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Abstract

We present a simple and efficient method for computing single and double ionization cross sec-

tions in ion-atom and ion-molecule collisions using L2 Gaussian basis sets. Gaussian functions are

widely employed to compute bound states of ions, atoms and molecules. However, the description

of continuum states, and therefore ionization phenomena, remains a theoretical challenge. Our

approach is tested on the benchmark system antiproton-helium collisions in the so-called inter-

mediate energy range. A good agreement with numerically exact calculations is observed. The

proposed method is general and can thus be employed in any collisional systems in the challenging

non-perturbative regime. Our work opens the way to investigate multiple ionization processes by

ion impact in multi-center poly-electronic systems.
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I. INTRODUCTION

Since the pioneer work of Boys and coworkers [1] Gaussian functions are widely used in

electronic structure calculations. Although they cannot reproduce the cusp at the nucleus of

the true eigenstates [2], they provide a fairly good description of bound states and allow the

efficient computation of integrals [3]. Gaussian functions, also called Gaussian type orbitals

(GTOs), are therefore used in most quantum chemistry packages (see e.g. the special issue

in [4]).

Because GTOs are square-integrable L2 functions they cannot describe the exact bound-

ary conditions of continuum states. Although there have been large efforts to find optimal

GTOs to approximate these states [5–9] or to provide corrections to the GTOs finite bound-

ary conditions (see e.g. [10–14]), it is still challenging to describe molecular states above the

ionization thresholds.

An accurate description of continuum states is of particular relevance to describe ioniza-

tion processes. In this work, we are interested in single and double ionization phenomena

in ion-atom and ion-molecule collisions in the so-called intermediate energy range. In the

context of these collisions, GTOs have been widely employed to describe bound-bound tran-

sitions (i.e. charge transfer and excitation) (see for example [15–21] and references therein).

Ionization processes have also been considered but with less success. Using GTOs, the

continuum states are approximated by the pseudo continuum states with energy above the

ionization thresholds obtained by the diagonalization of the electronic Hamiltonian within

the basis set. Single ionization cross sections have thus been rather accurately computed for

small systems (mostly one-active electron atomic systems). Computing these cross sections

for larger systems and considering multiple ionization processes remain, however, challenging

and relevant tasks. In this work, we report on a simple and efficient approach for computing

single and double ionization cross sections in ion-atom and ion-molecule collisions in the

non-perturbative regime using GTOs. Using unsupervised machine learning classification

techniques combined with pertinent properties of the pseudo continuum states, we sort these

states into single and double electron continuum states. While we test this approach with

the benchmark antiproton-helium collisional system, our proposed method can straightfor-

wardly be applied to multicenter and polyelectronic systems.

The present paper is organized as follows. In the next section we outline the methods and
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computational details employed to compute the total and state-resolved single ionization

and total double ionization cross sections. The results of the clustering analysis used to

classify the pseudo continuum states into single and double electron continuum states are

then reported (section III A). In section III B and III C, we present and discuss the single

and double ionization cross sections in antiproton-helium collisions, respectively. They are

followed by the conclusions in section IV. Atomic units are used throughout, unless explicitly

indicated otherwise.

II. METHODS AND COMPUTATIONAL DETAILS

We use the well established straight-line impact parameter method (see [22, 23] and

references therein) in which the nuclei follow classical trajectories while a quantum treatment

describes the electronic dynamics. The position vector of the projectile relative to the target

is ~R(t) = ~b+~vt where ~b and ~v are the impact parameter and projectile velocity, respectively.

For a two-electron system, the time-dependent electronic Schrödinger equation reads[
He − i

∂

∂t

]
Ψ(~r1, ~r2, ~R(t)) = 0, (1)

where He is the electronic Hamiltonian,

He =
∑
i=1,2

(
− 1

2
O2

i + VT (~ri) + VP (~rpi )

)
+

1

|~r1 − ~r2|
, (2)

and ~ri, ~ri
p = ~ri − ~R(t) are the position vectors of the electrons with respect to the target

and the projectile respectively.

In our work, the electronic wavefunction is written as

Ψ(~r1, ~r2, t) =
N∑
k=1

ak(t)χk(~r1, ~r2)e
−iEkt (3)

where χk(~r1, ~r2) are singlet helium pseudo states and Ek the corresponding energies. These

states are obtained by diagonalization of the electronic Hamiltonian matrix which is built

using Slater determinants of Hartree-Fock (HF) orbitals. All configurations (i.e. HF ground

state, single and double excitations) are included. These full Configuration Interaction (CI)

calculations are performed using the CIPPRES [24] plugin of the QP2 quantum chemistry

package [25, 26].Note that in Eq. 3, a single generic index k is used. However, it may refer

to bound states as well as single and double electron pseudo continuum states (see below).
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The insertion of Eq. 3 into Eq. 1 results in a system of first-order coupled differential

equations, written in matrix form as,

i
d

dt
a(t) = M(~b,~v, t)a(t) (4)

In the above equation, a(t) is the column vector of the time-dependent expansion coefficients

and M is the coupling matrix. These equations are solved for a set of initial conditions (initial

state i, b and v) using the Adams-Bashforth-Moulton predictor-corrector integrator. The

probabilities of the transition i→ f for a given impact parameter and velocity read

Pi→f (b) = lim
t→∞
|af (t)|2. (5)

The cross section for a given electronic process is then calculated as

σf = 2π

∫ +∞

0

bPi→f (b)db. (6)

The cross sections for single and double ionization processes are obtained by plugging in

the above equations (Eqs. 5 and 6) the expansion coefficients af (t) (Eq. 3) corresponding to

single and double electron pseudo continuum states. The procedure to separate these two

kinds of states is discussed below.

In our computations, we used even-tempered Gaussian basis sets [27]: the Gaussian

exponents αp are expressed as a geometric sequence according to αp = αβ1−p (p = 1, 2, ...).

Three different basis sets (namely 12s9p6d3f1g, 13s10p7d4f and 14s11p7d4f) have been used

in order to evaluate the convergence of the cross sections. We report below the mean and

standard deviation values of the set of cross sections obtained with these basis sets (the cross

sections obtained with each individual basis set are given in the supplementary materials).

The notation 12s9p6d for example indicates that 12 Gaussian functions s (`=0), 9 functions

p (`=1) and 3 functions d (`=2) were included in the basis set. In our calculations, the

lowest and largest values of α were fixed, respectively, at 0.001 and 400 for s functions, and

0.001 and 40 for higher angular momentum functions. The parameter β was then chosen to

reproduce the geometric sequence for a given number of functions. Depending on the basis

set, between 9800 and 12 000 configurations are thus used to describe the pseudo states.

After full diagonalization of the Hamiltonian matrix, pseudo states with energy up to 5 a.u.

are kept in the close-coupling expansion (i.e. between 3000 and 5000 states).

The pseudo states of helium can be grouped into three classes: bound states which

describe elastic and excitation processes, single and double electron pseudo continuum states
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used to model single and double ionization phenomena, respectively. The first class of states

have energy below the lowest ionization potential of the system (i.e. -2.0 a.u. for helium)

and can thus be clearly identified. States with higher energies are pseudo continuum states

because Gaussian functions do not have the correct outgoing-wave boundary conditions.

Pseudo states with energy between the lowest ionization threshold and the double ionization

one can be considered as single electron continuum states. Note that for these pseudo

states, the cationic states of the remaining bound electron cannot be clearly defined because

it should involve the true continuum of the cationic channels. Furthermore, above the

double ionization threshold a distinction between single and double electron continuum

states cannot be rigorously made. We propose below a ad hoc procedure to i) obtain the

states of the remaining cation after single ionization, allowing thus to compute state-resolved

excitation-ionization cross sections and ii) to separate single and double electron continuum

states.

To sort the pseudo continuum states into single and double electron continuum states,

one needs to find some properties, so-called features below, that are different for the two

kind of states. The choice of suitable features is a difficult task of any machine learning

algorithm and has thus fed the literature for the last two decades [28]. In this work, we use

two features for each pseudo continuum state: the sum of the norm of the Dyson orbitals and

the electron-electron repulsion energy. Hereafter, we use the notation SND for the former

and EER for the latter quantity. The SND for the state k is defined as

SNDk =
∑
j

∫
d~r |φkj(~r)|2. (7)

In this equation, φkj(~r) are the so-called Dyson orbitals,

φkj(~r) =

∫
d~r2χ

He+

j (~r2)χ
He
k (~r1, ~r2) (8)

and the sum j is performed over all bound states of He+. The EER for the state k is

computed as

EERk =

∫
d~r1d~r2χ

He
k (~r1, ~r2)

1

|~r1 − ~r2|
χHe
k (~r1, ~r2) (9)

While there is no rigourous justification for the use of these features, our results suggest

that they are relevant to sort the pseudo continuum states. Furthermore, their relevance in

sorting the states may be rationalized as follows: the SND of a true single electron continuum
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state should be one since one electron remains bound after the ionization process while for

a true double electron continuum state the SND should go to zero. The EER of both kinds

of true continuum states should be close to zero and this feature should not be relevant.

However, as shown and discussed below, in a finite basis set the EER of the double electron

pseudo continuum states are generally larger that those of single electron pseudo continuum

states. The use of the EER is therefore pertinent.

Using these features, we have performed a clustering analysis (see III A) to group the

pseudo continuum states into two ”clusters” corresponding to single and double electron

continuum states. K-means [29] and spectral clustering [30] approaches, which are two well-

established methods for unsupervised machine learning classification, have been employed.

Same clusters are obtained with both methods and only results from the K-means clus-

tering approach are reported below. These analysis have been done with the Scikit-learn

package [31].

The partial single ionization cross sections σ̃j (i.e. after the collision He+ is in the ground

or excited state j) are obtained as:

σ̃j =
∑
k

Pkj∑
j Pkj

σk (10)

where σk is the cross section of the pseudo continuum state k (classified as a single continuum

state in the clustering analysis) and Pkj is the norm of the Dyson orbital φkj. The total

double ionization cross sections are the sum of the cross sections of the pseudo continuum

states belonging to the double electron continuum cluster.

III. RESULTS AND DISCUSSIONS

A. Single versus double electron continuum states

Before reporting the single and double ionization cross sections in antiproton helium

collisions, we present the results of our approach to separate single and double electron

continuum states. The energy of the helium pseudo states obtained with the 12s9p6d3f1g

basis set are shown in Fig. 1. There are 43 bound states, 1351 states whose energies are

between -2.0 and 0.0 a.u. (i.e. assigned to single electron continuum states) and 989 states

with energies above the double ionization threshold. In order to illustrate the relevance of
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the SND and the EER as features for the clustering analysis, we plot them for every state

in Fig. 2: the bound states exhibit a SND close to 1 since the helium cation states (within

the basis set) represent a complete basis for the helium states. Except for the ground state

of helium, the EER of the bound states are small. The SND for the higher states with

energy below the double ionization threshold are also close to one. However, as the energy

of the states rises the SND decreases owing to the finite basis set. The states with energy

above 0 a.u. are the most interesting ones for our analysis. In order to separate these states

into two groups (i.e. single and double electron continuum states) we applied the K-means

clustering analysis as implemented in the Scikit-learn package. The results are shown in

Fig. 3: single electron continuum states present in general a SND close to 0.5 and small

EER, while the SND for the double electron continuum states are near zero and the EER

are larger. The latter observation might be counter-intuitive since two electrons in a real

continuum should have nearly zero electron-electron repulsion. However, owing to the finite

character of our basis set, the two electrons in the pseudo continuum are actually spatially

closer than when one electron is bound (i.e. close to the nuclei) and one is ”free”. Using

the results of this classification and the ad hoc procedure presented above, we compute the

state-resolved single ionization and the double ionization cross sections. Results are shown

and discussed hereafter.

The antiproton-helium collisional system is a prototype and has thus been widely inves-

tigated [32–40] (see also [41, 42] for recent reviews on antiproton collisions and [37] for a

detailed discussion on electron-electron correlation effects in the antiproton-helium system).

For this two-electron system, a full numerical solution can be performed as in [38]. In the

following, we use the results of [38] as references to compare with the total cross sections

computed within our L2 Gaussian basis set approach. Total single and double ionization

cross sections have also been measured, and computed with different approaches. The re-

sults of [38] agree well with the available measurements and a detailed comparison can be

found in [38]. To our knowledge, state-resolved single ionization cross sections have only

been reported in [43] and references therein. Note that these cross sections were computed

with perturbative approaches. We use the results of [43, 44] below for comparison.
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FIG. 1. The Helium pseudo energies obtained with the 12s9p6d3f1g basis set.

B. Single ionization cross sections

The mean total and state-resolved single ionization cross sections computed with our

three basis sets are shown in Fig. 4. The total cross sections thus obtained agree well with

the reference data of [38]. The corresponding standard deviations are fairly small, showing a

good convergence of the total cross sections with respect to the basis set. Our state-resolved

single ionization cross sections are in general larger than those reported in [43], especially

for the cross sections of ionization-excitation into He+(2p) (i.e. about a factor of 3 at the

lowest overlapping energy and up to an order of magnitude at higher energies). We mention

that in [43], the authors have employed the same perturbative method to compute the

state-resolved single ionization cross sections for proton and electron impact too. The cross

sections they obtained are overall smaller than the experimental ones (see [43] for a detailed

discussion on the possible reasons for such disagreement). The perturbative approach may

therefore underestimate the cross sections for antiproton collisions in the energy domain
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FIG. 2. Sum of the norm of the Dyson orbitals (SND) plotted as a function of the electron-electron

repulsion energy (EER) for every Helium states: red triangles are used for states with energy below

the lowest single ionization potential, blue diamonds represent the states with energy between -2.0

and 0.0 a.u. and green dots show the features for states with positive energy. These quantities are

reported in atomic units.

under consideration. On the other hand, owing to the use of pseudo continuum states in

our calculations the electronic correlation in the ionization-excitation processes may be too

large leading to an overestimation of the cross sections. Further experimental and theoretical

works are needed to conclude.
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FIG. 3. Sum of the norm of the Dyson orbitals (SND) plotted as a function of the electron-electron

repulsion energy (EER) for Helium states with positive energy: those identified as single and double

electron continuum states using the K-means clustering analysis are shown in red diamonds and

black dots, respectively. These quantities are reported in atomic units.

C. Double ionization cross sections

The total double ionization cross sections computed with our approach are shown with

the reference data of [38] in Fig. 5. For comparison, we report the cross sections obtained

after the clustering analysis (labeled as ”From analysis” in the figure) and the sum of the

cross sections over all pseudo continuum states of positive energies (”Upper limit” in the

figure). The latter represent an upper limit of the double ionization cross sections. The

difference between the ”Upper limit” and ”From analysis” cross sections thus represent the

single ionization cross sections of states having positive energies. Without the clustering

analysis, the double ionization cross sections are far too large because part of the single
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FIG. 4. Total and state-resolved single ionization cross sections. The reference calculations of [38]

and of [43, 44] are shown in full lines.

ionization cross sections are included. Furthermore, these upper limits depend strongly on

the basis sets as shown by the large standard deviations. The cross sections obtained after

the clustering analysis agree well with the reference results and depend less than the upper

limits on the basis sets. It is therefore clear that the clustering analysis is crucial to obtain

accurate double ionization cross sections.

IV. CONCLUSIONS

In this work, we have theoretically investigated single and double ionization processes in

antiproton-helium collisions in the non-perturbative regime. The impact parameter method

and a close-coupling approach using Gaussian-type orbitals are employed. Gaussian func-

tions are widely employed to compute bound states of ions, atoms and molecules. However,
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FIG. 5. Double ionization cross sections. The cross sections obtained after the clustering analysis

are labeled ”From analysis” while the sum of the cross sections over all pseudo continuum states

of positive energies are marked ”Upper limit”. The reference calculations of [38] are shown in full

black line.

the description of continuum states with such L2 functions, and therefore ionization phe-

nomena, remain a theoretical challenge. A simple and efficient method for computing single

and double ionization cross sections in ion-atom and ion-molecule collisions using these basis

sets is reported and tested. Good agreement with available reference data is observed.

Our proposed method has been tested on collisions with antiproton but it can straight-

forwardly be applied to other collision systems. The clustering analysis method reported

here is used to sort the pseudo continuum states into single and double electron continuum

states and can be employed to any systems. In many relevant ion-atom and ion-molecule

collisions, electron transfer can take place, which is not the case with the antiproton. In

our close-coupling expansion, the electron transfer channels can be accounted for thanks
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to the pseudo continuum states. As in any truncated expansion, convergence of the cross

sections with respect to the set of states must however be checked. Providing that conver-

gence is reached the overall approach presented here is general. Our results thus open the

way to investigate multiple ionization processes by ion impact in multi-center poly-electronic

systems.
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Quantum Chem. 116, 1120 (2016).

[9] A. P. Woźniak, M. Lesiuk, D. K. Efimov, M. Mandrysz, J. S. Prauzner-Bechcicki, M. Ciappina,

E. Pisanty, J. Zakrzewski, M. Lewenstein, and R. Moszyński, “A systematic construction of
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