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ARTICLE

Gaussian states of continuous-variable quantum
systems provide universal and versatile reservoir
computing
Johannes Nokkala 1✉, Rodrigo Martínez-Peña1, Gian Luca Giorgi1, Valentina Parigi 2, Miguel C. Soriano 1 &

Roberta Zambrini 1✉

Quantum reservoir computing aims at harnessing the rich dynamics of quantum systems for

machine-learning purposes. It can be used for online time series processing while having a

remarkably low training cost. Here, we establish the potential of continuous-variable Gaus-

sian states of linear dynamical systems for quantum reservoir computing. We prove that

Gaussian resources are enough for universal reservoir computing. We find that encoding the

input into Gaussian states is both a source and a means to tune the nonlinearity of the overall

input-output map. We further show that the full potential of the proposed model can be

reached by encoding to quantum fluctuations, such as squeezed vacuum, instead of classical

fields or thermal fluctuations. Our results introduce a research paradigm for reservoir

computing harnessing quantum systems and engineered Gaussian quantum states.
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Machine learning (ML) covers a wide range of algorithms
and modeling tools with automated data-processing
capabilities based on experience1,2. ML, with the pro-

minent example of neural networks, has proven successful for
tackling practical processing tasks that are unsuitable for con-
ventional computer algorithms3–7. With the deployment of ML
algorithms, their limitations and inefficiencies when running on
top of conventional computing hardware arise both in terms of
power consumption and computing speed8. The demand for an
increased efficiency is currently fueling the field of unconven-
tional computing, which aims at developing hardware and algo-
rithms that go beyond the traditional von Neumann
architectures9–11. Recent extensions of neural networks and other
ML techniques based on quantum systems12–16 aim to offer and
identify novel capabilities17–23. In this context, reservoir com-
puting (RC) is a machine-learning paradigm that is amenable to
unconventional hardware-based approaches in the classical
domain, e.g., in photonics24–30 and spintronics31,32.

RC exploits the dynamics of a nonlinear system—the reservoir—
for information processing of time-dependent inputs33,34. RC has
its roots in the discovery that in recurrent neural networks, i.e.,
neural networks with an internal state, it is sufficient to only train
the connections leading to the final output layer, avoiding opti-
mization difficulties well-known in neural networks, without any
apparent loss in computational power35,36. In fact, restricting the
training to only the final layer does not necessarily restrict the
scope of tasks that can be done; indeed, universality has been
shown for distinct classes of RC such as so-called liquid state
machines37 and echo-state networks38. Unlike feed-forward
neural networks, said to be universal when they can approx-
imate any continuous function39,40, RC realizes transformations
between sequences of data and is said to be universal when it can
approximate any so called fading memory function37,38, which
can be thought of as a continuous function of a finite number of
past inputs. In practice, reservoir computers have achieved state-
of-the-art performance in tasks such as continuous speech
recognition41 and nonlinear time series prediction42 thanks to
their intrinsic memory43.

RC has the potential to be extended to the quantum
regime22,44–55. Indeed, since the reservoir requires neither fine
tuning nor precise engineering such extensions are good candi-
dates for NISQ (noisy intermediate-scale quantum)
technologies56. Continuous-variable quantum systems amenable
to an optical implementation would have the additional benefit of
intrinsic resilience to decoherence even at room temperature and
allow to easily read-out a portion of the optical signal for output
processing, including (direct or indirect) measurements. Previous
proposals for neural networks realized with continuous-variable
quantum systems have either used non-Gaussian gates19 or
nonlinear oscillators52 to go beyond linear transformations of the
modes. Such nonlinearity is required, e.g., for universal quantum
computing in continuous-variable systems57, i.e., for the ability to
reproduce any unitary transformation57,58, however, non-
Gaussian gates in particular are an unsolved engineering chal-
lenge so far59–62.

Here, we put forward the framework for RC with Gaussian
states of continuous-variable quantum systems, in bosonic
reservoirs given by random harmonic networks. The input is
encoded into single-mode Gaussian states injected into the net-
work by periodic state resets, whereas the output is a trained
function of the network observables. It is worth noticing that the
encoding is in general nonlinear, providing nonlinearity for the
overall input-output map. The linear network then provides an
analog system—not based on gates or circuits—where different
encodings may be exploited. We explore the utility of the method
spanning across classical and quantum states and our results are

applicable to several physical reservoirs. As elaborated in the
Discussion, the restriction to Gaussian dynamics of linear oscil-
lators brings the model within reach of state-of-the-art
optical63–66 or superconducting and optomechanical
platforms67–70, however, one might expect it to have limited
information processing capabilities. We find that even universal
RC, i.e., approximation of any fading memory functions, is pos-
sible. Versatility is provided by the ability to tune information
processing from fully linear to highly nonlinear with the input
encoding. Therefore, even a fixed network can adapt to the
requirements of the task at hand. Finally, we reveal that encoding
to field fluctuations, or covariances, instead of in field intensities,
or first moments, can significantly increase the system’s infor-
mation processing capacity (IPC)71, a task-independent quantifier
of RC capability. However, encoding to classical (thermal) fluc-
tuations does not provide any nonlinearity. To solve the problem,
we take a step towards exploiting the quantumness of the system
and propose to harness the quantum fluctuations provided by
squeezed vacuum instead. Indeed, this achieves simultaneously
increased capacity, nonlinearity and universal RC.

Results
The model. We consider a linear network of N interacting
quantum harmonic oscillators as detailed in Methods. The
scheme for using this network for RC is shown in Fig. 1. The
input sequence s= {…, sk−1, sk, sk+1,…}, where sk 2 Rn repre-
sents each input vector and k 2 Z, is injected into the network by
resetting at each timestep k the state of one of the oscillators,
called ancilla (A), accordingly. As often done in RC, each input
vector can be mapped to a single scalar in the ancilla through a
function of the scalar product v⊤ ⋅ sk where v 2 Rn. The rest of
the network acts as the reservoir (R), and output is taken to be a
function h of the reservoir observables before each input.

To express the dynamics, let x⊤= {q1, p1, q2, p2,…} be the
vector of network momentum and position operators and let xk
be the form of this vector at timestep k, after input sk has been
processed. We may take the ancilla to be the Nth oscillator
without a loss of generality. Let the time between inputs be Δt.
Now operator vector xk is related to xk−1 by

xk ¼ SðΔtÞ PRxk�1 � xAk
� �

; ð1Þ
where PR drops the ancillary operators from xk−1 (reservoir
projector, orthogonal to the ancilla vector) and xAk is the vector of
ancillary operators conditioned on input sk, while SðΔtÞ 2
Spð2N;RÞ is the symplectic matrix induced by the Hamiltonian
in Eq. (7) (see Methods) and time Δt (for more details on this
formalism see, e.g., refs. 72–74). The dynamics of reservoir
operators xRk ¼ PRxk is conveniently described dividing S(Δt)
into blocks as

SðΔtÞ ¼ A B

C D

� �
; ð2Þ

where A is 2(N− 1) × 2(N− 1) and D is 2 × 2. Now the formal
definition of the proposed reservoir computer reads

xRk ¼ AxRk�1 þ BxAk ;

ok ¼ hðxRk Þ;

(
ð3Þ

where h maps the reservoir operators to elements of the real
output sequence o= {…, ok−1, ok, ok+1,…}.

For Gaussian states, the full dynamics of the system
conditioned by the sequential input injection is entailed in the
first moments vector hxRk i and covariance matrix σðxRk Þ. The
values at step 0, given a sequence of previous m inputs s= {s−m

+1,…, s−1, s0} encoded in the corresponding ancilla vectors, is
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obtained through repeated application of Eq. (3) and reads

σðxR0 Þ ¼ AmσðxR�mÞðA>Þm

þ Pm�1

j¼0
AjBσðxA�jÞB>ðA>Þj;

hxR0 i ¼ AmhxR�mi þ
Pm�1

j¼0
AjBhxA�ji;

8>>>>>><
>>>>>>:

ð4Þ

where σðxR�mÞ and hxR�mi are the initial conditions, i.e., the initial
state of the reservoir. This is the Gaussian channel for the
reservoir conditioned on the input encoded in xA. Different
Gaussian states of the ancilla can be addressed, such as coherent
states, squeezed vacuum or thermal states (see Fig. 1), respectively
characterized by the complex displacement α, squeezing degree r
and phase φ, and thermal excitations nth (see Methods, Eq. (9)).
Finally, the output is taken to be either linear or polynomial in
either the elements of σðxRk Þ or hxRk i.

Observables can be be extracted with Gaussian measurements
such as homodyne or heterodyne detection. We will next show
that the introduced model not only satisfies the requirements for
RC, but is universal for RC even when restricting to specific input
encodings.

Universality for reservoir computing. To begin with, we show
that instances of the model defined by Eq. (3) and the dependency
of xAk on sk can be used for RC, i.e., the dynamics conditioned by
the input can be used for online time series processing by

adjusting the coefficients of the polynomial defined by h to get the
desired output.

As explained in Methods (Reservoir computing theory), the
goal is more formally to reproduce a time-dependent function
f(t)= F[{…, st−2, st−1, st}], associated with a given input s and
functional F from the space of inputs to reals. Consequently, we
say that the system can be used for RC if there is a functional
from the space of inputs to reals that is both a solution of Eq. (3)
and sufficiently well-behaved to facilitate learning of different
tasks. These two requirements are addressed by the echo-state
property (ESP)43 and the fading memory property (FMP)75,
respectively. The associated functions are called fading memory
functions. In essence, a reservoir has ESP if and only if it realizes a
fixed map from the input space to reservoir state space—
unchanged by the reservoir initial conditions—while FMP means
that to get similar outputs it is enough to use inputs similar in
recent past—which provides, e.g., robustness to small past
changes in input. The two are closely related and in particular
both of them imply that the reservoir state will eventually become
completely determined by the input history; in other words
forgetting the initial state is a necessary condition for ESP
and FMP.

Looking at Eq. (4), it is readily seen that the model will become
independent of the initial conditions at the limit m→∞ of a left
infinite input sequence if and only if ρ(A) < 1, where ρ(A) is the
spectral radius of matrix A. Therefore, ρ(A) < 1 is a necessary
condition for having ESP and FMP. The following lemma
(proven in Supplementary Note 2) states that it is also sufficient

Fig. 1 Reservoir computing scheme. a The overall input-output map. The input sequence s is mapped to a sequence of ancillary single-mode Gaussian
states. These states are injected one by one into a suitable fixed quantum harmonic oscillator network by sequentially resetting the state of the oscillator
chosen as the ancilla, xA. The rest of the network—taken to be the reservoir—has operators xR. Network dynamics maps the ancillary states into reservoir
states, which are mapped to elements of the output sequence o by a trained function h of reservoir observables. Only the readout is trained whereas the
interactions between the network oscillators remains fixed, which is indicated by dashed and solid lines, respectively. b The corresponding circuit. The
reservoir interacts with each ancillary state through a symplectic matrix S(Δt) induced by the network Hamiltonian H during constant interaction time Δt.
Output (ok) at timestep k is extracted before each new input. xAk are the ancillary operators conditioned on input sk and xRk are the reservoir operators after
processing this input. c Wigner quasiprobability distribution of ancilla encoding states in phase space of ancilla position and momentum operators q and p.
Here, the contours of the distribution are indicated by dark yellow lines. Input may be encoded in coherent states using amplitude ∣α∣ and phase argðαÞ of
displacement α 2 C, or in squeezed states using squeezing parameter r and phase of squeezing φ (where a and b are the length and height of an arbitrary
contour), or in thermal states using thermal excitations nth.
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when we introduce the mild constraint of working with uniformly
bounded subsets of the full input space, i.e., there is a constant
that upper bounds ∥sk∥ for all k in the past.

Lemma 1 Suppose the input sequence s is uniformly bounded.
Let ancilla parameters be continuous in input and let h be a
polynomial of the elements of σðxRk Þ or hxRk i. The corresponding
reservoir system has both ESP and FMP if and only if the matrix A
in Eq. (3) fulfills ρ(A) < 1.

This is the sought condition for RC with harmonic networks,
either classical or quantum. Importantly, it allows to discriminate
useful reservoirs by simple inspection of the parameters of the
network through the spectral radius of A.

We now turn our attention to universality. The final
requirement to fulfill is separability, which means that for any
pair of different time series there is an instance of the model that
can tell them apart. Then the class of systems defined by Eq. (3) is
universal38,76 in the following sense. For any causal time-
invariant fading memory functional F (see Methods, reservoir
computing theory) there exists a finite set of functionals realized
by our model that can be combined to approximate F up to any
desired accuracy. Physically, such combinations can be realized
by combining the outputs of many instances of the model with a
polynomial function. Mathematically, this amounts to construct-
ing the polynomial algebra of functionals.

The next theorem (of which we give a simplified version here
and a full version in the Supplementary Note 3) summarizes our
analysis of the model described in Eq. (3).

Universality theorem (simplified) Given instances of reservoir
systems governed by Eq. (3) with a given Δt and for ρ(A) < 1, hence
providing a family Q of fading memory functionals, the
polynomial algebra of these functionals has separability. This
holds also for the subfamilies Qthermal, Qsqueezed, and Qphase, that
correspond to thermal, squeezed, and phase encoding, respectively.
As any causal, time-invariant fading memory functional F can be
uniformly approximated by its elements, the reservoir family of Eq.
(3) with the specified constraint is universal.

We sketch the main ingredients of the proof. Since the model
admits arbitrarily small values of ρ(A), there are instances where
ρ(A) < 1; by virtue of Lemma 1, Q can therefore be constructed
and it is not empty. We show that the associated algebra has
separability. Since the space of inputs is taken to be uniformly
bounded, we may invoke the Stone-Weierstrass Theorem77 and
the claim follows. Full proof and additional details are in
Supplementary Note 3.

We note that unlike ESP and FMP, separability depends
explicitly on the input encoding. In Supplementary Note 3 we
show separability for three different encodings of the input to
elements of σðxAk Þ: thermal (nth), squeezing strength (r) and phase
of squeezing (φ). It should be pointed out that separability (and
hence, universality) could be shown also for first moments
encoding in a similar manner.

Controlling performance with input encoding. The here
derived Universality Theorem guarantees that for any temporal
task, there is a finite set of reservoirs and readouts that can
perform it arbitrarily well when combined. Let us now assume a
somewhat more practical point of view: we possess a given gen-
eric network, and we attempt to succeed in different tasks by
training the output function h to minimize the squared error
between output o and target output. For simplicity, we will also
take inputs to be sequences of real numbers, rather than
sequences of vectors—we stress that universality holds for both.
Beyond universality of the whole class of Gaussian reservoirs,
what is the performance and versatility of a generic one?

First of all, we will address how to single out instances with
good memory. As pointed out earlier, memory is provided by
the dependency of the reservoir observables on the input
sequence. Informally speaking, reservoirs with good memory
can reproduce a wide range of functions of the input and,
therefore, learn many different tasks. Furthermore, to be
useful a reservoir should possess nonlinear memory, since this
allows the offloading of nontrivial transformations of the
input to the reservoir. Then nonlinear time series processing
can be carried out while keeping the readout linear, which
simplifies training and reduces the overhead from evaluating
the trained function.

Memory is strongly connected to FMP; in fact, a recent general
result concerning reservoirs processing discrete-time data is that
under certain mild conditions, FMP guarantees that the total
memory of a reservoir—bounded by the number of linearly
independent observables used to form the output—is as large as
possible71. Consequently, all instances that satisfy the spectral
radius condition of Lemma 1 have maximal memory in this sense.
Indeed with Lemma 1 the condition for FMP is straightforward to
check. Furthermore, we find that reservoir observables seem to be
independent as long as L in Eq. (7) does not have special
symmetries—as a matter of fact, numerical evidence suggests a
highly symmetric network such as a completely connected
network with uniform frequencies and weights never satisfies ρ
(A) < 1. Having FMP says nothing about what kind of functions
the memory consists of, however.

Is there nonlinear memory? It is evident that the top equation
of Eq. (3) is linear in reservoir and ancilla operators, but the
encoding is not necessarily linear because of the way ancilla
operators xAk depend on the input. For single-mode Gaussian
states (see Eq. (9) in Methods), it can be seen that the reservoir
state is nonlinear in input when encoding to either magnitude r
or phase φ of squeezing, or the phase of displacement argðαÞ.
Otherwise, that is for encoding in coherent states amplitude or
thermal states average energy, it is linear (see Eq. (10) in
Methods). This implies that the input encoding is the only source
of nonlinear memory when the readout is linear—nonlinearity
comes from pre-processing the input to ancilla states, not from an
activation function, which is the conventional source of
nonlinearity in RC.

The performance of Gaussian RC can be assessed considering
different scenarios. For the remainder of this work we fix the
network size to N= 8 oscillators and form the output using the
reservoir observables and a bias term; see Methods for details
about the networks used in numerical experiments and their
training. We consider nonlinear tasks in Fig. 2. In panels a and b
we take the output function h to be a linear function of hxRk i
and inputs sk to be uniformly distributed in [−1, 1], and
consider two different encodings of the input into the ancilla
hxAk i, as the amplitude and phase of coherent states. Setting ∣α∣→
sk+ 1 and phase to a fixed value argðαÞ ! 0 leads to fully linear
memory, which leads to good performance in the linear task of
panel a only. In contrast, setting ∣α∣→ 1 and encoding the input
to phase as argðαÞ ! 2πsk leads to good performance in the
nonlinear task shown in panel b and limited success in the linear
one of panel a.

Nonlinearity of reservoir memory is not without limitations
since hxRk i does not depend on products of the form sksj⋯ sl where
at least some of the indices are unequal, i.e., on products of inputs
at different delays, as can be seen from Eq. (10). This is a direct
consequence of the linearity of reservoir dynamics. When h is
linear in hxRk i the output will also be independent of these product
terms, hindering performance in any temporal task requiring
them. While Universality Theorem implies the existence of a set of
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reservoirs for any task, we will show that even a single generic
reservoir can be sufficient when nonlinearity is introduced at the
level of readout, at the cost of relatively more involved training.

To illustrate the nontrivial information processing power of a
single generic reservoir, we consider the parity check task78

(Fig. 2c, d), defined as

ðPCðτÞÞk ¼ mod
Xτ
l¼0

sk�l; 2

 !
ð5Þ

where sk∈ {0, 1}; the target output is 0 if the sum of τ+ 1 most
recent inputs is even and 1 otherwise. It can be shown that (PC
(τ))k coincides with a sum of products of inputs at different delays
for binary input considered here. When encoding in a coherent
state amplitude (∣α∣→ sk, argðαÞ ! 0) for readout function h
polynomial in hxRk i, the results show that increasing the
polynomial degree d of the function h allows to solve the task
for higher delays τ. In particular, we find that the reservoir can
solve the well-known XOR problem for nonlinearity degrees d ≥
2, which coincides with the parity check at τ= 1. The parity check
at τ= 3 works, in turn, for d ≥ 4.

Information processing capacity. Besides providing non-
linearity, input encoding also facilitates a versatile tuning of the
linear and nonlinear memory contributions. To demonstrate this,
we consider how input encoding affects the degree of nonlinear
functions that the reservoir can approximate, as quantified by the
information processing capacity (IPC)71 of the reservoir. The IPC
generalizes the linear memory capacity79 often considered in RC
to both linear and nonlinear functions of the input. Even if its
numerical evaluation is rather demanding, it has the clear
advantage to provide a broad assessment of the features of RC,
beyond the specificity of different tasks.

We may define the IPC as follows. Let X be a fixed reservoir, z a
function of a finite number of past inputs and let h be linear in
the observables of X. Suppose the reservoir is run with two
sequences s0 and s of random inputs drawn independently from
some fixed probability distribution p(s). The first sequence s0 is
used to initialize the reservoir; observables are recorded only
when the rest of the inputs s are encoded. The capacity of the
reservoir X to reconstruct z given s0 and s is defined to be

Cs0;sðX; zÞ ¼ 1�minh
P

k ðzk � okÞ2P
k z

2
k

ð6Þ

where the sums are over timesteps k after initialization, each zk is
induced by the function z to be reconstructed and the input, and
we consider the h that minimizes the squared error in the
numerator. The maximal memory mentioned earlier may be
formalized in terms of capacities: under the conditions of
Theorem 7 in the work by Dambre et al.71, the sum of capacities
Cs0;sðX; zÞ over different functions z is upper bounded by the
number of linearly independent observables used by h, with the
bound saturated if X has FMP. This also implies that finite
systems have finite memory, and in particular increasing the
nonlinearity of the system inevitably decreases the linear
memory71,80. Importantly, infinite sequences s0, s and a set of
functions that form a complete orthogonal system w.r.t. p(s) are
required by the theorem; shown results are numerical estimates.
We consistently take p(s) to be the uniform distribution in [−1,
1]; examples of functions z orthogonal w.r.t. this p(s) include
Legendre polynomials P1 and P5 appearing in Fig. 2, as well as
their delayed counterparts. Further details about the estimation of
total capacity are given in Methods.

We consider the breakdown of the normalized total capacity to
linear (covering functions z with degree 0 or 1), nonlinear
(degrees 2–3) and highly nonlinear (degree 4 or higher) regimes
in Fig. 3. We take h to be a linear function of hxRk i and address the
capability to have Gaussian RC operating with different linear
and nonlinear capabilities by varying the input encoding into a
coherent ancillary state from amplitude to phase ∣α∣→ (1− λ)(sk
+ 1)+ λ, argðαÞ ! 2πλsk where sk∈ [−1, 1]; this is a convex
combination of the two encodings used in panels a and b of
Fig. 2. As can be seen in Fig. 3, adjusting λ allows one to move
from fully linear (for amplitude encoding) to highly nonlinear
(for phase) information processing, which can be exploited for a
versatile tuning of the reservoir to the task at hand. Remarkably,
this can be done without changing neither the parameters of the
Hamiltonian in Eq. (7) (that is, the reservoir system) nor the
observables extracted as output in h. The earlier mentioned trade-
off between linear and nonlinear memory keeps the total memory
bounded, however, Lemma 1 ensures that this bound is saturated
for all values of λ.

From intensities to field fluctuations and RC with quantum
resources. Previously we considered coherent states for the
ancilla, encoding the input to ∣α∣ and argðαÞ. In the limit of large
amplitudes ∣α∣ ≫ 1, coherent states allow for a classical

Fig. 2 Nonlinear information processing with a generic reservoir. The
targets, indicated by solid lines, are functions of the input s with elements
sk∈ [−1, 1], where k indicates the timestep. Given the input the reservoir is
trained to produce output that approximates the target as well as possible.
In all panels the output is formed from hxRk i, i.e., the reservoir first moments
at timestep k. In panels a and b two different encodings (in the magnitude
∣α∣ and phase argðαÞ of a coherent state) are compared, the trained readout
function h is linear and the target are normalized Legendre polynomials Pd of
degree d 1 in a and 5 in b of the input. Encoding in the magnitude of
displacement allows to reproduce only the linear target ðP1Þk ¼ sk while
phase encoding has good performance with ðP5Þk ¼ ð15sk � 70s3k þ 63s5k Þ=8,
confirming that some nonlinear tasks are possible with linear h. In panels
c and d the encoding is fixed to ∣α∣ but h is a polynomial of the reservoir first
moments whose degree is varied (both quadratic and quartic polynomials
are considered). The target is the parity check task (PC@τ= 1 and 3 in c and
d, respectively), which requires products of the input elements at different
delays τ. Increasing the degree allows the task to be solved at increasingly
long delays. In all cases a network of N= 8 oscillators is used and the
reservoir output is compared to target for 50 timesteps after training (see
Methods for details about the used networks and their training).
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description of the harmonic network, with field operator expec-
tation values corresponding, for instance, to classical laser
fields81,82. This realization of RC would be impossible in the limit
of vanishing fields where ∣α∣→ 0 since then hxRk i becomes inde-
pendent of input. Here, we put forward the idea of harnessing
instead the fluctuations encoded in the covariance matrix σðxRk Þ,
which also increases the amount of linearly independent reservoir
observables. Even if only a subset of them can be directly mon-
itored, the rest will play the role of hidden nodes that may be
chosen to contribute as independent computational nodes, and
have already been suggested to be a source of computational
advantage in quantum RC in spin systems44. Here, we analyze the
full IPC of the system including all observables.

In the classical regime, thermal fluctuations could be used,
corresponding to thermal states (encoding to nth) for the ancilla.
While representing an original approach to the best of our
knowledge, it will be seen that these classical fluctuations will
provide only linear memory and as such cannot be used to solve
nontrivial temporal tasks without relying on external sources of
nonlinearity. We propose to solve this problem by relying instead
on quantum fluctuations provided by encoding the input to
squeezed vacuum (encoding to r, φ), i.e., by adopting a quantum
approach to RC with Gaussian states. By virtue of the Universality
Theorem, either thermal or squeezed states encoding can be used
for universal RC.

We compare the classical and quantum approaches in Fig. 4,
where we show how the capacity of the system of seven reservoir
oscillators and the ancilla gets distributed for the aforementioned
encodings. For comparison, we also include the case of an echo-
state network (ESN, see Methods) consisting of 8 neurons, a
classical reservoir computer based on a recurrent neural
network43. We separate the contributions to total capacity
according to degree to appreciate the linear memory capacity
(degree 1) and nonlinear capacity and take sk to be uniformly
distributed in [−1, 1]. The total capacity, as displayed in Fig. 4,
allows to visualize the clear advantage of the oscillators network

over the ESN, as well as the particularities of the different input
encodings.

The cases ∣α∣ and argðαÞ in Fig. 4 correspond to Fig. 3 for λ= 0
and λ= 1, respectively. For them, we take h to be linear in hxRk i.
The total capacity for ESN and harmonic networks with ∣α∣ and
argðαÞ encoding differ by a factor 2 because the neurons of ESN
each provide a single observable, while two quadratures are
considered for reservoir oscillators. Comparing capacities, ESN
provides more nonlinear memory than amplitude encoding of
coherent states ∣α∣, but for phase encoding we can see significant
nonlinear contributions to total capacity from higher degrees, up,
e.g., to 7, in spite of the small size of the harmonic network.

Let us now reduce ∣α∣→ 0. In this case, we show in Fig. 4 that
classical thermal fluctuations provided by setting nth→ sk+ 1 and
taking h to be a linear function of σðxRk Þ increase the capacity
significantly, as the number of available observables is propor-
tional to the square of the number of oscillators (as explained in
Methods, training of the network). For thermal encoding, the
capacity does not reach the total capacity bound, limited by
dependencies between some of the observables. Furthermore,
there is only linear memory. As shown in Fig. 4, considering
instead quantum fluctuations gives both a quadratic capacity
increase and nonlinear memory. Setting r→ sk+ 1, φ→ 0 has a
ratio of linear to nonlinear memory somewhat similar to the ESN,
while setting r→ 1, φ→ 2πsk gives significant amounts of
nonlinear memory (last bar in Fig. 4), displaying the advantage
of encoding in squeezed vacuum.

Discussion
The concept of universality in different fields and applications
depends on the scope. In the context of quantum computing it
refers to the ability to reproduce any unitary transformation57,58,
in feed-forward neural networks it characterizes the possibility to
approximate any continuous function39,40, and in RC it identifies
the ability to approximate as accurately as one wants so called
fading memory functions37,38.

Recently, universality of RC has been proved in the full class of
classical linear systems76, in echo-state networks38, and on the
quantum side, for the spins maps of the work by Chen et al.49

tested with superconducting quantum computers. The choice of
the quantum map governing the RC dynamics is also relevant.

Fig. 3 Control of nonlinearity of reservoir memory via input encoding.
Here the input sk∈ [−1, 1] is encoded to the displacement of the ancilla
according to ∣α∣→ (1− λ)(sk+ 1)+ λ, argðαÞ ! 2πλsk , where λ∈ [0, 1] is a
parameter controlling how much we encode to the amplitude ∣α∣ or phase
argðαÞ of the displacement. Reservoir memory is measured using
information processing capacity, which quantifies the ability of the reservoir
to reconstruct functions of the input at different delays. The figure shows
how the relative contributions from linear and nonlinear functions to the
normalized total capacity can be controlled with λ. Nonlinear contributions
are further divided to degrees 2 and 3 (low nonlinear) and higher (high
nonlinear). For λ= 0 the encoding is strictly to ∣α∣, leading to linear
information processing, while at λ= 1 only argðαÞ depends on the input,
leading to most of the capacity to come from functions of the input with
degree at least 4. All results are averages over 100 random reservoirs and
error bars show the standard deviation.

Fig. 4 Histogram bars showing the information processing capacity for
different input encodings. The capacities are further divided into linear
(degree 0 or 1) and nonlinear contributions (degree 2 or higher), where the
degree is given by the functions that the reservoir can reconstruct. Capacity
of an echo-state network (ESN) with as many neurons (8) as there are
oscillators in the harmonic network is shown for comparison. The output is
a function of reservoir first moments when encoding to either magnitude ∣α∣
or phase argðαÞ of displacement. Three different ways to encode the input
in the limit ∣α∣→ 0 are shown; for them the output is a function of the
elements of reservoir covariances, with the input being encoded either to
thermal excitations nth, squeezing strength r or angle φ.
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For instance, at variance with the work by Chen et al.49, a pre-
vious universality demonstration with spins47 applies to an input-
dependent dynamical map that is not guaranteed to be con-
vergent for all input sequences. Although in general more chal-
lenging to implement, it has been suggested that quantum
reservoirs may have a more favorable scaling of computational
power with size than classical reservoirs44; importantly, uni-
versality guarantees that this power may be harnessed for
achieving any temporal tasks. In this work we have established
that even with the limited resources offered by linear quantum
optics platforms, Gaussian measurements, and a restricted class of
input Gaussian states, such as thermal or squeezed vacuum,
universal reservoir computing is achieved. Our work provides the
foundations for RC with generic quadratic Hamiltonians in linear
optics platforms, classical or quantum, with minimal
resources83,84.

We find that performance is not limited by the reduced
resources in place, as well as a clear improvement when infor-
mation is encoded in quantum fluctuations of the field, providing
superior capacity. This is displayed in the quadratic growth of
IPC with system size, as opposed to linear in the case of first
moments or standard ESNs. Versatility is also achieved without
modifying the network reservoir, as input encoding leads to easily
tunable nonlinear memory—already proven to be beneficial to
tackle different computational tasks in classical RC85,86. Non-
classical resources in Gaussian systems originate from squeezing
and this is shown to provide nonlinear memory necessary for
achieving nontrivial RC with a linear readout clearly beyond the
performance achieved with thermal fluctuations, which are
classical.

RC realized with physical systems is a new and rapidly devel-
oping field87, with the extension to quantum regime proposed in
a handful of pioneering works44–47,49,52. Our proposal can be
adapted to many classical and quantum platforms modeled by
continuous variables in linear networks26,63,64,67–70,88,89. As an
example, any harmonic network described by Eq. (1) can be
implemented in optical parametric processes pumped by optical
frequency combs, based on interacting spectral or temporal
modes. The network size and structure are controlled by shaping
the pump and multimode measurements, allowing in principle to
create any network within a fixed optical architecture63. Lemma 1
provides a simple and mild condition to identify networks with
echo-state and fading memory properties in this reconfigurable
platform. Even if the full numerical analysis of the IPC here is
limited to 8 nodes, larger networks have already been reported64.
These linear quantum optics platforms are already well-
established for measurement-based quantum computing64–66,
have intrinsic resilience to decoherence even at room temperature
and high potential for scalability. Our study reveals their potential
as promising physical systems for quantum RC.

The proposed scheme assumes Gaussian measurements as
homodyne or heterodyne detection90. A proof of principle reali-
zation of this protocol would require several copies of the
experiment44,45,49 at each time. Otherwise, when monitoring the
system output in order to exploit RC for temporal tasks, the back-
action effect of quantum measurement needs to be taken into
account. Even if the system performance is robust up to some level
of classical noise and the effective dissipation introduced by
measurement turns out to be beneficial for the fading memory, the
design of platforms including measurement protocols is a question
open to further research. In optical implementations, a clear
advantage is the possibility to exploit arbitrary-node manipulation
via beam splitters operations and feedback loops, as in recent
experiments64,89. Measurements may also be a potential source of
computational power introducing nonlinearity52. As examples,
even for Gaussian states, non-Gaussian measurements allow to

reproduce any unitary transformation91 or to make a problem
intractable for classical computers, as in Boson sampling92.

The most direct advantage when considering RC with quantum
systems is the possibility to access a larger Hilbert space44. With
the minimal resources of a Gaussian model, this leads to a
quadratic advantage. An interesting perspective is to explore a
potential superior performance based on non-Gaussian
resources93–95, to achieve exponential scaling of the total pro-
cessing capacity in the quantum regime and a genuine quantum
advantage in terms of computational complexity91,96. A further
possibility is to embed the (quantum) reservoir within the
quantum system to be processed in order to explore quantum RC
in quantum tasks, providing a quantum-quantum machine
learning (in the data to be analyzed and in the RC platform,
respectively). Finally, the extension of the learning theory to
quantum output is still missing; tasks of interests could include
training the reservoir to simulate given quantum circuits, for
instance. Static versions of such tasks carried out in feed-forward,
as opposed to recurrent, architecture have been considered48,53,97

and could be used as a starting point.

Methods
Linear network Hamiltonian. We consider a network of interacting quantum
harmonic oscillators acting as the reservoir for RC, with spring-like interaction
strengths gij. The Hamiltonian of such a system can be conveniently described in
terms of the Laplacian matrix L having elements Lij= δij∑kgik− (1− δij)gij. We
adopt such units that the reduced Planck constant ℏ= 1 and the Boltzmann
constant kB= 1. Arbitrary units are used for other quantities such as frequency and
coupling strength. The resulting Hamiltonian is

H ¼ p>p
2

þ q>ðΔ2
ω þ LÞq
2

; ð7Þ

where p⊤= {p1, p2,…, pN} and q⊤= {q1, q2,…, qN} are the vectors of momentum
and position operators of the N oscillators while the diagonal matrix Δω holds the
oscillator frequencies ω⊤= {ω1, ω2,…, ωN}.

Reservoir computing theory. A common way to process temporal information is
to use artificial neural networks with temporal loops. In these so-called recurrent
neural networks, the state of the neural network nodes depends on the input
temporal signals to be processed but also on the previous states of the network
nodes, providing the needed memory98. Unfortunately, such recurrent neural
networks are notorious for being difficult to train99. Reservoir Computing, in turn,
leads to greatly simplified and faster training, enlarges the set of useful physical
systems as reservoirs, and lends itself to simultaneous execution of multiple tasks
by training separate output weights for each task while keeping the rest of the
network—the reservoir—fixed34.

Here, we provide an overview of Reservoir computing theory that introduces
the relevant definitions and concepts in context. For proper development of the
discussed material we refer the reader to38,100. We will also briefly discuss the
application of the framework to quantum reservoirs.

Reservoir computers. We consider sequences of discrete-time data s= {…, si−1,
si, si+1,…}, where si 2 Rn , n is the dimension of the input vector and i 2 Z. Let
us call the space of input sequences Un such that s 2 Un . Occasionally, we will
also use left and right infinite sequences defined as U�

n ¼ fs ¼ f¼ ; s�2; s�1;
s0gjsi 2 Rn; i 2 Z�g and Uþ

n ¼ fs ¼ fs0; s1; s2; ¼ gjsi 2 Rn; i 2 Zþg, respec-
tively. Formally, a reservoir computer may be defined by the following set of
equations:

xk ¼ Tðxk�1; skÞ
ok ¼ hðxkÞ;

�
ð8Þ

where T is a recurrence relation that transforms input sequence elements sk to
feature space elements xk—in general, in a way that depends on initial con-
ditions—while h is a function from the feature space to reals. When T, a target
o and a suitable cost function describing the error between output and target
are given, the reservoir is trained by adjusting h to optimize the cost function.
The error should remain small also for new input that was not used in training.

The general nature of Eq. (8) makes driven dynamical systems amenable to
being used as reservoirs. This has opened the door to so-called physical reservoir
computers that are hardware implementations exploiting different physical
substrates87. In such a scenario time series s—often after suitable pre-processing—
drives the dynamics given by T while xk is the reservoir state. A readout mechanism
that can inspect the reservoir state should be introduced to implement function h.
The appeal of physical RC lies in the possibility to offload processing of the input in
feature space and memory requirements to the reservoir, while keeping the readout
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mechanism simple and memoryless. In particular, this can lead to efficient
computations in terms of speed and energy consumption with photonic or
electronic systems28,101.

Temporal maps and tasks. Online time series processing—what we wish to do with
the system in Eq. (8)—is mathematically described as follows. A temporal map
M : Un ! U1, also called a filter, transforms elements from the space of input time
series to the elements of the space of output time series. In general M is taken to be
causal, meaning that (M[s])t may only depend on sk where k ≤ t, i.e., inputs in the
past only. When M is additionally time-invariant, roughly meaning that it does not
have an internal clock, (M[s])t= F({…, st−2, st−1, st}) for any t for some fixed
F : U�

n ! R38. We will later refer to such F as functionals. When M is given, fixing
s induces a time-dependent function that we will denote by f, defined by f(t)= F
({…, st−2, st−1, st}).

To process input s into o in an online mode requires to implement f(t); real-
time processing is needed. We will later refer to such tasks as temporal tasks.
Reservoir computing is particularly suited for this due to the memory of past inputs
provided by the recursive nature of T and online processing accomplished by the
readout mechanism acting at each timestep.

Properties of useful reservoirs. In general, ok in Eq. (8) depends on both the past
inputs and the initial conditions, but f(t) depends only on the inputs; therefore any
dependency on the initial conditions should be eliminated by the driving. It may
also be expected that reservoirs able to learn temporal tasks must be in some sense
well-behaved when driven. These informal notions can be formalized as follows.

The echo-state property (ESP)43 requires that for any reference time t, xt ¼
Eðf¼ ; st�2; st�1; stgÞ for some function E, that is to say at the limit of infinitely
many inputs the reservoir state should become completely determined by the
inputs, and not by the initial conditions. This has two important consequences.
First, it guarantees that the reservoir always eventually converges to the same
trajectory of states for a given input, which also means that initial conditions do not
need to be taken into account in training. Second, it ensures that the reservoir
together with a readout function can realize a temporal map. A strongly related
condition called the fading memory property (FMP)75 requires that for outputs to
be similar, it is sufficient that the inputs are similar up to some finite number of
past inputs. The formal definition can be given in terms of so-called null sequences
as explained in the Supplementary Note 1. It can be shown that FMP imposes a
form of continuity to the overall input-output maps that can be produced by the
reservoir computer described by Eq. (8)37; the associated temporal maps
(functionals) are called fading memory temporal maps (functionals).

A useful quantifier for the processing power of a single reservoir was introduced
by Dambre et al.71. They showed that when the readout function h is linear in
reservoir variables, the ability of a reservoir to reconstruct orthogonal functions of the
input is bounded by the number of linearly independent variables used as arguments
of h. The central result was that all reservoirs with FMP can saturate this bound.

Considering a class of reservoirs instead offers a complementary point of view.
If the reservoirs have ESP and FMP then they can realize temporal maps. If
additionally the class has separability, i.e., for any s1; s2 2 U�

n , s1 ≠ s2, some
reservoir in the class will be driven to different states by these inputs, then
universality in RC becomes possible. This can be achieved by imposing mild
additional conditions on the input space and realizing an algebra of temporal maps
by combining the outputs of multiple reservoirs with a polynomial function76.
When these properties are met, universality then follows from the Stone-
Weierstrass Theorem (Theorem 7.3.1 in the work by Dieudonne et al.77).

The explicit forms of the covariance matrix and first moments vector. For a
single-mode Gaussian state with frequency Ω, covariances and first moments read

σðxÞ ¼ ðnth þ 1
2Þ

ðy þ zcosÞΩ�1 zsin
zsin ðy � zcosÞΩ

� �
;

hxi ¼ jαj cosðargðαÞÞ
ffiffiffiffiffiffiffiffiffiffiffi
2Ω�1

p

jαj sinðargðαÞÞ ffiffiffiffiffiffi
2Ω

p
 !

;

8>>>><
>>>>:

ð9Þ

where y ¼ coshð2rÞ, zcos ¼ cosðφÞ sinhð2rÞ and zsin ¼ sinðφÞ sinhð2rÞ. Here, nth
controls the amount of thermal excitations, r and φ control the magnitude and
phase of squeezing, respectively, and finally ∣α∣ and argðαÞ control the magnitude
and phase of displacement, respectively. The input sequence may be encoded into
any of these parameters or possibly their combination.

Suppose that s= {s−m+1,…, s−1, s0} and each input sk is encoded to all degrees
of freedom as nth↦ nth(sk), r↦ r(sk), φ↦ φ(sk), ∣α∣↦ ∣α(sk)∣ and
argðαÞ7! argðαðskÞÞ. Then from Eq. (4) it follows that

½σðxR0 Þ � AmσðxR�mÞðA>Þm��ij ¼Pm�1
k¼0 aijknthðskÞ coshð2rðskÞÞ þ ðbijkcosðφðskÞÞ þ cijk sinðφðskÞÞÞsinhð2rðskÞÞ

� 	
;

hxR0 i � AmhxR�mi

 �

i¼
Pm�1

k¼0 jαðskÞjðaikcosðargðαðskÞÞÞ þ biksinðargðαðskÞÞÞÞ

8<
:

ð10Þ
where aijk , b

ij
k , c

ij
k , a

i
k , and bik are constants depending on the Hamiltonian in Eq. (7)

and Δt. That is to say the part of the observables independent of the initial
conditions xR�m are linear combinations of nth(sk) and ∣α(sk)∣, while the dependency
on r(sk), φ(sk) and argðαðskÞÞ is nonlinear. When the dynamics of the reservoir is

convergent the effect of the initial conditions vanishes at the limit m→∞ and the
corresponding terms on the L.H.S. may be omitted.

The networks used in numerical experiments. We have used a chain of N= 8
oscillators for all results shown in Figs. 2 and 4. For simplicity, all oscillators have
the same frequency ω= 0.25 and all interaction strengths are fixed to g= 0.1. The
ancilla is chosen to be one of the oscillators at the ends of the chain. For the
aforementioned parameter values of ω and g, we have computed ρ(A) as a function
of Δt. We have set Δt= 59.6, which is close to a local minimum of ρ(A); in general
values of Δt that achieve ρ(A) < 1 are common and produce similar results. It
should be pointed out that the choice of ancilla matters, e.g., choosing the middle
oscillator in a chain of odd length seems to lead to ρ(A) ≥ 1 for any choice of Δt.

The starting point for the results shown in Fig. 3 is a completely connected
network of N= 8 oscillators with uniform frequencies ω= 0.25 and random
interaction strengths uniformly distributed in the interval g= [0.01, 0.19]. We
point out that the condition ρ(A) < 1 is favored by interaction strengths that break
the symmetry of the system. A suitable value for Δt is then found as follows. We
consider values Δtω0= 0.01, 0.02,…, 29.99, 30 and find the corresponding ρ(A) for
each. Then we choose a random Δt out of all values for which ρ(A) ≤ 0.99. In the
rare event that none of the values can be chosen, new random weights are drawn
and the process is repeated. We have checked that choosing instead the Δt that
minimizes ρ(A) leads to virtually the same results, confirming that reservoir
memory is primarily controlled by the encoding, not the choice of Δt.

Training of the network. For all shown results, we take the initial state of the
reservoir to be a thermal state and use the first 105 timesteps to eliminate its effect
from the reservoir dynamics, followed by another M= 105 timesteps during which
we collect the reservoir observables used to form the output. We wish to find a
readout function h that minimizes

SEðo; oÞ ¼
X
k

ð�ok � okÞ2; ð11Þ

i.e., the squared error between target output o and actual output o.
In Fig. 2a, b and in Figs. 3 and 4, h is linear in reservoir observables. In this case,

the collected data is arranged into M × L matrix X, where L is the number of used
observables. In the case of first moments, L= 2(N− 1), whereas in the case of
covariances L= 2N2− 3N+ 1; the latter comes from using the diagonal and upper
triangular elements of the symmetric 2(N− 1) × 2(N− 1) covariance matrix. We
introduce a constant bias term by extending the matrix with a unit column so that
the final dimensions of X are M × (L+ 1). Now we may write ok ¼ hðXkÞ ¼PNþ1

i WiXki where Xk is the kth row of X, Xki its ith element and Wi 2 R are
adjustable weights independent of k. Let W be the column vector of the weights.
Now XW= o⊤. To minimize (11), we set

W ¼ Xþo> ð12Þ

where X+ is the Moore–Penrose inverse102,103 of X. When X has linearly
independent columns—meaning that the reservoir observables are linearly

independent—Xþ ¼ ðX>XÞ�1
X> .

In Fig. 2c, d, h is taken to be polynomial in reservoir observables. In this case,
the training proceeds otherwise as above except that before finding X+ we expand
X with all possible products of different reservoir observables up to a desired
degree, increasing the number of columns. Powers of the same observable are not
included since they are not required by the parity check task.

The used echo-state network. An echo-state network (ESN) is used for some of
the results shown in Fig. 4. For a comparison with a harmonic network of eight
oscillators (one of them the ancilla) and a bias term we set the size of the ESN to
N= 8 neurons, all of which are used to form the output, and include a bias term.

The ESN has a state vector xk 2 RN with dynamics given by xk ¼
tanhðβWxk�1 þ ιwskÞ where W is a random N ×N matrix, w a random vector of
length N, β, and ι are scalars and tanh acts element-wise. W and w are created by
drawing each of their elements uniformly at random from the interval [−1, 1].
Furthermore, W is scaled by dividing it by its largest singular value. Parameters β
and ι are used to further adjust the relative importance of the previous state xk−1

and scalar input sk. We use a single fixed realization of W and w and set β= 0.95
and ι = 1. The readout function is a linear function of the elements of xk and
training follows a similar procedure to the one described for the oscillator networks
in Methods D. We note that the precise linear and nonlinear memory contributions
of the ESN to the IPC bar in Fig. 4 depend on the choice of the parameters values
for β and ι. For this manuscript, the relevant aspect is that the total IPC of the ESN
is bounded to the number of neurons (8), independently of the choice of the
parameter values.

Estimation of total information processing capacity. Information processing
capacity is considered in Figs. 3 and 4. By total capacity we mean the sum of
capacities over a complete orthogonal set of functions and using infinite sequences
s0 and s. Shown results are estimates of the total capacity found as follows.
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All estimates are formed with input i.i.d. in [−1, 1]. One choice of functions
orthogonal w.r.t. this input is described in Eq. (12) of the work by Dambre et al.71,
which we also use. More precisely, the considered orthogonality is defined in terms
of the scalar product in the Hilbert space of fading memory functions given in
Definition 5 of the work by Dambre et al.71—it should be stressed that in general,
changing the input changes, which functions are orthogonal. Since σ(xR) and 〈xR〉
can only depend on products of the inputs at the same delay, we only consider the
corresponding subset of functions. They are of the form ðPτ

dÞk ¼ Pdðsk�τÞ where Pd
is the normalized Legendre polynomial of degree d and τ 2 N is a delay. In Fig. 4,
an estimate for the total capacity of an echo-state network is also shown, for which
we consider the full set of functions.

For each considered function, we compute the capacity given by Eq. (6) by
finding the weights of the optimal h as described previously in the Methods. We
use finite input sequences, which in general can lead to an overestimation of the
total capacity. As explained in Sec. 3.2 of the Supplementary Material of the work
by Dambre et al.71, the effect of this can be reduced by fixing a threshold value and
setting to 0 any capacity at or below the value. We use the same method.

In practice, only a finite number of degrees d and delays τ can be considered for
the numerical estimates, which can lead to an underestimation. We have found the
following approach useful when searching for capacities larger than the threshold
value. We fix a maximum degree d (for all results we have used 9) and for each
degree we order the functions according to delay and find the capacity of N/2
(rounded to an integer) functions at a time, until none of the N/2 functions in the
batch contribute to total capacity. All total capacities except the one for thermal
encoding—where we have verified that some of the observables are in fact linearly
dependent or almost—are very close to the theoretical maximum.

A different approach is used for the echo-state network, which we briefly
describe in the following. We still fix the maximum degree as 9. For a fixed degree d
we consider a sequence of delays {τ1, τ2,…, τd} where the sequence is non-
descending to avoid counting the same function multiple times. Then we form the
product

Q
τ i
PmðτiÞðsk�τi

Þ over distinct delays of the sequence where m(τi) is the
multiplicity of τi in the sequence. The lexical order of non-descending sequences of
delays allows us to order the functions, which is exploited to generate each function
just once. Furthermore, we have found that functions that contribute to total
capacity seem to have a tendency to be early in the ordering, which makes it faster
to get close to saturating the theoretical bound.

Data availability
The data that support the findings of this study are available from the corresponding
author upon reasonable request.
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