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Abstract The Atomic Clock Ensemble in Space (ACES) is a fundamental physics mission of the 

European Space Agency (ESA) to be launched in August 2021.  It relies on a high-performance 

clock onboard the International Space Station (ISS), a network of high-performance clocks on 

ground, a dedicated two-way microwave link (MWL) enabling space-to-ground and ground-

to-ground clock comparisons, as well as an optical link (ELT). PHARAO/SHM (Projet d’Horloge 

Atomique par Refroidissement d’Atomes en Orbite/Space Hydrogen Maser), the clock 

onboard the ISS, has a relative frequency accuracy at the 10!"#	level, a relative frequency 

stability (Allan deviation) equal to 10!"$ √𝜏⁄  (𝜏 being the integration time in seconds) and a 

time deviation of 12 picoseconds after one day of integration.  The MWL is designed to reach 

a time deviation below 7 ps after one day of integration. While space-to-ground clock 

comparisons will enable precise tests of the gravitational redshift, tests of deviations from 

General Relativity at the 10!# level, and tests of local Lorentz invariance at the 10!"% level, 

ground-to-ground clock comparisons will enable a search of the time variation of 

fundamental constants with uncertainty at the 10!"& level after one year. In this contribution, 

we review the mission set up with a particular emphasis on the MWL, discuss the simulation 

and data analysis software developed to investigate mission performance, focusing on its 

primary scientific objective: the test of the gravitational redshift. 
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Introduction 

The Atomic Clock Ensemble in Space (ACES) project is a Centre National d’Exploration Spatiale 

(CNES) and European Space Agency (ESA) led mission aiming to perform time comparisons 

between a high-performance clock aboard the International Space Station (ISS), the Projet 

d’Horloge Atomique par Refroidissement d’Atomes en Orbite/Space Hydrogen Maser, 

PHARAO/SHM, (Laurent et al. 2006), and high-performance clocks on the ground, in order to 

carry out tests of fundamental physics such as the gravitational redshift, Lorentz invariance 

and the possible variation of the fine structure constant.  The launch is scheduled to occur in 

August 2021.  In this review of the ACES experiment, we focus on the measurement of the 

gravitational redshift and possible deviations from General Relativity (GR) using ACES, and on 

a description of the microwave link data processing software used to perform space-to-

ground time and frequency transfer.  One particularity of this mission, which should be noted, 

is that the MWL is an integral part of the measurement process. 

For ideal clocks, the fractional frequency difference between a clock on the ground 

and a clock in space is given by the difference in gravitational potential at the location of the 

clocks, and a second order Doppler effect, 
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Here 𝜏. and 𝜏-are the proper times of the emitting clock on the ground, 𝑔, and the receiving 

clock in space, 𝑠, respectively and 𝑡 is coordinate time. The quantity 𝑑𝜏 𝑑𝑡⁄  is equal to the 

fractional frequency shift Δ𝜈 𝜈⁄ .  The quantity 𝑈(𝑡, 𝑥⃗) is the Newtonian gravitational potential 

(with the convention that 𝑈(𝑡, 𝑥⃗) > 0) and gives rise to the gravitational redshift, and 

𝑣2(𝑡) 2𝑐2⁄ 	is the second order Doppler effect, evaluated at the location of the ground clock 

and clock in space in a non-rotating coordinate system.  The gravitational redshift for the ACES 

experiment is of order ∆𝑈 𝑐2~3.6 × 10!""⁄ .  Deviations from GR’s gravitational redshift 

formula can be introduced and tested for against the ACES data by including a multiplicative 

factor 1 + 𝛼 in the expression for ∆𝑈 𝑐2⁄  so that it becomes (1 + 𝛼)	∆𝑈 𝑐2⁄ .  If the value of 

𝛼 is found to significantly different from zero when confronting the data with the theoretical 

model, a deviation from GR is detected. 

The time scale of high stability and accuracy onboard the ISS uses a unique cold-atom 

space clock (PHARAO) developed by CNES in collaboration with the Laboratoire National de 
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Métrologie et d’Essais-Système de Référence Temps-Espace (LNE-SYRTE) and an SHM.  The 

time and frequency comparisons with an international network of ground clocks will be made 

possible by a MWL and optical links (the European Laser Timing, ELT).  The level of precision 

with which tests of fundamental physics will be performed will be limited by the performance 

of the clocks and by the MWL and ELT links.  The Allan deviation of the clock ensemble will be 

of the order 10!"$ √𝜏⁄ , where t is integration time, which corresponds to 3 × 10!"# after 

one day of integration and the time deviation will be of order 4 × 10!"3√𝜏, corresponding to 

12 ps after one day of integration.  The fractional frequency accuracy will be of the order 

10!"#.  The ACES MWL is designed to exceed the long-term stability of PHARAO/SHM by a 

factor 3. The expected gravitational frequency shift between ground segment (GS) clocks and 

PHARAO/SHM for an ISS orbit of altitude 400 km is of order 3.6 × 10!"".  The performance 

of the ACES experiment should, therefore, allow a test of the gravitational redshift at the level 

of a few parts in 10#.  The flight segment of the MWL is currently being tested on ground in 

end-to-end configurations with the MWL ground terminals while tests of the clock ensemble 

PHARAO/SHM on ground give an Allan deviation of order 3 × 10!"$ √𝜏⁄  (Cacciapuoti et al., 

2020). 

 

PHARAO and SHM 

The ACES mission is a unique opportunity to take advantage of advances in atomic clock 

performance made in the past two decades in order to perform worldwide clock 

comparisons and allow improved tests of fundamental laws such as GR.  In ACES, the clock 

ensemble aboard the ISS is the combination of PHARAO, and SHM (Laurent et al. 2006).  

PHARAO is a laser-cooled Cesium clock.  The main sources of frequency shifts of PHARAO 

are the collisions between cold atoms and the first-order Doppler effect.  A short-term servo 

loop steers PHARAO’s local oscillator towards the clock signal of SHM with a typical time 

constant of a few seconds while a long-term servo loop corrects SHM’s 100 MHz clock signal 

with a time constant of a few hundred seconds.  The ACES clock signal is the combination of 

both the PHARAO and SHM signals. It has the medium-term stability of the SHM and the 

long-term stability of PHARAO. The Allan deviation is therefore limited by the performance 

of SHM on medium time scales and by the performance of PHARAO on long time scales for 
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an overall relative frequency stability equal to roughly 10!"$ √𝜏⁄  and a time deviation of 12 

ps after one day of integration, see Fig. 1.  As mentioned in the introduction, the 

performance of the PHARAO/SHM clock ensemble sets the requirement on the 

performance of the MWL, as depicted by the green curve in the lower plot of the figure 

while the time deviation of the ELT network is depicted in blue. 

 

 

 

Fig. 1 Allan deviation (top) for PHARAO, SHM and the clock ensemble aboard the ISS, and 

the corresponding time deviation (bottom) for the ACES clock ensemble and the 

requirements on the MWL and the ELT (Cacciapuoti et al. 2020). 

 

Microwave Link 

The MWL provides the means to compare PHARAO/SHM to ground clocks. It is composed of 

signals at three frequencies: an uplink from ground clocks to the ISS at 13.5 GHz, and two 

downlinks from the ISS to ground clocks at 14.7 GHz and 2.2 GHz. For the uplink and downlink 

signals, 1.0 pulse-per-second (PPS), 12.5 PPS, PRN (Pseudo Random Noise) code, and carrier 
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phase observables at frequencies listed in Table 1 are available and enable the calculation of 

the pseudo-time-of-flight (pToF) for each link between the ground and PHARAO with 

picosecond accuracy at 80 ms intervals, set by the local 12.5 PPS signal.  This pToF contains 

information about both the time-of-flight of the signal and the difference between the times 

given by the emitter and receiver clocks.  From the pToF, one is able to determine the 

desynchronization between the ground and space clocks using a model of the space-time 

geometry, a model for the propagation of the signal through the earth’s atmosphere, 

orbitography, and by taking into account instrumental delays provided by on-ground 

calibration. 

 

Table 1 Carrier, code and resulting beat note frequencies for the uplink and downlink signals. 

The superscript “A” can take values “ca” (carrier) or “co” (code).  

 

Carrier 

Uplink  

(MHz) 

Carrier 

Downlink 1 

(MHz) 

Carrier 

Downlink 

2 (MHz) 

Code 

(MHz) 

𝑓4 13475.000 14703.333 2240.000 100.000 

𝑓56,75  13474.270 14702.604 2239.270 100.195 

𝑓84 = ±(𝑓56,75 − 𝑓4) 0.729 0.729 0.729 0.195 

 

Two-Way Link and the L Configuration 

This subsection describes how desynchronization can be obtained from the pToF’s of the 

uplink and the two downlinks with high precision in a specific configuration called the L 

configuration.  Fig. 2 is a schematic representation of the MWL measurement.  A one-way 

uplink is represented in red while the two one-way downlinks are represented in dark and 

light blue.  The two-way link is obtained by combining data from all three links, and the L 

configuration is obtained when time 𝑡2 = 𝑡$ = 𝑡9. As we explain below, the presence of the 

second downlink enables the determination of ionospheric delays.  
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Fig. 2 One-way uplink represented in red from 𝑡" to  𝑡2, and two one-way downlinks 

represented in dark blue from 𝑡$ to  𝑡3 and in light blue from 𝑡9 to 𝑡#.  The L configuration, 

obtained by setting 𝑡2 = 𝑡$ = 𝑡9, removes, to first order, the range, tropospheric delay, and 

Shapiro effect. 

 
In the one-way uplink, the fundamental quantity is the pToF, given by: 

∆𝜏-4𝜏-(𝑡2)5 = 𝜏.(𝑡") − 𝜏-(𝑡2)          (2) 

where 𝜏. and 𝜏-are the proper times of the emitting clock on the ground, 𝑔, and the receiving 

clock in space, 𝑠, respectively and where 𝑡 is coordinate time, with 𝑡" and 𝑡2 the coordinate 

times of emission and reception respectively.  A similar expression for the pToF of the 

downlink signal 𝑓2reads 

∆𝜏.4𝜏.(𝑡3)5 = 𝜏-(𝑡$) − 𝜏.(𝑡3)           (3) 

For a single link, the desynchronization between clocks 𝑔 and 𝑠 is given by: 

𝛿(𝑡2) = 𝜏-(𝑡2) − 𝜏.(𝑡2) = −∆𝜏-4𝜏-(𝑡2)5 − .𝑇"2 + M∆"
. + ∆"-N

)7
.

      (4) 

In this expression, 𝑇"2 = 𝑡2 − 𝑡" is the time-of-flight between 𝑔 and 𝑠 in coordinate time, 

∆"
.and ∆"- are internal delays introduced in the uplink by the hardware, while [∙]./- denotes 

a coordinate to proper time transformation, and [∙]) a proper to coordinate time 

transformation. 

The time-of-flight 𝑇;< = 𝑡< − 𝑡;  is modeled by the sum of four terms: 

𝑇;< =
=$%
,
+ ∆;<;6>6(𝑓) + ∆;<

)?6@6 + ∆;<
AB7@;?6          (5) 

where 𝑅;<  is the geometric range and where the three additional terms are the delays induced 

by the ionosphere, the troposphere and the effect of the Earth’s gravitational field on light 
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propagation, the Shapiro effect (see Duchayne et al. 2009).  Some orders of magnitude for 

the individual contributions to 𝑇;<  for frequencies 𝑓" and 𝑓2	are 𝑅;< 𝑐⁄ ~10!$	s, ∆;<;6>6~10!C s, 

∆;<
)?6@6~10!& s, and ∆;<

AB7@;?6~10!"" s.  For the downward link, from 𝑠 to 𝑔, 

desynchronization is given by: 

𝛿(𝑡$) = 𝜏-(𝑡$) − 𝜏.(𝑡$) = ∆𝜏.4𝜏.(𝑡3)5 + .𝑇$3 + M∆2
. + ∆2-N

)7
.

      (6) 

where 𝑡$ and 𝑡3 are the coordinate times of emission and reception respectively, and where 

∆2
.and ∆2-  are downlink internal delays for 𝑓2.  The L configuration is defined by 𝑡2 = 𝑡$,  and 

𝑇2$ = 0 (this latter equality being only approximately verified in practice).  In this case, one 

obtains 

𝛿(𝑡2) =
"
2
4∆𝜏.4𝜏.(𝑡3)5 + ∆2

. + ∆2- − ∆𝜏-4𝜏-(𝑡2)5 − ∆"
. − ∆"- + [𝑇$3 − 𝑇"2].5    (7) 

As can be seen in this expression, in the two-way link for desynchronization in the L 

configuration, the difference of the times-of-flight 𝑇$3 − 𝑇"2 appears.  By canceling leading 

order terms, this difference allows one to minimize the impact of errors in the determination 

of the time-of-flight, the Shapiro effect and the tropospheric delay (Duchayne et al. 2009).  

Note also that in the expression for 𝑇;<, ∆;<;6>6(𝑓) is frequency-dependent.  Given that, by 

design, the uplink and downlink operate at different frequencies, 𝑓" and 𝑓2, the Λ 

configuration does not cancel the leading order term in the delay introduced by the 

ionosphere. As we shall see in a forthcoming section, it is the existence of the additional 

downlink signal at frequency 𝑓$ that allows the precise determination of ∆;<;6>6(𝑓).  In the 

following subsection, we discuss the computation of the terms on the right-hand side of the 

expression for desynchronization. 

 

Desynchronization 

In order to synthesize the Λ configuration from the non-Λ configuration that is realized in 

practice, a first approximation of range and desynchronization in the non-Λ configuration is 

required. This computation requires the determination of the pToF for the uplink and the two 

downlinks from the raw data.  The highest precision is obtained by using the carrier signal 

pToF, which can be written as (Meynadier et al. 2018): 
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In this expression, 𝜏,7 is the proper time of the carrier signal at reception, 𝜙8,7 is the phase of 

the beat note formed from the emitted carrier signal and the local clock, at frequency 

𝑓8,7 =0.729 MHz (see Table 1) while 𝑘 and 𝜙%,7 are the integer and fractional part of the 

carrier phase ambiguity, respectively.  The signal is sampled with a resolution limited by the 

frequency of the receiver clock, 𝑓,56,G = 100.195 MHz.  This sets the precision of the proper 

time 𝜏 to 10 ns, such that both the precision of (𝑓8,7 𝑓,7⁄ )𝜏,7 and that of (𝜙8,7(𝜏) 2𝜋⁄ )𝑓,7 

are of order 0.5 ps.  The integer 𝑘 can be computed unambiguously from the code data as 

long as two conditions are fulfilled.  First, the code’s pToF ∆𝜏,6(𝜏,6) can be interpolated at 

times 𝜏,7 to better than a cycle of the carrier, i.e. about	70 ps. Second, ∆𝜏,6(𝜏,7) should be 

determined with a precision better than 70 ps, such that 𝑓,7	𝛿4∆𝜏,6(𝜏,7)5 ≪ 1.  Taking some 

safety margin, we set this requirement to 20 ps. The precision of the fractional part of the 

carrier phase ambiguity, 𝜙%,7, is also limited to 20 ps, a factor 40 greater than the 0.5 ps 

requirement.  This being said, 𝜙%,7 is common to all passes of the ISS, as long as the MWL 

remains turned on.  For most scientific objectives of the mission, which rely on the differences 

of pToF measurements, this initial phase cancels out.  For those scientific observables that 

rely on the absolute values of the pToF measurements, the overall uncertainty will be limited 

by the absolute uncertainty on ∆𝜏,6 after averaging over all measurements and taking into 

account uncertainties from the calibration of internal hardware delays. 

As explained in the previous paragraph, the code’s pToF is required to have a 20 ps or 

better in order to resolve the carrier phase ambiguity.  There are two ways to compute the 

code’s pToF from the MWL raw data.  The first method is straightforward and relies on the 

existence of a frame counter at frequency 𝑓D, = 2,500 Hz, resetting to zero once per second, 

and a chip counter at frequency 𝑓,, = 10H Hz, resetting to zero once it reaches 40,000 such 

that the time of emission of the code is known unambiguously.  The time of arrival of the code 

is measured using the zero crossing of the beat note formed from the difference of the 

incoming signal (divided at 100 MHz) and the local clock at 100.195 MHz (see Table 1).  This 

procedure introduces an absolute error that lies between 0 and (1 − 𝑓,, 𝑓56,75⁄ ) 𝑓56,75⁄ ~	20 

ps, for a single measurement (80 ms sampling), which averages down during the ISS pass.  The 

second method is much more involved and does not make use of the frame and chip counters, 

but instead relies on a recurrence relation between successive pToFs that are derived by 
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exploiting the phase variation equality of the emitted and received signal, and uses the 1PPS 

data to resolve the code phase ambiguity (Delva et al. 2015). 

Once ∆𝜏,7(𝜏,7) is known with precision at the 0.5 ps level for all three links, the 

quantity  [𝑇$3 − 𝑇"2].	can be computed (Duchayne et al. 2009; Meynadier et al. 2018). The 

transformation from coordinate time to proper time, [∙]., is given by: 

[∙]. = 1 − IJ
?!()),#

− /!#())

2,#
	            (9) 

In this expression, 𝐺 is the gravitational constant, 𝑀 is the mass of the earth, 𝑟.(𝑡) and 𝑣.(𝑡) 

are the ICRS radial coordinate and coordinate velocity of the ground clock at coordinate time 

𝑡, respectively. The quantities 4𝐺𝑀 𝑟.𝑐2⁄ 5𝑇$3 and 4𝐺𝑀 𝑟.𝑐2⁄ 5𝑇"2 are of order 0.6 ps while the 

terms 4𝑣.2 2𝑐2⁄ 5𝑇"2 and 4𝑣.2 2𝑐2⁄ 5𝑇$3 are of order 0.002 ps.  Therefore, while the velocity 

term can be neglected, the amplitude of the gravitational term is comparable to the precision 

required and has to be accounted for.  Next, we discuss the calculation of the time intervals 

𝑇"2 and 𝑇$3.  As already mentioned, the expression for 𝑇;<  is the sum of four terms: the 

geometric range, the Shapiro effect, the tropospheric and ionospheric delays.  While the 

geometric range and Shapiro delays are computed from orbit data, the ionospheric and 

tropospheric delays are determined using a Chapman layer STEC model and a Saastamoinen 

model respectively (Duchayne et al. 2009; Meynadier et al. 2018). 

In order to calculate the ionospheric delay for all three links, we first solve for the Slant 

Total Electron Content (STEC), 𝑆, from the two downlinks, using, on the one hand (Bassiri & 

Hajj, 1993): 

∆;<;6>6(𝑓) ≅
K
,D#

𝑆 d1 + L,
D
𝐵% cos 𝜃%i                     (10) 

where the coefficients 𝛼 and 𝛽 are numerical coefficients that depend on whether the 

formula applies to code or carrier, where 𝐵% and 𝜃% are the earth’s magnetic field and the 

angle subtended by 𝐵2⃗  and the line-of-sight, and on the other hand, the difference of the 

pToF’s at frequencies 𝑓2 and 𝑓$,	which can be approximated by: 

∆9#;6>6(𝑓$) − ∆$3;6>6(𝑓2) = ∆𝜏.4𝜏.(𝑡3)5 − ∆𝜏.4𝜏.(𝑡#)5 +
=*+!=,-

,
	                                                  (11) 

As can be seen from this expression, although downlink geometric ranges for 𝑓2  and 𝑓$ (and 

thus orbital data) is necessary to compute the value of 𝑆, and ionospheric delays are required 
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to compute geometric range, it is the difference of the geometric range measurements for 

the two downlinks, divided by the speed of light that appears on the right-hand-side of the 

equation for ∆9#;6>6(𝑓$) − ∆$3;6>6(𝑓2).  This is a sub-leading correction, so that 𝑆 is mostly 

determined from the difference of ∆𝜏.4𝜏.(𝑡3)5 − ∆𝜏.4𝜏.(𝑡#)5, and is then used to correct 

for both the uplink and downlink ionospheric delays. 

At leading order, and as already mentioned, the difference ∆$3
)?6@6 − ∆"2

)?6@6 cancels 

out in the expression for desynchronization, up to small corrections caused by tropospheric 

dispersive effects (Hobiger et al. 2013) which we neglect in this work, and up to small 

corrections proportional to 𝑣- 𝑐⁄ 	which are due to the difference in the path between the 

uplink and the downlink.  This being said, estimates of the uplink and downlink tropospheric 

delays are needed to compute the ToF information required to form the Λ configuration.  The 

two-way tropospheric delay appears by summing the observables at frequencies 𝑓" and 𝑓2, 

and by using the expression for 𝑇;<.  It reads: 

∆"2
)?6@6 + ∆$3

)?6@6= − =.#M=*+
,

− k1 + IJ
?!()#),#

l 4∆𝜏-(𝑡2) + ∆𝜏.(𝑡3)5 − d∆"2;6>6(𝑓") +

																																		∆$3;6>6(𝑓2)i	                     (12) 

As can be seen from the right-hand side of this expression, and by contrast with the equation 

for the STEC, the sum of geometric ranges for the uplink and downlink at 𝑓" and 𝑓2 is required.  

The zeroth-order errors on the quantities 𝑅;<  computed from orbitography data appear in a 

sum rather than in a difference and no longer cancel, as was the case in the expression for 

desynchronization or for the STEC calculation. 

In order to break the link between tropospheric delay and geometric range, we obtain 

tropospheric delay using a Saastamoinen model (Saastamoinen 1973) and external 

atmospheric data: 

∆)?6@6= 2.2&&×"%/*

,	 QRS T
.𝑝 + d0.05 + "299

U
i 𝑒 − (tan 𝑧)27                                                                    (13) 

where 𝑝 is the atmospheric pressure, 𝑇 is the atmospheric temperature, 𝑒 is the water vapor 

partial pressure and 𝑧 is the angle between the line-of-sight and zenith and is calculated from 

the positions of the ISS and the ground station in the International Celestial Reference Frame 

(ICRF). 
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Once a first determination of range and desynchronization in the non-Λ configuration 

is obtained, the Λ configuration is obtained by interpolation of the pToF’s.  If one chooses to 

interpolate the 𝑓" pToFs, then the 𝑓" data is interpolated at times: 

𝜏2;>) = 𝜏3 − 𝛿(𝜏3) − 4𝑅$3(𝜏3) + ∆$3
)?6@6 + ∆$3;6>65	                   (14) 

In other words, the proper time of reception 𝜏2;>) for the uplink data in the Λ configuration is 

equal to the proper time of reception 𝜏3 for the 𝑓2 downlink data minus the ToF between the 

ISS and the ground terminal at 𝜏3 minus the clock desynchronization. 

 

Timing and Frequency Errors 

On the one hand, and as can be seen in the expression for desynchronization, the timing error 

is related to the determination of the quantity 𝑇"2 − 𝑇$3.  At leading order, this difference is 

proportional to the range 𝑅 and to the quantity 𝑇2$, which is related to the calibration 

uncertainty on the internal delays. The timing error, therefore, depends on the uncertainty in 

𝑇2$, 𝛿(𝑇2$), and on the uncertainty in the position of the ISS, 𝛿(𝑅) (Duchayne et al. 2009).  By 

modeling both 𝛿(𝑇2$) and 𝛿(𝑅), computing the temporal Allan deviation and comparing it 

with requirements, Duchayne et al. (2009) have established that 𝑇2$ ≤ 10!# s and 𝛿(𝑇2$) ≤

0.1 µs while Meynadier et a. (2018) find a constraint on the precision of the orbits of order 1 

km. 

On the other hand, the gravitational redshift causes a difference in the frequencies of 

the GS and ISS clocks, which corresponds to a variation of desynchronization.  While timing 

errors related to 𝑇"2 − 𝑇$3 drop out of the corresponding expression, errors in the positioning 

and velocity of the ISS will induce errors on the modeling of the orbiting clock’s relativistic 

frequency corrections along its trajectory.  Constraints on 𝛿(𝑅) are then obtained by 

comparing the modified Allan deviation of the measurements involving such ISS positioning 

errors with requirements. One finds 𝛿(𝑅) ≤ 10 m (Duchayne et al. 2009). 

To summarize, a reliable determination of ISS orbits and a reliable calibration of 

internal delays are required both to compute the corrections to desynchronization in the data 

processing step and to compute the second order Doppler effect and gravitational redshift in 

the data analysis step. 
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In Table 2, we gather our current understanding of the ACES error budget by giving 

the Allan deviations or time deviations associated with the main sources of error in the 

experiment: PHARAO/SHM, the MWL, the impact of orbitography on desynchronization 

(Meynadier et al., 2018), and the impact of orbitography on the redshift error (Savalle et al., 

2018).  As mentioned above, an additional constraint on the calibration of internal delays 

imposes 𝑇2$ ≤ 10!# s and 𝛿(𝑇2$) ≤ 0.1 µs; see Duchayne et al. (2009).  For long integration 

times, the error is dominated by PHARAO/SHM while for short integration times, it is 

dominated by the MWL.  The impact of orbitography errors on the MWL is relevant only on 

short time scales corresponding to the duration of a pass. The impact of orbital errors on the 

MWL’s time deviation remains below MWL requirements for errors smaller than 1km.  The 

impact of orbital errors on the redshift error, independently from errors made on the 

determination of desynchronization, remain below PHARAO/SHM’s Allan deviation for errors 

smaller than 100 m. 

Table 2: Allan deviations or temporal deviations for the main sources of uncertainty in the 
gravitational redshift test performed witht the ACES experiment. 

 Time deviation Allan deviation 

PHARAO/SHM stability  10!"$ √𝜏⁄  

All 𝜏 

MWL stability requirement 7 × 10!"2 √𝜏⁄  

for 𝜏 < 10$ sec 

 

Impact of orbitography  

on redshift error 

Savalle et al. (2019) 

 9 × 10!"2/𝜏 

for 100 m orbital error 

and 𝜏 ≥ 10$	s 

Impact of orbitography  

on MWL stability 

Meynadier et al. (2018) 

6.5 × 10!"#	𝜏$ 2⁄  

for 1 km orbital error and 

10	s ≤ 𝜏 ≤ 300 s 

 

 

Simulation and Data Processing Software 

The simulation software is a Matlab package developed by the ACES collaboration (Meynadier 

et al. 2018). Its inputs are:  orbitography of the ISS, terrestrial coordinates of a set of GS’s and 

a model of the geo-potential in order to compute the relation between the proper times given 
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by the ISS and GS’s on the one hand, and coordinate time on the other. The total time-of-

flight is the sum of a geometric time-of-flight obtained by solving a two-point boundary value 

problem in GR, an ionospheric delay computed using the atmospheric electron density profile 

in a Chapman layer model together with a dipolar model for the earth’s magnetic field, a 

tropospheric delay modeled using the Saastamoinen model, and a Shapiro delay.  The pToF is 

then obtained from the total ToF and the coordinate to proper time transformations for the 

GSs and the ISS.  These pToFs can then be used to compute the MWL’s observables, which 

are based on local signal beat notes and counter measurements. 

The data processing software is a Python package also developed by the ACES 

collaboration (Meynadier et al. 2018). The processing step that computes desynchronization 

from pToFs operates as shown in Fig. 3.  As it is comparatively more straightforward once the 

necessary equations are derived, we shall not discuss here the pre-processing step that 

computes pToFs from the MWL raw data.  Processing of the pToFs initially starts from MWL 

data in a non-L configuration, i.e. the configuration that is realized in practice.  As depicted 

in the figure, initial range estimates are obtained from orbitography data for the ISS and the 

positions of the GS’s.  These estimates are used together with atmospheric models and 

atmospheric data to produce tropospheric and ionospheric delays. An orange arrow indicates 

that, once computed, the atmospheric delays are used to refine the initial range estimates.  

By combining those refined range estimates with the pToFs, an estimate of desynchronization 

can be obtained and used, together with ToFs, to obtain the L configuration.  The pToF data 

is then re-computed in the L configuration and produces the final desynchronization. 

The performance of the data processing software is shown in Fig. 4 for a single pass of 

the ISS over a GS from a dataset generated by the simulation software.  The figure 

demonstrates that the data processing software recovers the input of the simulation at the 

ps level and that the temporal Allan deviation complies with the ACES requirements shown 

in Fig. 1.  
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Fig. 3 ACES MWL data processing pipeline.  The main output of the processing software is 

desynchronization.  The pre-processing step, that computes the pToFs from the MWL raw 

data is not represented in this figure. Note that orange arrows highlight the iterative nature 

of some of the data processing steps. 
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Fig. 4 Difference between simulation input and data processing output for some physical 

quantities, for a single ISS pass. The top 3 plots show time series of the tropospheric delay, 

the ionospheric delay and the geometric time of flight (ToF) for the uplink (blue) and the 

two downlink (green and yellow) signals. The last two plots show the desynchronization and 

its temporal Allan deviation (Time deviation).  
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Gravitational Redshift 

Albert Einstein’s General Relativity (GR) establishes a link between gravitation and geometry 

by describing gravitation as a curvature of space-time. This geometrical description of the 

gravitational interaction relies on the Einstein Equivalence Principle (EEP) which postulates 

the equivalence of all inertial observers. To unify GR and the Standard Model (SM) of particle 

physics, small deviations from the EEP are expected.   There are a variety of experiments 

seeking to detect those deviations.  Three of the implications of the EEP can be tested 

experimentally (Will 2018): 

- The universality of free fall, which states that the trajectory of a body is independent 

of its structure and composition (Touboul et al. 2017; Wagner et al. 2012), 

- Local Lorentz invariance, which states that the outcome of any local non-gravitational 

experiment is independent of the velocity of the observer (norm and direction), 

- Local position invariance, which states that the outcome of any local non-gravitational 

experiment is the same wherever it is performed in space-time. 

The latter can be tested either by looking for variations of the fundamental constants (Uzan 

2011; Will  2018) or with gravitational redshift tests. 

As predicted by GR, a clock close to a massive body ticks slower than a clock far from it, thus 

creating a gravitational “redshift”.  For PHARAO and a ground clock, the clocks’ relative 

frequency difference will be affected by two main effects, as seen in the introduction: 

- The clocks’ velocities in the geocentric non-rotating coordinate system lead to a 

second-order Doppler effect as predicted by Special Relativity (implying local Lorentz 

invariance). 

- The clocks’ positions in different gravitational potentials lead to a gravitational redshift 

(implying local position invariance). 

While the latter will speed up PHARAO’s rate compared to a ground clock, the former will slow 

it down. For a ground clock and PHARAO/SHM onboard the ISS (at an altitude of about 350 

km, and a velocity of about 8 km/s), the differential gravitational redshift is 10 times smaller 

and opposite in sign from the Doppler effect, so that the overall clock rate of PHARAO is slower 
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than that of a static clock on the ground.  As emphasized in previous sections, the scientific 

observable of the mission is clock desynchronization, which is the integral of the relative 

frequency difference. The effect of the gravitational redshift on desynchronization 

corresponds to a drift of about 3 μs per day as can be seen in the upper plot of Fig. 5.  The 

orbit of the ISS above a ground clock induces a modulation of the range separating the GS and 

ISS clocks (shown in the red curve of the lower plot of Fig. 5).  The corresponding oscillation 

of the relative frequency difference (the blue curve in the plot) is a consequence of the 

gravitational redshift as the ISS orbits around the earth. The slight eccentricity of the orbit as 

well as higher order terms in the earth’s gravitational potential (e.g. earth flattening) give rise 

to the periodic features, whereas the offset (about 3.64 × 10!"") corresponds to the leading 

𝐺𝑀 𝑟𝑐2⁄ 	 term. 

As explained in the introduction, to test local position invariance, the Einstein's 

gravitational redshift formula is rescaled by a factor 1 + 𝛼 with 𝛼 = 0 for GR (Will 2018; 

Blanchet and Wolf 2016).  Gravitational redshift was first measured in the Pound-Rebka-

Snider experiment (Pound and Rebka 1959; Pound and Rebka 1960; Pound and Snider 1965). 

Since then, the most accurate tests of the gravitational redshift to date have been performed 

in: 

- The Gravity Probe A experiment (Vessot and Levine 1979; Vessot et al. 1980; Vessot 

1989): a hydrogen maser clock onboard a rocket was compared to ground hydrogen 

masers with a continuous two-way microwave link, reaching an uncertainty of about 

1.4×10-4 after a two hours flight. 

- the GREAT experiment (Galileo gravitational Redshift test with Eccentric sATellites)  

(Delva et al. 2015; Delva et al. 2018; Herrmann et al. 2018): clocks onboard two 

eccentric Galileo satellites were compared to ground clocks reaching an uncertainty 

of 2.5×10-5. 

Assuming the measurement is limited only by systematic effects on PHARAO’s frequency, 

the sensitivity of the gravitational redshift test would reach an uncertainty on α of about 2 to 

3 ppm, given roughly by the absolute accuracy of PHARAO in relative frequency (10!"#) 

divided by the size of the effect (3.6 × 10!""). 
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Fig. 5 Gravitational redshift model over one day for phase data (top) and for frequency 

(bottom) data, with on the right-hand axis the range between the ISS and the GS (Savalle et 

al. 2019). 

 

Scientific Data Analysis Software 

In addition to the data simulation software designed to reproduce realistic ACES observables 

and the data processing software designed to compute desynchronization data from those 

observables, both described in the section above, we have developed independent software 

that models desynchronization data and determines 𝛼 from the data (Savalle et al. 2019): 

- Desynchronization data is simulated from the GR model, including the correction 

brought by deviations from GR, using realistic ISS orbitography, a network of ground 

stations, the “Earth Gravitational Model” (Pavlis et al. 2008), mission noise 

specification and data gaps.  Atmospheric effects and actual MWL observables, having 

been modeled and tested in the simulation and data processing software dedicated 

to the MWL are excluded from the simulation. 

- In the data analysis software, the theoretical model is subtracted from the simulated 

data in order to compute the residuals and the model matrix linked to 𝛼. 
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- In order to estimate the value of the parameter a, we use a Monte Carlo least squares 

method on a set of ACES simulations. Each realization includes the two dominant 

sources of noise in ACES: the MWL noise and the PHARAO/SHM clock noise. Both are 

specified by the mission requirements on their time and Allan deviations respectively 

(Table 2 and the associated discussion provides further details on the noise budget). 

We then fit the gravitational redshift model using an ordinary least squares method 

to obtain an estimate of a. We repeat the fitting process a large number of times in 

order to obtain the probability distribution of the parameter a from which the 

standard deviation 𝜎K  is computed.  The quantity 𝜎K   is the statistical uncertainty on 

a and it depends, for the durations of interest, which last 10 to 20 days, mainly on 

PHARAO’s noise level and on measurement duration. 

Both the simulation and its analysis were performed using real ISS orbitography data in 

batches of 12 days. Within these batches, the position of the ISS was interpolated to reach 

the ACES MWL sampling rate (12.5 Hz). 

 

Phase and Frequency Data Analysis 

In order to assess the performance level of the mission, we compared the uncertainty on 𝛼 

when using the phase data (i.e., the desynchronization data) and when using frequency data 

(i.e. using the relative frequency difference, given by the numerical derivative of the 

desynchronization data). For phase data and a 12-day simulation, the uncertainty on 𝛼 is 

equal to 3 × 10!# (close to the target, 2 × 10!#) but it falls short by 2 orders of magnitude 

in frequency (reaching only 5 × 10!3).  This difference can be explained as follows.  While for 

phase data for which desynchronization is a linear drift, 𝛼 is determined from a linear model 

for which the end points of the data set play a dominant role, for frequency data, 𝛼 is 

determined from a constant offset, and its uncertainty depends mainly on the number of 

available data points and is thus strongly affected by the presence of data gaps.  Given the 

limited visibility of the ISS by ground clocks, the number of points considered for the analysis 

in frequency is very limited. We, therefore, favor the analysis of desynchronization data.   

Finally, our study demonstrates that the statistical uncertainty on α will reach 

3 × 10!# after 12 days, in compliance with expectations. In addition, by combining a few 10 
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to 20-day datasets, the results of Delva et al. (2018) in the GREAT experiment can be improved 

by an order of magnitude, assuming that systematic effects on PHARAO are indeed under 

control at the 1x10-16 level. 

 

ISS Orbitography 

Because redshift scales as the inverse of the distance, achieving an uncertainty of about 10!# 

on 𝛼 requires a level of uncertainty of the ISS position of order 0.3 m for an average altitude 

of 350 km.  As already discussed, less stringent constraints, of order 10 m, were obtained by 

Duchayne et al. (2009) using theoretical orbit error models. In this section, we carry out the 

same analysis with a real orbit of the ISS with a focus on the detection of the parameter 𝛼.  

For this, two orbitography files obtained with two different methods are used. The difference 

in position vectors between the two files provides a realistic estimate of the ISS orbitography 

error. Its typical standard deviation is about 30 cm, see Fig. 6. 

 

 

Fig. 6 ISS orbital error over 12 days starting at a reference time t% (Savalle et al. 2019). 

 

We simulate 12-day data using the precise orbitography files and perform the analysis using 

orbitography files degraded such that the standard deviation of the orbital error is increased 

from 30 cm to 300 km. We distinguish between simulations made with MWL and clock noise 

(empty circles in Fig. 7) and without noise (half-full circle).  

The target uncertainty on 1 + 𝛼 is plotted as a horizontal line.  As can be seen in the 

figure, the measured mean value of 𝛼 is a linearly increasing function of the orbital error |𝜎?| 

and a significant detection of 𝛼 (i.e. above 3 × 10!#) can be distinguished from a bias caused 
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by the orbital error as long as |𝜎?| ≤ 300 m.  As the present orbitography precision is of order 

of 30 cm, the redshift test will easily be achieved without any systematic effect caused by a 

poor ISS orbitography.  Note that this is a significantly less stringent requirement than the one 

obtained in Duchayne et al. (2009) in which the focus was for the Allan deviation of 

desynchronization to remain below PHARAO/SHM’s performance for all integration times.  

 

 

Fig. 7 Absolute values of α estimated with degraded orbitography with noise (empty circle) 

or without noise (half-full circles). The horizontal violet line is the statistical uncertainty 

on α under which the shadowed region defines the non-significance zone of α (Savalle et al. 

2019). 

 
Ground Clock Network 

The mission will benefit from a network of up to 8 MWL ground stations (GS) connected to 

the best available clocks in several metrology laboratories. To assess the benefit of this 

network, we compared the result obtained from each GS, and from a combined fit for all GS’s.  

No significant statistical improvement on the determination of 𝛼 is obtained with the phase 

data using the full network instead of a single station (Savalle et al. 2019). This is a 

consequence of the phase model, which depends mainly on the time elapsed between the 

beginning and the end of the mission and not on the amount of data in between. The addition 

of stations does not increase the mission duration but simply reduces the impact of data gaps. 

Therefore, no improvement is expected in the evaluation of α with the phase data if more 

than one station is used to perform the test.  This being said, the use of the entire network is 

necessary to ensure robustness and to evaluate all systematic effects. 
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Conclusion 

The ACES mission uses a novel high-performance clock ensemble in space, aboard the ISS, 

PHARAO/SHM, and a network of high-performance ground clocks together with an MWL 

and a laser link (ELT, not discussed here) to enable state-of-the-art clock comparisons and 

tests of fundamental physics, such as the measurement of the gravitational redshift and 

possible deviations from GR.  

From the experimental standpoint, one particularity of this mission, which should be noted is 

that the MWL is an integral part of the measurement process, as discussed in the introduction 

and illustrated in the right-hand plot of Fig. 1.  For this reason, in the first part of this review, 

we focused our attention on the MWL and in particular, on the computation of 

desynchronization from basic MWL observables. We provided an overview of the 

methodology used to compute desynchronization from pToFs, as well as the associated 

simulation and data processing software developed and showed that the data processing 

code developed recovers the time delays and desynchronization generated by the simulation 

code at the ps level, with a temporal Allan deviation complying with requirements. 

In the second part of this review, we then discussed one of the main scientific goals of 

the ACES mission, namely the gravitational redshift test.  Under the assumption that 

PHARAO’s systematic uncertainty is of order 10!"# in fractional frequency, the ACES space 

mission will reach a performance on the measurement of the gravitational redshift, and 

possible deviations away from GR of about 2 to 3 × 10!#.  By developing dedicated 

simulation and data analysis codes, we determined that this objective will be reached in a 

realistic scenario that includes numerous data gaps due to the ISS orbit and the noise due to 

PHARAO and the MWL. We showed that an inaccuracy in the orbitography of the ISS will have 

no impact on the precision with which the measurement of the gravitational redshift will be 

performed as long as it is less than 300 m.  We also note that the use of a single station does 

not affect the statistical evaluation of the GR violation parameter 𝛼 but will be limiting for the 

estimation of systematic effects.  
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