8.22 (d, *J* = 8.5 Hz, 2H), 7.78 (t, *J* = 5.8 Hz, 1H), 7.68 (d, *J* = 8.1 Hz, 1H), 7.61 (d, *J* = 8.5 Hz, 2H), 5.18 (s, 2H), 3.95-3.91 (m, 1H), 3.00 (q, *J* = 6.4 Hz, 2H), 1.78 (s, 3H), 1.74-1.67 (m, 1H), 1.63-1.56 (m, 1H), 1.41-1.30 (m, 4H). ¹³C NMR (126 MHz, DMSO): δ 173.9, 169.1, 156.0, 147.0, 145.1, 128.1 (2C), 123.6 2C), 64.3, 54.0, 38.4, 30.5, 28.8, 23.1, 22.6. HRMS (ESI): *m*/*z* calcd for C₁₆H₂₁N₃NaO₇ [M + Na]⁺ 390.1272; found: 390.1272.

(R)-5-Methoxy-2-((((4-nitrobenzyl)oxy)carbonyl)amino)-5-oxopentanoic acid (11)

According to the procedure described in literature,⁷ D-glutamic acid (1.0 g, 6.8 mmol) in dry MeOH (20 mL) was treated dropwise over 5 minutes with TMSCl (1.7 mL, 13.6 mmol) at room temperature. The mixture was stirred for additional 10 minutes and then concentrated under reduced pressure to afford the crude monoprotected D-glutamic acid. The crude product was dissolved in H₂O:dioxane (1:1) (20 mL) and treated with NaHCO₃ (1.1 g, 13.6 mmol) and 4-nitrobenzyl chloroformate (1.8 g, 8.2 mmol) at 0 °C. The reaction mixture was stirred for 18 hours at room temperature. Dioxane was removed under reduced pressure, and the

crude mixture was dissolved in H₂O (80 mL). The aqueous phase was washed with Et₂O (2 x 50 mL) and then acidified to pH = 2.0 using a solution of HCl 1 M. The product was extracted from the aqueous phase with EtOAc (3 x 100 mL). The combined organic layers were washed with H₂O (100 mL), brine (100 mL), dried over MgSO₄, filtered and concentrated under reduced pressure to afford compound **11** as a white foam (1.6 g, 69%). $[\alpha]_D^{25}$: – 29.5 (c = 3.75, CHCl₃). ¹H NMR (500 MHz, CDCl₃): δ 10.15 (bs, 1H), 8.17 (d, *J* = 8.7 Hz, 2H), 7.48 (d, *J* = 8.6 Hz, 2H), 5.82 (d, *J* = 8.1 Hz, 1H), 5.29-5.17 (m, 2H), 4.45-4.11 (m, 1H), 3.66 (s, 3H), 2.52-2.40 (m, 2H), 2.29-2.21 (m, 1H), 2.08-2.01 (m, 1H). ¹³C NMR (126 MHz, CDCl₃): δ 175.7, 173.7, 155.9, 147.8, 143.7, 128.2 (2C), 123.9 (2C), 65.8, 53.5, 52.1, 30.2, 27.8. HRMS (ESI): *m/z* calcd for C₁₄H₁₇N₂O₈ [M + H]⁺ 341.0979; found: 341.0976.

Methyl (R)-5-amino-4-(((((4-nitrobenzyl)oxy)carbonyl)amino)-5-oxopentanoate (12)

12

To a mixture of compound **11** (0.5 g, 1.5 mmol) and ethyl chloroformate (164 µL, 2.1 mmol) in dry THF (15 mL), NEt₃ (300 µL, 2.1 mmol) was added dropwise at – 15 °C. The reaction mixture was stirred for 30 minutes at – 15 °C. NH₄OH 28% (1 mL) was added dropwise, and the reaction mixture was warmed up to room temperature and left stirring for 1 hour. The crude mixture was dissolved in EtOAc (75 mL) and washed with a sat. solution of NH₄Cl (75 mL), sat. solution of NaHCO₃ (75 mL), brine (75 mL), dried over MgSO₄, filtered and concentrated under reduced pressure. The crude was then purified by silica gel chromatography (cyclohexane:EtOAc 1:9) to afford compound **12** as a white foam (353 mg, 71%). $[\alpha]_D^{25}$: – 10.7 (c = 1.5, DMSO). ¹H NMR (500 MHz, CD₃OD): δ 8.23 (d, *J* = 8.8 Hz, 2H), 7.61 (d, *J* = 8.4 Hz, 2H), 5.22 (s, 2H), 4.15 (dd, *J* = 9.4, 5.1 Hz, 1H), 3.66 (s, 3H), 2.44 (t, *J* = 7.6 Hz, 2H), 2.17-2.09 (m, 1H), 1.96-1.88 (m, 1H). ¹³C NMR (126 MHz, CD₃OD): δ 176.7, 175.0, 158.0, 149.0, 145.9, 129.2 (2C), 124.6 (2C), 66.3, 55.5, 52.2, 31.2, 28.5. HRMS (ESI): *m*/z calcd for C₁₄H₁₈N₃O₇ [M + H]⁺ 340.1139; found: 340.1136.

(R)-5-Amino-4-((((4-nitrobenzyl)oxy)carbonyl)amino)-5-oxopentanoic acid (13)

LiOH 1 M (1.8 mL, 1.8 mmol) was added dropwise to a solution of compound **12** (300 mg, 0.9 mmol) in THF (10 mL) and the reaction mixture was stirred for 1 hour at room temperature. THF was removed under reduced pressure, and the crude mixture was diluted with H₂O (50 mL). After washing the mixture with Et₂O (50 mL), the aqueous layer was acidified to pH = 2.0 - 3.0 using a solution of HCl 1 M. The product was extracted with EtOAc (3 x 75 mL). The combined organic layers were washed with H₂O, brine, dried over MgSO₄, filtered and concentrated under reduced pressure. The obtained solid was dissolved in a minimal volume of H₂O and lyophilized to afford compound **13** as a white foam (250 mg, 87%). [α]_D²⁵: + 2.5 (c = 0.4, MeOH). ¹H NMR (500 MHz, CD₃OD): δ 8.21 (d, *J* = 8.7 Hz, 2H), 7.59 (d, *J* = 8.6 Hz, 2H), 5.27-5.18 (m, 2H), 4.19 (dd, *J* = 9.3, 4.9 Hz, 1H), 2.35 (t, *J* = 7.7 Hz, 2H), 2.23-2.16 (m, 1H), 2.01-1.90 (m, 1H). ¹³C NMR (126 MHz, CD₃OD): δ 177.8, 175.3, 158.2, 148.9, 146.0, 129.1 (2C), 124.6 (2C), 66.2, 55.0, 32.7, 28.51. HRMS (ESI): *m/z* calcd for C₁₃H₁₆N₃O₇ [M + H]⁺ 326.0982; found: 326.0980.

Methyl (S)-4-(2-((((4-nitrobenzyl)oxy)carbonyl)amino)propanamido)butanoate (15)

Methyl 4-aminobutanoate hydrochloride **14** (618 mg, 4.0 mmol) in dry DCM (20 mL) was treated with DIPEA (1.2 mL, 6.7 mmol) at 0 °C. After 5 minutes, protected L-Ala **8** (900 mg, 3.4 mmol), K-oxyma® (901 mg, 5.0 mmol), and EDC (959 mg, 5.0 mmol) were added. The reaction mixture was stirred at room temperature for 4 hours. The crude mixture was diluted in EtOAc (50 mL) and washed with a solution of 10% NaHCO₃ (50 mL), 10% citric acid (50 mL), H₂O (50 mL), brine (50 mL), dried over MgSO₄, filtered and concentrated under reduced pressure. Purification by silica gel chromatography (cyclohexane:EtOAc 3:7) afforded compound **15** as a white foam (1.1 g, 86%). $[\alpha]_D^{25}$: – 1.7 (c = 1.0, DCM). ¹H NMR (500 MHz, CDCl₃): δ 8.15 (d, *J* = 8.8 Hz, 2H), 7.44 (d, *J* = 8.8 Hz, 2H), 6.10 (bs, 1H), 5.38 (d, *J* = 4.5 Hz, 1H), 5.13 (s, 2H), 4.19 (p, *J* = 7.0 Hz, 1H), 3.61 (s, 3H), 3.30 (q, *J* = 6.8 Hz, 2H), 2.30 (t, *J* = 7.1 Hz, 2H), 1.77 (p, *J* = 6.8 Hz, 2H), 1.33 (d, *J* = 7.0 Hz, 3H). ¹³C NMR (126 MHz, CDCl₃): δ 173.8, 172.1, 155.1, 147.7, 143.7, 128.1 (2C), 123.8 (2C), 65.4, 51.8, 50.7, 39.1,

31.4, 24.4, 18.9. **HRMS (ESI):** m/z calcd for C₁₆H₂₁N₃NaO₇ [M + Na]⁺ 390.1271; found: 390.1264.

(S)-4-(2-((((4-Nitrobenzyl)oxy)carbonyl)amino)propanamido)butanoic acid (16)

A solution of LiOH 1 M (5 mL, 2.5 mmol) was added dropwise to compound **15** (900 mg, 2.5 mmol) in THF (10 mL) and the reaction mixture was stirred for 1 hour at room temperature. THF was removed under reduced pressure, and the crude mixture was diluted in H₂O (50 mL). After washing the mixture with Et₂O (50 mL), the aqueous layer was acidified to pH = 2.0 – 3.0 using a solution of HCl 1 M. The product was extracted with EtOAc (3 x 75 mL). The combined organic layers were washed with H₂O, brine, dried over MgSO₄, filtered and concentrated under reduced pressure. The obtained oil was dissolved in a minimal volume of H₂O and lyophilized to afford compound **16** as a yellowish foam (545 mg, 63%). [α]_D²⁵: – 4.8 (c = 0.65, MeOH). ¹H NMR (500 MHz, CD₃OD): δ 8.12 (d, *J* = 8.8 Hz, 2H), 7.50 (d, *J* = 8.4 Hz, 2H), 5.11 (s, 2H), 4.00 (q, *J* = 7.1 Hz, 1H), 3.13 (t, *J* = 5.5 Hz, 2H), 2.21 (t, *J* = 7.3 Hz, 2H), 1.68 (t, *J* = 7.0 Hz, 2H), 1.24 (d, *J* = 7.2 Hz, 3H). ¹³C NMR (126 MHz, CD₃OD): δ 177.1, 175.6, 157.8, 149.0, 146.0, 129.2 (2C), 124.6 (2C), 66.3, 52.3, 39.8, 32.2, 25.8, 18.4. HRMS (ESI): *m*/z calcd for C₁₅H₂₀N₃O₇ [M + H]⁺ 354.3347; found: 354.1291.

Benzyl (S)-4-(2-((tert-butoxycarbonyl)amino)propanamido)butanoate (18)

Benzyl 4-aminobutanoate **17** (1.0 g, 5.2 mmol) in dry DCM (20 mL) was treated with DIPEA (1.8 mL, 10.4 mmol) at 0 °C. After stirring for 5 minutes at 0 °C, Boc-L-Ala-OH (1.5 g, 7.8 mmol) and TBTU (2.5 g, 7.8 mmol) were added to the mixture at 0 °C. The reaction mixture was stirred for 18 hours at room temperature and dissolved in EtOAc (100 mL). The organic phase was washed with H₂O (100 mL), sat. solution of NaHCO₃ (100 mL), brine (100 mL), dried over MgSO₄, filtered and concentrated under reduced pressure. The crude solid was then purified by silica gel chromatography (cyclohexane:EtOAc 6:4) to afford compound **18** as a colorless oil (1.53 g, 81%). $[\alpha]_D^{25}$: – 8.6 (c = 0.5, DCM). ¹H NMR (**500 MHz, CDCl₃**): δ 7.32-7.25 (m, 5H), 6.87 (bs, 1H), 5.42 (bs, 1H), 5.06 (s, 2H), 4.13 (bs, 1H), 3.28-3.20 (m,

2H), 2.35 (t, J = 7.4 Hz, 2H), 1.80 (p, J = 7.2 Hz, 2H), 1.37 (s, 9H), 1.28 (d, J = 7.0 Hz, 3H). ¹³C NMR (126 MHz, CDCl₃): δ 175.6, 173.1, 155.7, 135.9, 128.6 (3C), 128.2 (2C), 80.0, 66.3, 50.1, 38.8, 31.5, 28.3 (3C), 24.6, 18.5. HRMS (ESI): m/z calcd for C₁₉H₂₉N₂O₅ [M + H]⁺ 365.2071; found: 365.2067.

Benzyl 4-((S)-2-((R)-2-methoxypropanamido)propanamido)butanoate (19)

Compound 18 (700 mg, 1.9 mmol) was stirred in a mixture of 50% of TFA in DCM (5 mL) for 2 hours. The solvents were removed under a stream of air and co-evaporation with acetonitrile was performed to remove the excess of TFA. The salt was then dissolved in dry DCM (10 mL) and DIPEA (1.7 mL, 9.5 mmol) was added at 0 °C. After stirring for 5 minutes, (2R)-2-methoxy propanoic acid (237 mg, 2.3 mmol), and TBTU (915 mg, 2.9 mmol) were added at 0 °C. The reaction mixture was stirred for 24 hours at room temperature. DCM was removed under reduced pressure and the crude solid was dissolved in EtOAc (100 mL). The solution was washed with H₂O (100 mL), sat. solution of NaHCO₃ (100 mL), brine (100 mL), dried over MgSO₄, filtered and concentrated under reduced pressure. The crude product was purified by silica gel chromatography (cyclohexane:EtOAc 2:8) to afford compound 19 as a white foam (474 mg, 71%). $[\alpha]_D^{25}$: - 32.6 (c = 1.2, CH₂Cl₂). ¹H NMR (500 MHz, **CDCl₃**): δ 7.38-7.29 (m, 5H), 7.07 (d, J = 8.0 Hz, 1H), 6.68 (s, 1H), 5.10 (s, 2H), 4.45 (p, J =7.1 Hz, 1H), 3.74 (q, J = 6.7 Hz, 1H), 3.37 (s, 3H), 3.32-3.24 (m, 2H), 2.39 (t, J = 7.3 Hz, 2H), 1.84 (p, J = 7.0 Hz, 2H), 1.37 (d, J = 7.0 Hz, 3H), 1.33 (d, J = 6.8 Hz, 3H). ¹³C NMR (126 MHz, CDCl₃): δ 173.4, 173.1, 172.1, 136.0, 128.7 (2C), 128.4 (3C), 78.0, 66.5, 57.4, 48.4, 38.9, 31.7, 24.7, 18.3, 17.9. **HRMS (ESI):** m/z calcd for $C_{18}H_{27}N_2O_5$ [M + H]⁺ 351.1914; found: 351.1910.

4-((S)-2-((R)-2-Methoxypropanamido)propanamido)butanoic acid (20)

Compound **19** (450 mg, 1.3 mmol) was hydrogenated in dry MeOH (5 mL) using 10% wt. Pd/C (70 mg, 0.6 mmol) for 18 hours at room temperature. The catalyst was removed by

filtration through celite® and the filtrate was concentrated under reduced pressure to afford compound **20** in mixture with its methyl ester **20'** (330 mg, ratio: 0.77(20):0.23(20'); yield determined by NMR: 76%). The crude mixture was used without further purification. ¹H NMR (500 MHz, CDCl₃): δ 7.36-7.27 (m, 2H), 4.46 (p, *J* = 7.2 Hz, 1H), 3.68 (q, *J* = 6.7 Hz, 1H), 3.29 (s, 3H), 3.20 (p, *J* = 6.7 Hz, 2H), 2.27 (td, *J* = 7.3, 3.0 Hz, 2H), 1.82-1.67 (m, 2H), 1.30 (d, *J* = 7.0 Hz, 3H), 1.25 (d, *J* = 6.8 Hz, 3H). HRMS (ESI): *m*/*z* calcd for C₁₁H₂₁N₂O₅ [M + H]⁺ 261.1445; found: 261.1439.

Benzyl (*R*)-5-amino-4-((*tert*-butoxycarbonyl)amino)-5-oxopentanoate (23)

BocHN CONH₂ CO₂Bn

23

To a mixture of compound **22** (1.3 g, 3.0 mmol) and ethyl chloroformate (360 µL, 4.6 mmol) in dry THF (20 mL), NEt₃ (64 µL, 4.6 mmol) was added dropwise at – 15 °C. The reaction mixture was stirred for 30 minutes at – 15 °C. NH₄OH 28% (1.5 mL) was added dropwise, and the reaction mixture was warmed up to room temperature and left stirring for 1 hour. The crude mixture was dissolved in EtOAc (100 mL) and washed with a sat. solution of NH₄Cl (100 mL), sat. solution of NaHCO₃ (100 mL), brine (100 mL), dried over MgSO₄, filtered and concentrated under reduced pressure. The crude was then purified by silica gel chromatography (cyclohexane:EtOAc 2:8) to afford compound **23** as a white foam (1.2 g, 96%). $[\alpha]_D^{25}$: + 5.0 (c = 1.0, DCM). ¹H NMR (500 MHz, CD₃OD): δ 7.38-7.28 (m, 5H), 5.13 (s, 2H), 4.14-4.04 (m, 1H), 2.47 (t, *J* = 7.5 Hz, 2H), 2.14-2.04 (m, 1H), 1.92-1.84 (m, 1H), 1.44 (s, 9H). ¹³C NMR (126 MHz, CD₃OD): δ 177.2, 174.3, 157.8, 137.6, 129.5 (2C), 129.2 (3C), 80.7, 67.4, 55.0, 31.4, 28.7 (3C), 28.6. LRMS (ESI): *m*/*z* calcd for C₁₇H₂₄N₂NaO₅ [M + Na]⁺ 359.3; found: 359.3.

Benzyl (*R*)-5-amino-4-((*S*)-2-((tert-butoxycarbonyl)amino)propanamido)-5-oxo pentanoate (24)

24

Compound **23** (1.2 g, 3.6 mmol) was stirred in a mixture of 50% of TFA in DCM (5 mL) for 2 hours. The solvents were removed under a stream of air and co-evaporation with acetonitrile

was performed to remove the excess of TFA. The amine TFA salt intermediate was dissolved in dry DCM (30 mL) and DIPEA (3.6 mL, 21.4 mmol) was added at 0 °C. After stirring for 5 minutes, Boc-Ala-OH (810 mg, 4.3 mmol), EDC (1.0 g, 5.4 mmol) and K-oxyma® (770 mg, 4.3 mmol) were added at 0 °C. The reaction mixture was stirred for 24 hours at room temperature. DCM was removed under reduced pressure and the crude solid was dissolved in EtOAc (100 mL). The mixture was washed with water (100 mL), sat. solution of NaHCO₃ (100 mL), brine (100 mL), dried over MgSO₄, filtered and concentrated under reduced pressure. The crude product was purified by silica gel chromatography (DCM:MeOH 99:1) to afford compound **24** as a white foam (1.0 g, 70%). $[\alpha]_D^{25}$: + 1.6 (c = 1.0, DCM). ¹H NMR (**500 MHz, CDCl**₃): δ 7.41 (d, *J* = 6.6 Hz, 1H), 7.31-7.21 (m, 5H), 6.83 (bs, 1H), 6.01 (s, 1H), 5.34 (d, *J* = 6.8 Hz, 1H), 5.03 (d, *J* = 2.9 Hz, 2H), 4.42 (q, *J* = 7.4, 7.0 Hz, 1H), 4.05 (t, *J* = 7.2 Hz, 1H), 2.52-2.34 (m, 2H), 2.25-2.18 (m, 1H), 2.03-1.96 (m, 1H), 1.39 (s, 9H), 1.30 (d, *J* = 7.0 Hz, 3H). ¹³C NMR (**126 MHz, CDCl**₃): δ 173.8, 173.6, 173.3, 155.9, 135.7, 128.6 (2C), 128.3 (2C), 128.2, 80.3, 66.6, 52.3, 50.6, 30.6, 28.3 (3C), 26.9, 17.9. HRMS (ESI): *m/z* calcd for C₂₀H₃₀N₃O₆ [M + H]⁺ 408.2129; found: 408.2126.

Benzyl (*R*)-5-amino-4-((*S*)-2-((*R*)-2-methoxypropanamido)propanamido)-5oxopentanoate (25)

25

Compound **24** (350 mg, 0.9 mmol) was stirred in a mixture of 50% of TFA in DCM (5 mL) for 2 hours. The solvents were removed under a stream of air and co-evaporation with acetonitrile was performed to remove the excess of TFA. The TFA salt intermediate was dissolved in dry DCM (10 mL) followed by the addition of DIPEA (827 μ L, 4.9 mmol) at 0 °C. The reaction mixture was allowed to stir for 15 minutes at 0 °C. (2*R*)-2-Methoxy propanoic acid (123 mg, 1.2 mmol) and TBTU (472 mg, 1.5 mmol) were added consecutively at 0 °C. The reaction mixture was stirred for 24 hours at room temperature and then quenched with a sat. solution of NaHCO₃ (100 mL). Extraction with EtOAc (3 x 100 mL) was proceed; the combined organic layers were washed with H₂O (100 mL), brine (100 mL) dried over MgSO₄, filtered and concentrated under reduced pressure. The crude product was purified by silica gel chromatography (DCM:MeOH 95:5) to afford compound **25** as a white foam (240 mg, 72%). [α]_D²⁵: + 6.8 (c = 1.0, MeOH). ¹H NMR (500 MHz, CDCl₃): δ 7.60 (d, *J* = 8.1 Hz,

1H), 7.36-7.27 (m, 5H), 7.23 (d, J = 7.2 Hz, 1H), 6.85 (bs, 1H), 6.20 (bs, 1H), 5.09 (d, J = 2.8 Hz, 2H), 4.50-4.43 (m, 2H), 3.72 (q, J = 6.7 Hz, 1H), 3.34 (s, 3H), 2.57-2.38 (m, 2H), 2.24-2.16 (m, 1H), 2.01-1.93 (m, 1H), 1.36 (d, J = 7.0 Hz, 3H), 1.31 (d, J = 6.7 Hz, 3H). ¹³C NMR (126 MHz, CDCl₃): δ 173.7, 173.6, 173.2, 172.7, 135.7, 128.6 (2C), 128.3 (2C), 128.2, 77.9, 66.6, 57.3, 52.3, 48.8, 30.6, 27.0, 18.1, 17.7. HRMS (ESI): m/z calcd for C₁₉H₂₈N₃O₆ [M + H]⁺ 394.1973; found: 394.1969.

(*R*)-5-Amino-4-((*S*)-2-((*R*)-2-methoxypropanamido)propanamido)-5-oxopentanoic acid (26)

²⁶

Compound **25** (240 mg, 0.6 mmol) was hydrogenated in dry MeOH (5 mL) using 10% wt. Pd/C (32 mg, 0.3 mmol) for 18 hours at room temperature. The catalyst was removed by filtration through celite® and the filtrate was concentrated under reduced pressure to afford compound **26** as a whitish foam (185 mg, 99%). $[\alpha]_D^{25}$: + 25.1 (c = 2.5, MeOH). ¹H NMR (**500 MHz, CD₃OD)**: δ 4.38-4.31 (m, 2H), 3.75 (q, *J* = 6.7 Hz, 1H), 3.32 (s, 3H), 2.36 (t, *J* = 7.5 Hz, 2H), 2.18-2.13 (m, 1H), 1.92-1.85 (m, 1H), 1.36 (d, *J* = 7.1 Hz, 3H), 1.28 (d, *J* = 6.8 Hz, 3H). ¹³C NMR (**126 MHz, CD₃OD**): δ 176.7, 176.2, 175.8, 175.0, 78.7, 57.8, 53.7, 50.4, 31.4, 28.1, 18.5, 18.0. HRMS (ESI): *m*/*z* calcd for C₁₂H₂₂N₃O₆ [M + H]⁺ 304.1503; found: 304.1500.

2-2. Synthesis of protected peptido-carbapenems 27a-n

General procedure for carbapenem esterification: Carbapenem 2 (1 equiv.) in presence of peptidoglycan mimetic (4 equiv. up to 8 equiv.) was treated with DMAP (0.9 equiv.) and then with small portions of EDC (8 equiv. up to 16 equiv.) at -20 °C. The reaction mixture was stirred for 1 - 24 hours while maintaining a temperature between -30 to -15 °C. After the completion of the reaction, EtOAc was added to dissolve the crude. The organic layer was washed with a sat. solution of NaHCO₃, brine, dried over MgSO₄, filtered and concentrated under reduced pressure. The crude mixture was purified by silica gel chromatography (cyclohexane:EtOAc or DCM:MeOH as eluent systems) to afford the desired peptidocarbapenem derivatives.⁹

4-Nitrobenzyl (4*R*,5*S*)-4-methyl-6-((*R*)-1-(((((4-nitrobenzyl)oxy)carbonyl)glycyl)-oxy) ethyl)-7-oxo-3-(phenethylthio)-1-azabicyclo[3.2.0]hept-2-ene-2-carboxylate (27a)

Following the general procedure of esterification, carbapenem **2** (45 mg, 0.09 mmol) and compound **3** (101.7 mg, 0.4 mmol) were reacted in presence of EDC (153.4 mg, 0.8 mmol) and DMAP (12 mg, 0.09 mmol) to afford compound **27a** as a yellowish foam (64 mg, 89%) after silica gel chromatography purification (cyclohexane:EtOAc 1:1). Completion of esterification was observed after 2 hours of reaction. ¹H NMR (500 MHz, CDCl₃): δ 8.14-8.11 (m, 4H), 7.56 (d, *J* = 8.5 Hz, 2H), 7.41 (d, *J* = 8.7 Hz, 2H), 7.25-7.10 (m, 5H), 5.41 (d, *J* = 13.8 Hz, 1H), 5.32-5.27 (m, 2H), 5.17 (d, *J* = 13.8 Hz, 1H), 5.13 (s, 2H), 3.96-3.89 (m, 3H), 3.31 (dd, *J* = 7.6, 2.6 Hz, 1H), 3.24-3.15 (m, 1H), 3.05-2.96 (m, 2H), 2.93-2.81 (m, 2H), 1.36 (d, *J* = 6.3 Hz, 3H), 1.12 (d, *J* = 7.2 Hz, 3H). ¹³C NMR (126 MHz, CDCl₃): δ 170.4, 169.2, 160.3, 156.0, 153.0, 147.8, 147.7, 143.7, 143.1, 139.2, 128.8 (2C), 128.7 (2C), 128.3 (2C), 128.2 (2C), 127.0, 123.9 (4C) 123.3, 70.1, 65.7, 65.4, 56.9, 56.0, 43.3, 43.0, 36.3, 33.1, 18.6, 16.7. HRMS (ESI): *m*/z calcd for C₃₅H₃₅N₅O₁₁S [M + H]⁺ 719.2017; found: 719.2028.

4-Nitrobenzyl (4*R*,5*S*,6*S*)-6-((*R*)-1-((acetylglycyl)oxy)ethyl)-4-methyl-7-oxo-3-(phenethylthio)-1-azabicyclo[3.2.0]hept-2-ene-2-carboxylate (27b)

Following the general procedure of esterification, carbapenem **2** (50 mg, 0.1 mmol) and *N*-acetyl-glycine (100 mg, 0.8 mmol) were reacted in presence of EDC (153.4 mg, 0.8 mmol) and DMAP (12 mg, 0.09 mmol) to afford compound **27b** as a yellowish foam (54 mg, 93%) after silica gel chromatography purification (cyclohexane:EtOAc 1:9). Completion of esterification was observed after 4 hours of reaction. ¹H NMR (500 MHz, CDCl₃): δ 8.14 (d, J = 8.6 Hz, 2H), 7.57 (d, J = 8.8 Hz, 2H), 7.27-7.09 (m, 5H), 6.02 (t, J = 5.4 Hz, 1H), 5.42 (d, J = 13.8 Hz, 1H), 5.30-5.25 (m, 1H), 5.18 (d, J = 13.8 Hz, 1H), 4.01-3.93 (m, 2H), 3.90-3.86 (m, 1H), 3.30 (dd, J = 7.9, 2.7 Hz, 1H), 3.26-3.20 (m, 1H), 3.09-2.95 (m, 2H), 2.94-2.81 (m, 2H), 1.96 (s, 3H), 1.36 (d, J = 6.3 Hz, 3H), 1.13 (d, J = 7.3 Hz, 3H). ¹³C NMR (126 MHz, CDCl₃): δ 170.5 (2C), 169.4, 160.4, 153.2, 147.7, 143.2, 139.2, 128.8 (2C), 128.7 (2C), 128.3 (2C), 127.0, 123.9 (2C), 123.3, 70.0, 65.3, 57.0, 56.8, 43.3, 41.7, 36.3, 33.1, 23.0, 18.6, 16.7. HRMS (ESI): m/z calcd for C₂₉H₃₁N₃NaO₈S [M + Na]⁺ 604.1724; found: 604.1714.

4-Nitrobenzyl (4*R*,5*S*,6*S*)-4-methyl-6-((*R*)-1-((3-((((4-nitrobenzyl)oxy)carbonyl)amino) propanoyl)oxy)ethyl)-7-oxo-3-(phenethylthio)-1-azabicyclo[3.2.0]hept-2-ene-2carboxylate (27c)

Following the general procedure of esterification, carbapenem **2** (50 mg, 0.1 mmol) and compound **4** (110 mg, 0.4 mmol) were reacted in presence of EDC (153.4 mg, 0.8 mmol) and DMAP (12 mg, 0.09 mmol) to afford compound **27c** as a yellowish foam (70 mg, 96%) after silica gel chromatography purification (cyclohexane:EtOAc 6:4). Completion of esterification was observed after 2 hours of reaction. ¹H NMR (500 MHz, CDCl₃): δ 8.12-8.08 (m, 4H), 7.55 (d, *J* = 8.6 Hz, 2H), 7.44-7.37 (m, 2H), 7.23-7.11 (m, 5H), 5.47 (bs, 1H), 5.40 (d, *J* = 13.8 Hz, 1H), 5.24 (p, *J* = 6.3 Hz, 1H), 5.19-5.06 (m, 3H), 3.93 (dd, *J* = 9.0, 2.5 Hz, 1H), 3.41-3.37 (m, 2H), 3.33 (dd, *J* = 6.5, 2.5 Hz, 1H), 3.22-3.15 (m, 1H), 3.06-2.97 (m, 2H), 2.93-2.80 (m, 2H), 2.54-2.45 (m, 2H), 1.31 (d, *J* = 6.4 Hz, 3H), 1.12 (d, *J* = 7.3 Hz, 3H). ¹³C NMR (126 MHz, CDCl₃): δ 171.2, 171.0, 160.3, 155.9, 152.9, 147.8, 147.7, 144.1, 143.1, 139.2, 128.8 (2C), 128.7 (2C), 128.3 (2C), 128.1 (2C), 127.0, 123.8 (4C), 123.3, 68.5, 65.3, 65.2, 56.8, 56.2, 43.4, 37.0, 36.3, 34.8, 33.1, 18.4, 16.7. HRMS (ESI): *m*/*z* calcd for C₃₆H₃₇N₄O₁₁S [M + H]⁺ 733.2174; found: 733.2179.

4-Nitrobenzyl (4*R*,5*S*,6*S*)-6-((*R*)-1-((3-acetamidopropanoyl)oxy)ethyl)-4-methyl-7-oxo-3-(phenethylthio)-1-azabicyclo[3.2.0]hept-2-ene-2-carboxylate (27d)

Following the general procedure of esterification, carbapenem **2** (50 mg, 0.1 mmol) and *N*-acetyl-ß-alanine (52.5 mg, 0.4 mmol) were reacted in presence of EDC (153 mg, 0.8 mmol) and DMAP (12 mg, 0.09 mmol) to afford compound **27d** as a yellowish foam (52 mg, 87%) after silica gel chromatography purification (DCM:MeOH 95:5). Completion of esterification was observed after 3 hours of reaction. ¹H NMR (500 MHz, CDCl₃): δ 8.18-8.10 (m, 2H), 7.56 (d, *J* = 8.3 Hz, 2H), 7.26-7.09 (m, 5H), 6.19 (bs, 1H), 5.42 (d, *J* = 13.8 Hz, 1H), 5.23 (q, *J* = 7.3, 6.9 Hz, 1H), 5.18 (d, *J* = 13.7 Hz, 1H), 3.94 (dd, *J* = 8.9, 2.6 Hz, 1H), 3.50-3.42 (m, 1H), 3.40-3.33 (m, 1H), 3.34 (dd, *J* = 6.6, 2.6 Hz, 1H), 3.24-3.15 (m, 1H), 3.07-2.96 (m, 2H), 2.93-2.83 (m, 2H), 2.53-2.43 (m, 2H), 1.87 (s, 3H), 1.32 (d, *J* = 6.2 Hz, 3H), 1.14 (d, *J* = 7.3 Hz, 3H). ¹³C NMR (126 MHz, CDCl₃): δ 171.5, 171.2, 160.4, 152.9, 152.9, 147.8, 143.1, 139.2, 128.8 (2C), 128.7 (2C), 128.3 (2C), 127.05, 123.9 (2C), 123.4, 68.4, 65.4, 56.8, 56.3, 43.4, 36.3, 35.3, 34.6, 33.1, 23.3, 18.3, 16.8 HRMS (ESI): *m*/z calcd for C₃₀H₃₃N₃NaO₈S [M + Na]⁺ 618.1881; found: 618.1880.

4-Nitrobenzyl (4*R*,5*S*,6*S*)-4-methyl-6-((*R*)-1-((4-((((4-nitrobenzyl)oxy)carbonyl)amino) butanoyl)oxy)ethyl)-7-oxo-3-(phenethylthio)-1-azabicyclo[3.2.0]hept-2-ene-2-carboxylate (27e)

Following the general procedure of esterification, carbapenem **2** (50 mg, 0.1 mmol) and compound **5** (113 mg, 0.4 mmol) were reacted in presence of EDC (153 mg, 0.8 mmol) and DMAP (12 mg, 0.09 mmol) to afford compound **27e** as a yellowish foam (74 mg, 99%) after silica gel chromatography purification (cyclohexane:EtOAc 1:1). Completion of esterification was observed after 1 hour of reaction. ¹H NMR (500 MHz, CDCl₃): δ 8.20-8.05 (m, 4H), 7.56 (d, *J* = 8.7 Hz, 2H), 7.39 (d, *J* = 8.4 Hz, 2H), 7.32-7.11 (m, 5H), 5.41 (d, *J* = 13.7 Hz, 1H), 5.22 (p, *J* = 6.4 Hz, 1H), 5.16 (d, *J* = 13.8 Hz, 1H), 5.07 (s, 2H), 3.96 (dd, *J* = 9.1, 2.5 Hz, 1H), 3.31 (dd, *J* = 6.6, 2.5 Hz, 1H), 3.25-3.18 (m, 1H), 3.18-3.12 (m, 2H), 3.07-2.95 (m, 2H), 2.94-2.81 (m, 2H), 2.35-2.27 (m, 2H), 1.83-1.73 (m, 2H), 1.30 (d, *J* = 6.4 Hz, 3H), 1.12 (d, *J* = 7.3 Hz, 3H). ¹³C NMR (126 MHz, CDCl₃): δ 172.3, 171.0, 160.4, 156.1, 152.8, 147.8, 147.7, 144.1, 143.1, 139.2, 128.8 (2C), 128.7 (2C), 128.3 (2C), 128.2 (2C), 127.0, 123.9 (4C), 123.4, 68.3, 65.4, 65.2, 57.0, 56.4, 43.4, 40.5, 36.3, 33.1, 31.7, 25.2, 18.5, 16.8. HRMS (ESI): *m*/z calcd for C₃₇H₃₉N₅O₁₁S [M + H]⁺ 747.2330; found: 747.2334.

4-Nitrobenzyl (4*R*,5*S*,6*S*)-4-methyl-6-((*R*)-1-((5-((((4-nitrobenzyl)oxy)carbonyl)amino) pentanoyl)oxy)ethyl)-7-oxo-3-(phenethylthio)-1-azabicyclo[3.2.0]hept-2-ene-2-carboxylate (27f)

Following the general procedure of esterification, carbapenem **2** (70 mg, 0.15 mmol) and compound **6** (215 mg, 0.8 mmol) were reacted in presence of EDC (306 mg, 1.6 mmol) and DMAP (12 mg, 0.09 mmol) to afford compound **27f** as a yellowish foam (74 mg, 97%) after silica gel chromatography purification (cyclohexane:EtOAc 3:7). Completion of esterification was observed after 24 hours of reaction. ¹H NMR (500 MHz, CDCl₃): δ 8.13-8.10 (m, 4H), 7.56 (d, *J* = 8.7 Hz, 2H), 7.40 (d, *J* = 8.4 Hz, 2H), 7.24-7.10 (m, 5H), 5.41 (d, *J* = 13.7 Hz, 1H), 5.21 (q, *J* = 6.4 Hz, 1H), 5.17 (d, *J* = 13.7 Hz, 1H), 5.08 (s, 2H), 4.95 (t, *J* = 6.1 Hz, 1H), 3.96 (dd, *J* = 9.2, 2.6 Hz, 1H), 3.30 (dd, *J* = 6.8, 2.6 Hz, 1H), 3.23-3.14 (m, 1H), 3.12 (q, *J* = 6.7 Hz, 2H), 1.51-1.43 (m, 2H), 1.30 (d, *J* = 6.3 Hz, 3H), 1.13 (d, *J* = 7.3 Hz, 3H). ¹³C NMR (126 MHz, CDCl₃): δ 172.5, 171.0, 160.4, 156.0, 152.6, 147.8, 147.7, 144.3, 143.1, 139.2, 128.8 (2C), 128.7 (2C), 128.3 (2C), 128.2 (2C), 127.0, 123.8 (4C), 123.5, 68.2, 65.4, 65.2, 57.1, 56.5, 43.4, 40.8, 36.3, 33.1, 30.3, 27.0, 22.1, 18.5, 16.8. HRMS (ESI): *m*/*z* calcd for C₃₈H₄₀N₄NaO₁₁S [M + Na]⁺ 783.2307; found: 783.2291.

4-Nitrobenzyl (4*R*,5*S*,6*S*)-4-methyl-6-((*R*)-1-((6-((((4-nitrobenzyl)oxy)carbonyl)amino) hexanoyl)oxy)ethyl)-7-oxo-3-(phenethylthio)-1-azabicyclo[3.2.0]hept-2-ene-2-carboxylate (27g)

Following the general procedure of esterification, carbapenem **2** (70 mg, 0.15 mmol) and compound **7** (125 mg, 0.4 mmol) were reacted in presence of EDC (153.4 mg, 0.8 mmol) and DMAP (12 mg, 0.09 mmol) to afford compound **27g** as a yellowish foam (52 mg, 68%) after silica gel chromatography purification (cyclohexane:EtOAc 3:7). Completion of esterification was observed after 24 hours of reaction. ¹H NMR (500 MHz, CDCl₃): δ 8.12 (d, *J* = 8.7 Hz, 4H), 7.56 (d, *J* = 8.4 Hz, 2H), 7.41 (d, *J* = 8.4 Hz, 2H), 7.25-7.09 (m, 5H), 5.41 (d, *J* = 13.8 Hz, 1H), 5.22-5.16 (m, 2H), 5.13-5.09 (m, 3H), 3.96 (dd, *J* = 9.1, 2.7 Hz, 1H), 3.30 (dd, *J* = 6.9, 2.7 Hz, 1H), 3.22-3.15 (m, 1H), 3.16-3.09 (m, 2H), 3.07-2.96 (m, 2H), 2.90-2.83 (m, 2H), 2.24 (t, *J* = 7.4 Hz, 2H), 1.56 (p, *J* = 7.5 Hz, 2H), 1.44 (p, *J* = 7.2 Hz, 2H), 1.33-1.25 (m, 5H), 1.13 (d, *J* = 7.3 Hz, 3H). ¹³C NMR (126 MHz, CDCl₃): δ 172.7, 171.0, 160.4, 156.0, 152.6, 147.7 (2C), 144.3, 143.2, 139.2, 128.8 (2C), 128.7 (2C), 128.2 (2C), 128.2 (2C), 127.0, 123.8 (4C), 123.5, 68.2, 65.3, 65.1, 57.1, 56.5, 43.3, 41.0, 36.8, 34.3, 33.1, 29.6, 26.2, 24.6, 18.5, 16.8. HRMS (ESI): *m*/z calcd for C₃₉H₄₂N₄NaO₁₁S [M + Na]⁺ 797.2463; found: 797.2456.

(4*R*,5*S*,6*S*)-4-Nitrobenzyl 4-methyl-6-(1-(((*S*)-2-((((4-nitrobenzyl)oxy)carbonyl)amino) propanoyl)oxy)ethyl)-7-oxo-3-(phenethylthio)-1-azabicyclo[3.2.0]hept-2-ene-2carboxylate (27h)

Following the general procedure of esterification, carbapenem **2** (50 mg, 0.1 mmol) and compound **8** (107 mg, 0.4 mmol) were reacted in presence of EDC (153.4 mg, 0.8 mmol) and DMAP (12 mg, 0.09 mmol) to afford compound **27h** as a yellowish foam (72 mg, 98%) after silica gel chromatography purification (cyclohexane:EtOAc 7:3). Completion of esterification was observed after 1 hour of reaction. ¹H NMR (500 MHz, CDCl₃): δ 8.12 (d, *J* = 8.4 Hz, 2H), 8.09 (d, *J* = 8.4 Hz, 2H), 7.56 (d, *J* = 8.6 Hz, 2H), 7.37 (d, *J* = 8.4 Hz, 2H), 7.24-7.08 (m, 5H), 5.41 (d, *J* = 13.8 Hz, 1H), 5.34 (d, *J* = 7.4 Hz, 1H), 5.32-5.23 (m, 1H), 5.17 (d, *J* = 13.8 Hz, 1H), 5.08 (s, 2H), 4.24 (p, *J* = 7.2 Hz, 1H), 3.91 (dd, *J* = 8.9 Hz, 1.8 Hz, 1H), 3.30 (dd, *J* = 8.4, 2.4 Hz, 1H), 3.24-3.15 (m, 1H), 3.05-2.94 (m, 2H), 2.92-2.82 (m, 2H), 1.35 (d, *J* = 7.1 Hz, 6H), 1.12 (d, *J* = 7.2 Hz, 3H). ¹³C NMR (126 MHz, CDCl₃): δ 172.3, 170.4, 160.3, 155.3, 153.2, 147.7 (2C), 143.7, 143.1, 139.2, 128.8 (2C), 128.7 (2C), 128.2 (2C), 128.0 (2C), 127.0, 123.8 (4C), 123.2, 70.1, 65.4, 65.3, 56.9, 56.9, 49.9, 43.3, 36.3, 33.1, 18.6, 18.3, 16.7. HRMS (ESI): *m*/z calcd for C₃₆H₃₇N₄O₁₁S [M + H]⁺ 733.2174; found: 733.2184.

4-Nitrobenzyl (4R,5S,6S)-4-methyl-6-((R)-1-((N^2 -(((4-nitrobenzoyl)oxy)methyl)- N^6 -(((4-nitrobenzyl)oxy)carbonyl)-L-lysyl)oxy)ethyl)-7-oxo-3-(phenethylthio)-1-azabicyclo [3.2.0]hept-2-ene-2-carboxylate (27i)

27i

Following the general procedure of esterification, carbapenem **2** (50 mg, 0.1 mmol) and compound **9** (201.8 mg, 0.4 mmol) were reacted in presence of EDC (153.4 mg, 0.8 mmol) and DMAP (12 mg, 0.09 mmol) to afford compound **27i** as a yellowish foam (87 mg, 90%) after silica gel chromatography purification (cyclohexane:EtOAc 3:7). Completion of esterification was observed after 1 hour of reaction. ¹H NMR (500 MHz, CDCl₃): δ 8.12-8.06 (m, 6H), 7.55 (d, *J* = 8.4 Hz, 2H), 7.42-7.35 (m, 4H), 7.24-7.07 (m, 5H), 5.46 (d, *J* = 7.5 Hz, 1H), 5.40 (d, *J* = 13.9 Hz, 1H), 5.27 (p, *J* = 6.5 Hz, 1H), 5.16 (d, *J* = 13.8 Hz, 1H), 5.12 (d, *J* = 3.8 Hz, 1H), 5.07 (s, 4H), 4.22-4.18 (m, 1H), 3.91 (dd, *J* = 9.0, 2.5 Hz, 1H), 3.31 (dd, *J* = 7.9, 2.5 Hz, 1H), 3.23 (q, *J* = 7.8 Hz, 1H), 3.16-3.08 (m, 2H), 1.40-1.26 (m, 5H), 1.13 (d, *J* = 7.3 Hz, 3H). ¹³C NMR (126 MHz, CDCl₃): δ 171.6, 170.4, 160.3, 156.2, 155.7, 153.2, 147.7, 144.1 (2C), 143.7 (2C), 143.1, 139.2, 128.8 (4C), 128.7 (2C), 128.2 (2C), 128.2 (2C), 127.0, 124.0 (2C), 123.8 (4C), 123.2, 70.0, 65.7, 65.5, 65.3, 65.2, 56.8, 54.0, 43.3, 40.6, 36.3, 33.1, 31.8, 29.5, 22.3, 18.5, 16.7. HRMS (ESI): *m*/*z* calcd for C₄₇H₄₈N₆NaO₁₅S [M + Na]⁺ 991.2791; found: 991.2774.

 $\label{eq:action} \begin{array}{l} \mbox{4-Nitrobenzyl} (4R, 5S, 6S) - 6 - ((R) - 1 - ((N^6 - acetyl - N^2 - (((4 - nitrobenzyl) oxy) carbonyl) - D - lysyl) oxy) ethyl) - 4 - methyl - 7 - oxo - 3 - (phenethylthio) - 1 - azabicyclo[3.2.0] hept - 2 - ene - 2 - carboxylate (27j) \\ \end{array}$

Following the general procedure of esterification, carbapenem **2** (50 mg, 0.1 mmol) and compound **10** (150 mg, 0.4 mmol) were reacted in presence of EDC (153 mg, 0.8 mmol) and DMAP (12 mg, 0.09 mmol) to afford compound **27j** as a yellowish foam (70 mg, 84%) after silica gel chromatography purification (DCM:MeOH 96:4). Completion of esterification was observed after 1 hour of reaction. ¹H NMR (500 MHz, CDCl₃): δ 8.18-8.07 (m, 4H), 7.56 (d, J = 8.7 Hz, 2H), 7.37 (d, J = 8.4 Hz, 2H), 7.25-7.09 (m, 5H), 5.81-5.71 (m, 1H), 5.60 (d, J = 7.8 Hz, 1H), 5.41 (d, J = 13.7 Hz, 1H), 5.32-5.23 (m, 1H), 5.17 (d, J = 13.9 Hz, 1H), 5.08 (d, J = 2.1 Hz, 2H), 4.20-4.16 (m, 1H), 3.93 (dd, J = 9.0, 2.5 Hz, 1H), 3.31 (dd, J = 7.9, 2.5 Hz, 1H), 3.27-3.20 (m, 1H), 1.68-1.62 (m, 1H), 1.48-1.40 (m, 2H), 1.37-1.28 (m, 5H), 1.13 (d, J = 7.3 Hz, 3H). ¹³C NMR (126 MHz, CDCl₃): δ 171.7, 170.6, 170.5, 160.3, 155.8, 153.3, 147.7, 143.8, 143.8, 143.1, 139.2, 128.8 (2C), 128.7 (2C), 128.2 (2C), 128.0 (2C), 127.0, 123.8 (4C), 123.2, 69.9, 65.7, 65.4, 65.3, 56.9, 54.1, 43.3, 39.0, 36.3, 33.1, 31.6, 29.2, 23.3, 22.4, 18.6, 16.7. HRMS (ESI): *m/z* calcd for C₄₁H₄₆N₅O₁₂S [M + H]⁺ 832.2858; found: 832.2865.

4-Nitrobenzyl (4*R*,5*S*,6*S*)-6-((*S*)-1-(((*R*)-5-amino-4-((((4-nitrobenzyl)oxy)carbonyl) amino)-5-oxopentanoyl)oxy)ethyl)-4-methyl-7-oxo-3-(phenethylthio)-1-azabicyclo[3.2.0] hept-2-ene-2-carboxylate (27k)

Following the general procedure of esterification, carbapenem **2** (50 mg, 0.1 mmol) and compound **13** (150 mg, 0.4 mmol) were reacted in presence of EDC (153 mg, 0.8 mmol) and DMAP (12 mg, 0.09 mmol) to afford compound **27k** as a yellowish foam (65 mg, 82%) after silica gel chromatography purification (cyclohexane:EtOAc 2:8). Completion of esterification was observed after 4 hours of reaction. ¹H NMR (500 MHz, CDCl₃): δ 8.13-8.11 (m, 4H), 7.54 (d, *J* = 7.9 Hz, 2H), 7.41 (d, *J* = 7.7 Hz, 2H), 7.26-7.09 (m, 5H), 6.05 (bs, 1H), 5.94 (d, *J* = 6.8 Hz, 1H), 5.42 (d, *J* = 8.3 Hz, 1H), 5.37 (d, *J* = 13.9 Hz, 1H), 5.31 (p, *J* = 6.4 Hz, 1H), 5.20 (d, *J* = 13.6 Hz, 1H), 5.11 (s, 2H), 4.27-4.21 (m, 1H), 4.03 (d, *J* = 7.6 Hz, 1H), 3.40-3.35 (m, 1H), 3.28-3.22 (m, 1H), 3.07-2.98 (m, 2H), 2.93-2.83 (m, 2H), 2.25-2.13 (m, 2H), 2.08-1.99 (m, 2H), 1.31 (d, *J* = 5.8 Hz, 3H), 1.13 (d, *J* = 6.7 Hz, 3H). ¹³C NMR (126 MHz, CDCl₃): δ 171.2, 171.0, 160.4, 155.8, 155.7, 152.7, 147.8 (2C), 143.8, 142.9, 139.1, 128.9 (2C), 128.7 (2C), 128.4 (2C), 128.2 (2C), 127.1, 123.9 (4C), 123.4, 68.8, 65.6 (2C), 56.9, 55.7, 53.9, 43.4, 36.3, 33.2, 31.2, 27.8, 18.3, 16.8. HRMS (ESI): *m*/*z* calcd for C₃₈H₄₀N₅O₁₂S [M + H]⁺ 790.2388; found: 790.2383.

4-Nitrobenzyl (4*R*,5*S*,6*S*)-4-methyl-6-((5*R*,13*R*)-5-methyl-1-(4-nitrophenyl)-3,6,11-trioxo-2,12-dioxa-4,7-diazatetradecan-13-yl)-7-oxo-3-(phenethylthio)-1-azabicyclo[3.2.0]hept-2-ene-2-carboxylate (27l)

Following the general procedure of esterification, carbapenem **2** (50 mg, 0.1 mmol) and compound **16** (141 mg, 0.4 mmol) were reacted in presence of EDC (306 mg, 1.6 mmol) and DMAP (12 mg, 0.09 mmol) to afford compound **271** as a yellowish foam (70 mg, 86%) after silica gel chromatography purification (cyclohexane:EtOAc 3:7). Completion of esterification was observed after 3 hours of reaction. ¹H NMR (**500 MHz, CDCl₃**): δ 8.13-8.11 (m, 4H), 7.56 (d, *J* = 7.9 Hz, 2H), 7.41 (d, *J* = 7.7 Hz, 2H), 7.26-7.09 (m, 5H), 6.41 (bs, 1H), 5.56 (d, *J* = 5.9 Hz, 1H), 5.42 (d, *J* = 13.7 Hz, 1H), 5.24 (p, *J* = 6.3 Hz, 1H), 5.18 (d, *J* = 13.5 Hz, 1H), 5.11 (s, 2H), 4.15-4.12 (m, 1H), 3.98 (d, *J* = 8.9 Hz, 1H), 3.33-3.32 (m, 1H), 3.26-3.22 (m, 2H), 3.18-3.11 (m, 1H), 3.08-2.98 (m, 2H), 2.92-2.83 (m, 2H), 2.31-2.23 (m, 2H), 1.77-1.74 (m, 2H), 1.28 (d, *J* = 6.2 Hz, 6H), 1.13 (d, *J* = 6.8 Hz, 3H). ¹³C NMR (126 MHz, CDCl₃): δ 172.4, 172.3, 171.2, 160.5, 155.5, 152.6, 147.7 (2C) 143.9, 143.0, 139.1, 128.8 (2C), 128.7 (2C), 128.3 (2C), 128.1 (2C), 127.0, 123.8 (4C), 123.5, 68.0, 65.5, 65.4, 57.1, 56.3, 50.7, 43.4, 38.8, 36.3, 33.1, 31.8, 24.7, 19.1, 18.4, 16.8. HRMS (ESI): *m/z* calcd for C₄₀H₄₄N₅O₁₂S [M + H]⁺ 818.2701; found: 818.2697.

4-Nitrobenzyl (4*R*,5*S*)-6-((3*R*,6*S*,14*R*)-3,6-dimethyl-4,7,12-trioxo-2,13-dioxa-5,8-diaza pentadecan-14-yl)-4-methyl-7-oxo-3-(phenethylthio)-1-azabicyclo[3.2.0]hept-2-ene-2-carboxylate (27m)

Following the general procedure of esterification, carbapenem **2** (50 mg, 0.1 mmol) and compound **20** (104 mg, 0.4 mmol) were reacted in presence of EDC (306 mg, 1.6 mmol) and DMAP (12 mg, 0.09 mmol) to afford, after silica gel chromatography (cyclohexane:EtOAc 1:9), compound **27m** in a mixture with peptide **20** (25 mg, ratio: 0.72(**27m**):0.28(**20**); yield determined by NMR: 35%). The mixture was engaged without further purification.

4-Nitrobenzyl (4*R*,5*S*)-6-((3*S*,6*R*,9*R*,14*R*)-9-carbamoyl-3,6-dimethyl-4,7,12-trioxo-2,13dioxa-5,8-diazapentadecan-14-yl)-4-methyl-7-oxo-3-(phenethylthio)-1-azabicyclo[3.2.0] hept-2-ene-2-carboxylate (27n)

Following the general procedure of esterification, carbapenem **2** (50 mg, 0.1 mmol) and compound **26** (121 mg, 0.4 mmol) were reacted in presence of EDC (306 mg, 1.6 mmol) and DMAP (12 mg, 0.09 mmol) to afford compound **27n** as a yellowish foam (67 mg, 87%) after silica gel chromatography purification (DCM:MeOH 95:5). Completion of esterification was observed after 20 hours of reaction. ¹H NMR (500 MHz, CDCl₃): δ 8.13 (d, *J* = 8.7 Hz, 2H), 7.56 (d, *J* = 8.5 Hz, 2H), 7.29-7.10 (m, 5H), 7.04 (d, *J* = 7.1 Hz, 1H), 6.72 (bs, 1H), 5.83 (bs, 1H), 5.41 (d, *J* = 13.9 Hz, 1H), 5.24-5.15 (m, 3H), 4.49-4.32 (m, 2H), 3.94 (dd, *J* = 9.1, 2.6 Hz, 1H), 3.67 (q, *J* = 6.8 Hz, 1H), 3.38 (dd, *J* = 6.9, 2.6 Hz, 1H), 3.30 (s, 3H), 3.27-3.20 (m, 1H), 1.34-1.31 (m, 6H), 1.26 (d, *J* = 6.6 Hz, 3H), 1.14 (d, *J* = 7.3 Hz, 3H). ¹³C NMR (126 MHz, CDCl₃): δ 173.8, 173.6, 172.5, 172.3, 171.2, 160.4, 153.0, 147.7, 143.1, 139.2, 128.9 (2C), 128.7 (2C), 128.3 (2C), 127.0, 123.8 (2C), 123.3, 77.9, 68.6, 65.4, 57.4, 56.8, 56.4, 52.0, 48.9, 43.4, 36.2, 33.1, 30.7, 27.4, 18.3, 18.1, 17.8, 16.8. HRMS (ESI): *m*/*z* calcd for C₃₇H₄₆N₅O₁₁S [M + H]⁺ 768.2909; found: 768.2909.

2-3. Synthesis of peptido-carbapenems 28a-n

General procedure for final carbapenem deprotection: The corresponding carbapenem derivative (1 equiv.) was treated with Pt/C 10% wt. (1 equiv. mass.) in a mixture of THF:triethylammonium bicarbonate buffer (1 M, pH = 8.5) (2:1) and the reaction mixture was hydrogenated under 3.5 bars for 2 hours at room temperature using the PARR apparatus. The crude mixture was filtered through a celite pack to remove the catalyst. THF was removed under reduced pressure, and H₂O was added. The crude mixture were purified using a HPLC system with a reverse phase C18 column (Agilent, 250 mm x 21.2 mm, 5 μ m) using a solvent system consisting of H₂O and acetonitrile (linear gradient, 0 to 100% over 45 minutes) and the selected fractions were collected and lyophilized to afford the corresponding deprotected carbapenem derivative.

(4*R*,5*S*)-6-((*R*)-1-(2-Ammonioacetoxy)ethyl)-4-methyl-7-oxo-3-(phenethylthio)-1-aza bicyclo[3.2.0]hept-2-ene-2-carboxylate (28a)

28a

Following the general procedure of deprotection, treating carbapenem **27a** (55 mg, 0.08 mmol) with Pt/C (55 mg, 1 equiv. mass.) afforded compound **28a** as a white foam (6.5 mg, 21%) after HPLC purification. ¹H NMR (500 MHz, D₂O): δ 7.45-7.33 (m, 5H), 5.50-5.46 (m, 1H), 4.06-3.93 (m, 3H), 3.63 (dd, *J* = 4.0, 2.6 Hz, 1H), 3.27-3.16 (m, 2H), 3.08-3.01 (m, 2H), 3.01-2.92 (m, 1H), 1.40 (d, *J* = 6.5 Hz, 3H), 1.13 (d, *J* = 7.2 Hz, 3H). HRMS (ESI): *m/z* calcd for C₂₀H₂₅N₂O₅S [M + H]⁺ 405.1478; found 405.1471. HPLC purity: 95.2%. HPLC retention time: 18.6 min.

(4*R*,5*S*,6*S*)-6-((*R*)-1-((Acetylglycyl)oxy)ethyl)-4-methyl-7-oxo-3-(phenethylthio)-1azabicyclo[3.2.0]hept-2-ene-2-carboxylate (28b)

28b

Following the general procedure of deprotection, treating carbapenem **27b** (50 mg, 0.09 mmol) with Pt/C (50 mg, 1 equiv. mass.) afforded compound **28b** as a white foam (12.3 mg, 26%) after HPLC purification. ¹H NMR (500 MHz, D₂O): δ 7.46-7.32 (m, 5H), 5.35 (q, *J* = 9.0, 6.1 Hz, 1H), 4.14-3.98 (m, 2H), 3.87 (d, *J* = 8.8 Hz, 1H), 3.58 (d, *J* = 4.7 Hz, 1H), 3.24 (q, *J* = 7.3 Hz, 6H), 3.22-2.88 (m, 5H), 2.12 (s, 3H), 1.39 (s, 3H), 1.33 (td, *J* = 7.4, 1.0 Hz, 9H), 1.13 (d, *J* = 6.8 Hz, 3H). HRMS (ESI): *m*/*z* calcd for C₂₂H₂₆N₂NaO₆S [M + Na]⁺ 469.1404; found: 469.1393. HPLC purity: 90.4%. HPLC retention time: 19.9 min.

(4*R*,5*S*)-6-((*R*)-1-((3-Ammoniopropanoyl)oxy)ethyl)-4-methyl-7-oxo-3-(phenethylthio)-1azabicyclo[3.2.0]hept-2-ene-2-carboxylate (28c)

28c

Following the general procedure of deprotection, treating carbapenem **27c** (70 mg, 0.1 mmol) with Pt/C (70 mg, 1 equiv. mass.) afforded compound **28c** as a white foam (2.4 mg, 6%) after HPLC purification. ¹H NMR (**500 MHz, D₂O**): δ 7.43-7.33 (m, 5H), 5.42-5.37 (m, 1H), 3.93 (dd, *J* = 8.9, 2.4 Hz, 1H), 3.63-3.58 (m, 1H), 3.36 (t, *J* = 6.5 Hz, 2H), 3.25-3.16 (m, 2H), 3.09-3.05 (m, 2H), 3.01-2.85 (m, 3H), 1.37 (d, *J* = 6.4 Hz, 3H), 1.12 (d, *J* = 7.3 Hz, 3H). HRMS (ESI): *m*/*z* calcd for C₂₁H₂₇N₂O₅S [M + H]⁺ 419.1635; found: 419.1641. HPLC purity: 99.6%. HPLC retention time: 19.4 min.

(4*R*,5*S*,6*S*)-6-((*R*)-1-((3-Acetamidopropanoyl)oxy)ethyl)-4-methyl-7-oxo-3-(phenethylthio)-1-azabicyclo[3.2.0]hept-2-ene-2-carboxylic acid (28d)

Following the general procedure of deprotection, treating carbapenem **27d** (50 mg, 0.09 mmol) with Pt/C (50 mg, 1 equiv. mass.) afforded compound **28d** as a white foam (19 mg, 40%) after HPLC purification. ¹H NMR (500 MHz, D₂O): δ 7.45-7.31 (m, 5H), 5.40-5.26 (m, 1H), 3.85 (d, *J* = 8.7 Hz, 1H), 3.60-3.46 (m, 3H), 3.24 (q, *J* = 7.3 Hz, 6H), 3.22 -3.02 (m, 4H), 2.97 (q, *J* = 16.6, 12.5 Hz, 1H), 2.71 (bs, 2H), 2.02 (s, 3H), 1.35 (d, *J* = 12.5 Hz, 3H), 1.32 (d, *J* = 7.3 Hz, 9H), 1.17-1.06 (m, 3H). HRMS (ESI): *m*/*z* calcd for C₂₃H₂₈N₂NaO₆S [M + H]⁺ 483.1560; found: 483.1547. HPLC purity: 87.7%. HPLC retention time: 20.3 min.

(4*R*,5*S*)-6-((*R*)-1-((4-Ammoniobutanoyl)oxy)ethyl)-4-methyl-7-oxo-3-(phenethylthio)-1azabicyclo[3.2.0]hept-2-ene-2-carboxylate (28e)

Following the general procedure of deprotection, treating carbapenem **27e** (40 mg, 0.05 mmol) with Pt/C (40 mg, 1 equiv. mass.) afforded compound **28e** as a white foam (8.7 mg, 40%) after HPLC purification. **NMR (500 MHz, D₂O):** δ 7.43-7.33 (m, 5H), 5.39-5.34 (m, 1H), 3.92 (dd, *J* = 8.8, 2.3 Hz, 1H), 3.59-3.58 (t, *J* = 3.2 Hz, 1H), 3.27-3.14 (m, 2H), 3.08-3.02 (m, 4H), 2.99-2.93 (m, 1H), 2.70-2.64 (m, 1H), 2.58-2.52 (m, 1H), 2.08-2.02 (m, 2H), 1.35 (d, *J* = 6.4 Hz, 3H), 1.12 (d, *J* = 7.2 Hz, 3H). **HRMS (ESI):** *m*/*z* calcd for C₂₂H₂₉N₂O₅S [M + H]⁺ 433.1791; found: 433.1796. **HPLC purity:** 99.7%. **HPLC retention time:** 19.2 min.

(4*R*,5*S*,6*S*)-6-((*R*)-1-((5-Ammoniopentanoyl)oxy)ethyl)-4-methyl-7-oxo-3-(phenethylthio)-1-azabicyclo[3.2.0]hept-2-ene-2-carboxylate (28f)

Following the general procedure of deprotection, treating carbapenem **27f** (50 mg, 0.07 mmol) with Pt/C (50 mg, 1 equiv. mass.) afforded compound **28f** as a white foam (1.7 mg, 6%) after HPLC purification. ¹H NMR (500 MHz, D₂O): δ 7.43-7.34 (m, 5H), 5.39-5.34 (m, 1H), 3.93-3.89 (m, 1H), 3.58 (t, *J* = 2.9 Hz, 1H), 3.23-3.19 (m, 1H), 3.17-3.14 (m, 1H), 3.10-3.03 (m, 4H), 3.00-2.94 (m, 1H), 2.60-2.55 (m, 1H), 2.53-2.46 (m, 1H), 1.79-1.70 (m, 4H), 1.33 (d, *J* = 6.3 Hz, 3H), 1.12 (d, *J* = 7.2 Hz, 3H). HRMS (ESI): *m*/*z* calcd for C₂₃H₃₁N₂O₅S [M + H]⁺ 447.1948; found: 447.1952. HPLC purity: 98.9%. HPLC retention time: 19.6 min.

(4*R*,5*S*,6*S*)-6-((*R*)-1-((6-Ammoniohexanoyl)oxy)ethyl)-4-methyl-7-oxo-3-(phenethylthio)-1-azabicyclo[3.2.0]hept-2-ene-2-carboxylate (28g)

Following the general procedure of deprotection, treating carbapenem **27g** (50 mg, 0.07 mmol) with Pt/C (50 mg, 1 equiv. mass.) afforded compound **28g** as a white foam (4.6 mg, 17%) after HPLC purification. ¹H NMR (500 MHz, D₂O): δ 7.46-7.33 (m, 5H), 5.37-5.32 (m, 1H), 3.91 (dd, *J* = 8.9, 2.6 Hz, 1H), 3.59 (t, *J* = 2.7, 1H), 3.27-3.19 (m, 1H), 3.17-3.09 (m, 2H), 3.09-3.03 (m, 3H), 3.01-2.93 (m, 1H), 2.59-2.53 (m, 1H), 2.52-2.44 (m, 1H), 1.74 (p, *J* = 7.4 Hz, 4H), 1.47-1.42 (m, 2H), 1.35 (d, *J* = 6.3 Hz, 3H), 1.13 (d, *J* = 7.2 Hz, 3H). HRMS (ESI): *m*/*z* calcd for C₂₄H₃₃N₂O₅S [M + H]⁺ 461.2105; found: 461.2096. HPLC purity: 99.4%. HPLC retention time: 20.2 min.
(4*R*,5*S*)-6-((*R*)-1-(((*S*)-2-Ammoniopropanoyl)oxy)ethyl)-4-methyl-7-oxo-3-(phenethyl thio)-1-azabicyclo[3.2.0]hept-2-ene-2-carboxylate (28h)

28h

Following the general procedure of deprotection, treating carbapenem **27h** (74 mg, 0.1 mmol) with Pt/C (74 mg, 1 equiv. mass.) afforded compound **28h** as a white foam (3.3 mg, 8%) after HPLC purification. ¹H NMR (**500 MHz, D₂O)**: δ 7.43-7.33 (m, 5H), 5.46 (p, *J* = 6.1 Hz, 1H), 4.30 (q, *J* = 6.8 Hz, 1H), 3.94 (d, *J* = 8.9 Hz, 1H), 3.63 (bs, 1H), 3.24-3.18 (m, 2H), 3.09-3.02 (m, 2H), 2.99-2.93 (m, 1H), 1.64 (d, *J* = 6.9 Hz, 3H), 1.40 (d, *J* = 6.1 Hz, 3H), 1.13 (d, *J* = 7.1 Hz, 3H). HRMS (ESI): *m*/*z* calcd for C₂₁H₂₇N₂O₅S [M + H]⁺ 419.1635; found: 419.1629. HPLC purity: 98.2%. HPLC retention time: 19.0 min.

(4*R*,5*S*,6*S*)-6-((*R*)-1-(((*S*)-2,6-Diammoniohexanoyl)oxy)ethyl)-4-methyl-7-oxo-3-(phenethylthio)-1-azabicyclo[3.2.0]hept-2-ene-2-carboxylate (28i)

Following the general procedure of deprotection, treating carbapenem **27i** (83 mg, 0.09 mmol) with Pt/C (83 mg, 1 equiv. mass.) afforded compound **28i** as a white foam (3.8 mg, 9%) after HPLC purification. ¹H NMR (**500 MHz, D**₂**O**): δ 7.46-7.32 (m, 5H), 5.49-5.33 (m, 1H), 3.96 (dd, *J* = 9.0, 2.5 Hz, 1H), 3.76 (t, *J* = 6.4 Hz, 1H), 3.63 (t, *J* = 3.2 Hz, 1H), 3.27-3.13 (m, 2H), 3.12-3.02 (m, 4H), 3.01-2.95 (m, 1H), 1.92-1.80 (m, 2H), 1.77 (p, *J* = 7.5 Hz, 2H), 1.57-1.44 (m, 2H), 1.38 (d, *J* = 6.4 Hz, 3H), 1.14 (d, *J* = 7.3 Hz, 3H). HRMS (ESI): *m/z* calcd for C₂₄H₃₄N₃O₅S [M + H]⁺ 476.2214; found: 476.2203. HPLC purity: 92.7%. HPLC retention time: 17.9 min.

(4*R*,5*S*,6*S*)-6-((*R*)-1-(((*S*)-6-Acetamido-2-ammoniohexanoyl)oxy)ethyl)-4-methyl-7-oxo-3-(phenethylthio)-1-azabicyclo[3.2.0]hept-2-ene-2-carboxylate (28j)

Following the general procedure of deprotection, treating carbapenem **27j** (50 mg, 0.06 mmol) with Pt/C (50 mg, 1 equiv. mass.) afforded compound **28j** as a white foam (9.7 mg, 32%) after HPLC purification. ¹H NMR (500 MHz, D₂O): δ 7.45-7.29 (m, 5H), 5.50-5.46 (m, 1H), 4.22 (t, *J* = 6.4 Hz, 1H), 3.93 (dd, *J* = 9.1, 2.4 Hz, 1H), 3.63 (t, *J* = 3.2 Hz, 1H), 3.23-3.13 (m, 4H), 3.09-3.01 (m, 2H), 3.00-2.93 (m, 1H), 2.09-1.95 (m, 5H), 1.70-1.60 (m, 2H), 1.60-1.51 (m, 1H), 1.50 (d, *J* = 7.1 Hz, 1H), 1.41 (d, *J* = 6.4 Hz, 3H), 1.13 (d, *J* = 7.4 Hz, 3H). HRMS (ESI): *m*/*z* calcd for C₂₆H₃₆N₃O₆S [M + H]⁺ 518.2319; found: 518.2310. HPLC purity: 97.2%. HPLC retention time: 18.8 min.

(4*R*,5*S*)-6-((*R*)-1-(((*R*)-5-Amino-4-ammonio-5-oxopentanoyl)oxy)ethyl)-4-methyl-7-oxo-3-(phenethylthio)-1-azabicyclo[3.2.0]hept-2-ene-2-carboxylate (28k)

Following the general procedure of deprotection, treating carbapenem **27k** (40 mg, 0.05 mmol) with Pt/C (40 mg, 1 equiv. mass.) afforded compound **28k** as a white foam (3.4 mg, 14%) after HPLC purification. ¹H NMR (**500 MHz, D**₂O): δ 7.43-7.32 (m, 5H), 5.51-5.46 (m, 1H), 4.26 (t, *J* = 6.4 Hz, 1H), 3.87 (dd, *J* = 9.0, 2.4 Hz, 1H), 3.66-3.62 (m, 1H), 3.22-3.17 (m, 1H), 3.14-3.02 (m, 3H), 2.98-2.94 (m, 1H), 2.58 (t, *J* = 7.6 Hz, 2H), 2.28 (q, *J* = 7.2 Hz, 2H), 1.40 (d, *J* = 6.4 Hz, 3H), 1.12 (d, *J* = 7.2 Hz, 3H). HRMS (ESI): *m*/*z* calcd for C₂₃H₃₀N₃O₆S [M + H]⁺ 476.1849; found: 476.1844. HPLC purity: 91.5%. HPLC retention time: 18.5 min.

(4*R*,5*S*)-6-((*R*)-1-((4-((S)-2-Ammoniopropanamido)butanoyl)oxy)ethyl)-4-methyl-7-oxo-3-(phenethylthio)-1-azabicyclo[3.2.0]hept-2-ene-2-carboxylate (28l)

Following the general procedure of deprotection, treating carbapenem **271** (110 mg, 0.13 mmol) with Pt/C (110 mg, 1 equiv. mass.) afforded compound **281** as a white foam (10.1 mg, 15%) after HPLC purification. ¹H NMR (**500 MHz, D₂O)**: δ 7.42-7.32 (m, 5H), 5.38-5.29 (m, 1H), 4.06 (q, *J* = 7.0 Hz, 1H), 3.83 (dd, *J* = 8.9, 2.3 Hz, 1H), 3.58-3.52 (m, 1H), 3.39-3.24 (m, 2H), 3.24-3.15 (m, 1H), 3.14-3.00 (m, 3H), 3.00-2.91 (m, 1H), 2.58-2.44 (m, 2H), 1.96-1.85 (m, 2H), 1.54 (d, *J* = 7.1 Hz, 3H), 1.34 (d, *J* = 6.4 Hz, 3H), 1.10 (d, *J* = 7.2 Hz, 3H). HRMS (ESI): *m*/*z* calcd for C₂₅H₃₄N₃O₆S [M + H]⁺ 504.2162; found: 504.2164. HPLC purity: 97.9%. HPLC retention time: 19.4 min.

(4*R*,5*S*)-6-((3*R*,6*S*,14*R*)-3,6-Dimethyl-4,7,12-trioxo-2,13-dioxa-5,8-diazapentadecan-14-yl)-4-methyl-7-oxo-3-(phenethylthio)-1-azabicyclo[3.2.0]hept-2-ene-2-carboxylic acid (28m)

Following the general procedure of deprotection, treating the mixture of **27m:20** (25 mg, with 18 mg of **27m**) with Pt/C (18 mg, 1 equiv. mass.) afforded compound **28m** as a white foam (3.9 mg, 31%) after HPLC purification. ¹H NMR (**500 MHz, D**₂**O**): δ 7.42-7.32 (m, 5H), 5.31 (p, *J* = 6.3 Hz, 1H), 4.33 (q, *J* = 7.1 Hz, 1H), 3.95 (q, *J* = 6.8 Hz, 1H), 3.82 (dd, *J* = 9.1, 2.5 Hz, 1H), 3.56 (dd, *J* = 5.0, 2.5 Hz, 1H), 3.39 (s, 3H), 3.37-3.32 (m, 2H), 3.27-3.22 (m, 2H), 3.15-3.09 (m, 2H), 3.01-2.91 (m, 1H), 2.50-2.46 (m, 2H), 1.88 (p, *J* = 7.2 Hz, 2H), 1.43 (d, *J* = 7.2 Hz, 3H), 1.37 (d, *J* = 6.7 Hz, 3H), 1.35 (d, *J* = 6.4 Hz, 3H), 1.11 (d, *J* = 7.2 Hz, 3H). HRMS (ESI): *m*/*z* calcd for C₂₉H₄₀N₃O₈S [M + H]⁺ 590.2530; found: 590.2531. HPLC purity: 93.7%. HPLC retention time: 21.0 min.

(4*R*,5*S*)-6-((3*R*,6*S*,9*R*,14*R*)-9-Carbamoyl-3,6-dimethyl-4,7,12-trioxo-2,13-dioxa-5,8-diaza pentadecan-14-yl)-4-methyl-7-oxo-3-(phenethylthio)-1-azabicyclo[3.2.0]hept-2-ene-2-carboxylic acid (28n)

Following the general procedure of deprotection, treating the mixture of **27n** (65 mg, 0.09 mmol) with Pt/C (65 mg, 1 equiv. mass.) afforded compound **28n** as a white foam (11.3 mg, 21%) after HPLC purification. ¹H NMR (**500 MHz, D**₂O): δ 7.42-7.31 (m, 5H), 5.31 (p, *J* = 6.2 Hz, 1H), 4.41-4.34 (m, 2H), 3.95 (q, *J* = 6.8 Hz, 1H), 3.85 (dd, *J* = 8.9, 2.5 Hz, 1H), 3.57 (dd, *J* = 5.1, 2.5 Hz, 1H), 3.38 (s, 3H), 3.22-3.14 (m, 2H), 3.11-3.06 (m, 2H), 3.00-2.92 (m, 1H), 2.65-2.49 (m, 2H), 2.34-2.25 (m, 1H), 2.06-1.99 (m, 1H), 1.47 (d, *J* = 7.2 Hz, 3H), 1.36 (d, *J* = 6.3, 3H), 1.35 (d, *J* = 5.3 Hz, 3H), 1.12 (d, *J* = 7.2 Hz, 3H). HRMS (ESI): *m/z* calcd for C₃₀H₄₁N₄O₉S [M + H]⁺ 633.2588; found: 633.2587. HPLC purity: 98.4%. HPLC retention time: 20.1 min.

3. Acylation of 2' and compounds 28a-n monitored by MS

In a 1.5 mL Eppendorf, 1.0 μ L of 1.0 M ammonium acetate (pH = 7.4), 10.0 μ L of 1.0 mM **2'** or **28a-n** (C_f = 500 μ M), 1.55 μ L of 646 μ M Ldt_{fm} (dom II) (C_f = 50 μ M) and 7.45 μ L of H₂O were mixed. After 1 minute of incubation at 25 °C, the mixture was diluted 1/10 (5 μ M of Ldt_{fm}). 2.5 μ L of this diluted solution was injected in mass spectroscopy (flowrate 10 μ L.min⁻¹ in 50% ACN + 0.1% acetic acid).

4. Enzymatic studies

Determination of kinetic constants for inactivation of Ldt_fm. Acylation of Ldt_fm (10 $\mu M)$ by various concentrations (50 to 300 µM) of meropenem or peptido-carbapenem was detected by stopped-flow spectrofluorimetry at 20 °C in 100 mM phosphate buffer (pH = 6.0), using a stopped-flow apparatus (RX-2000, Applied Biophysics) coupled to a spectrofluorimeter (Cary Eclipse; Varian). At least three concentrations were used for each carbapenem. Excitation was performed at 224 nm with a 5 nm slit and a 2 mm optical path. Fluorescence emission was determined at 335 nm with a 5 nm slit and a 10 mm optical path. Excitation was performed at 224 nm to avoid any confusing effect arising from the decrease in the absorbance at the usual excitation wavelength of 284 nm caused by β -lactam ring opening. Kinetics were recorded for 2 minutes. The reaction was completed in less than 10 seconds. Kinetic constants k_1, k_{-1} , and k_2 were determined by simultaneously fitting differential equations to the kinetics obtained with a minimum of three concentrations of carbapenems using the DynaFit software (BioKin Ltd).^[10] The differential equations were $d[E]/dt = -k_1 [E][C] + k_1 [E_{anh}]; d[E_{anh}]/dt = k_1$ [E][C]- k_2 [E_{anh}]; d[EI*]/dt = k_2 [E_{anh}] according to the reaction pass appearing in Scheme 5 of the main text in which [E], [E_{anh}], and [EI*] are the concentrations of apo Ldt_{fm}, amine anion intermediate, and acylenzyme, respectively. The fluorescence of the sample was considered to be additively contributed by the fluorescence of [E], [E_{anh}], and [EI*] according to relative fluorescence intensities that were introduced as variables in the DynaFit software.

5. References

[1] T. J. Kop, J. Đorđević, M. S. Bjelaković, D. R. Milić, *Tetrahedron* 2017, 73, 7073–7078.

[2] A. Martínez de Ilarduya, N. Ittobane, M. Bermúdez, A. Alla, M. El Idrissi, S. Muñoz-Guerra, *Biomacromolecules* **2002**, *3*, 1078–1086.

- [3] S. S. More, R. Vince, J. Med. Chem. 2009, 52, 4650-4656.
- [4] L. Iannazzo, D. Soroka, S. Triboulet, M. Fonvielle, F. Compain, V. Dubée, J. L. Mainardi,

J. E. Hugonnet, E. Braud, M. Arthur, M. Etheve-Quelquejeu, J. Med. Chem. 2016, 59, 3427–3438.

- [5] H. R. Josephine, I. Kumar, R. F. Pratt, J. Am. Chem. Soc. 2004, 126, 8122-8123.
- [6] H. R. Kricheldorf, G. Schwarz, J. Kaschig, Angew. Chem. Int. Ed. 1977, 16, 550–552.
- [7] C. M. Pavlik, C. Y. B. Wong, S. Ononye, D. D. Lopez, N. Engene, K. L. McPhail, W. H. Gerwick, M. J. Balunas, J. Nat. Prod. 2013, 76, 2026–2033.
- [8] D. T. Gish, F. H. Carpenter, J. Am. Chem. Soc. 1953, 75, 950–952.
- [9] S. B. Singh, D. Rindgen, P. Bradley, T. Suzuki, N. Wang, H. Wu, B. Zhang, L. Wang, C. Ji, H. Yu, R. M. Soll, D. B. Olsen, P. T. Meinke, D. A. Nicoll-Griffith, *J. Med. Chem.* 2014, 57, 8421–8444.
- [10] P. Kuzmic, Methods Enzymol. 2009, 467, 247-280.

6. Analytical HPLC spectra of compounds 2' and 28a-n.

Analytical HPLC was performed on a Vydac C_{18} (250 mm x 4.6 mm, 5 µm). Detection at 299 nm, flow 1.3 mL.min⁻¹. **Solvent A:** H₂O + 0.1% TFA; **Solvent B:** ACN + 0.1% TFA. Gradient 0 to 100% of Solvent B over 45 minutes.

۲¹.25 ין 36 רן 57 רן 57 רן 31 12.11 ٤<u>۲</u>.۲3 ליבט ליבט 92'ר 4'43 4'44 94'44 74.45

2.27 2.29 2.23 2.33 2.23 2.23 7.36 7.36 7.36 0

0=

88.1 88.1 50.1 88.1 78.1 68.r · 68.r 20.1-10.1-00.1-2.14 2.14 2.15 912 212 212 212 212 212 212 212 -2.34 -2.37 3.31 CD3OD -3.32 57.E-37.E 92.6~ 77.6-77.6-4.33 ~4.33 4.34 -4'32 4.35

7-2. ¹H and ¹³C NMR spectra of protected peptido-carbapenems 27a-n.

Γ'n

21.8-21.8-

S106

വ

<u>о</u>

S107

S109

Γui

S114

S124

S130