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ARTICLE

Diffusion in dense supercritical methane from
quasi-elastic neutron scattering measurements
Umbertoluca Ranieri1,2✉, Stefan Klotz 3, Richard Gaal4, Michael Marek Koza2 & Livia E. Bove 3,5✉

Methane, the principal component of natural gas, is an important energy source and raw

material for chemical reactions. It also plays a significant role in planetary physics, being one

of the major constituents of giant planets. Here, we report measurements of the molecular

self-diffusion coefficient of dense supercritical CH4 reaching the freezing pressure. We

find that the high-pressure behaviour of the self-diffusion coefficient measured by quasi-

elastic neutron scattering at 300 K departs from that expected for a dense fluid of hard

spheres and suggests a density-dependent molecular diameter. Breakdown of the

Stokes–Einstein–Sutherland relation is observed and the experimental results suggest the

existence of another scaling between self-diffusion coefficient D and shear viscosity η, in such

a way that Dη/ρ=constant at constant temperature, with ρ the density. These findings

underpin the lack of a simple model for dense fluids including the pressure dependence of

their transport properties.
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Methane is one of the simplest molecular fluids and the
most abundant organic molecule in the Universe. On
account of this, it represents a model system for more

complex organic molecules, an important feedstock for energy
applications, and a major constituent of planetary interiors1,2. For
example, methane is abundant on Titan where it plays the role of
water on Earth, with liquid surface reservoirs, yellow clouds, and
rain3. Since its discovery, the presence of methane on Mars has
evoked visions of life on that planet4. The properties of methane at
high pressure P and high temperature T are crucial for under-
standing the stability and formation of reduced hydrocarbons in
the Earth’s mantle5, and for describing the geodynamics of giant
planets such as Uranus and Neptune6,7.

Methane is a non-polar, highly symmetric tetrahedral
molecule with low polarizability. Therefore, the effective pair
potential between molecules has negligible three-body terms
and negligible dependence on the thermodynamic state8.
Methane is isoelectronic with water, but it displays profoundly
different physical properties due to its quasi-sphericity and to
the lack of directional hydrogen bonds. For this reason,
experimental findings for methane can be easily compared to
theoretical models and computational results. At room tem-
perature, methane crystallizes upon compression at ~1.4 GPa
into the so-called phase I, where C atoms occupy fcc lattice sites
and H atoms are free to rotate around them9. The application of
higher pressures has many remarkable effects, such as transi-
tion to other crystalline structures9–12, distortion of the tetra-
hedrality with consequent rise of a non-zero dipole moment13,
and reaction with other simple molecules to form CH4–H2 and
CH4–H2O inclusion compounds13,14, for example. Solid
methane has been studied under high pressures of hundreds of
GPa and high temperatures of thousands of Kelvin9–12,15.
However, few studies exist on room-temperature fluid methane
at pressures from a fraction of GPa to 1.4 GPa. The single-
particle rotational and translational diffusion coefficients,
which are among the main transport properties of a fluid, are
still unknown under those conditions. This is because the quasi-
elastic neutron scattering (QENS) and nuclear magnetic reso-
nance (NMR) techniques were limited to pressures of the order
of a fraction of GPa in the past.

Previous QENS measurements reported values of the rotational
and translational diffusion coefficients up to a maximum P of 0.4
GPa16. The translational diffusion coefficient (or self-diffusion
coefficient) has also been measured by NMR at room temperature
up to 0.2 GPa17–19, and along several low-T17,18,20 and high-
T17,19 isotherms up to comparable pressures. At the lowest
investigated temperatures (110 and 140 K), when the system is a
liquid, the entire isotherms up to the freezing pressures could be
covered20; however, at higher temperatures, higher pressures are
required to reach the freezing point. Melting21 and viscosity
data22 indirectly suggested that supercritical methane at room
temperature could exhibit a "locking" of the rotational motion at
pressures above 0.8 GPa, but this hypothesis could not be verified.

In this work, we report QENS measurements of the self-
diffusion coefficient of dense supercritical methane at the con-
stant temperature of 300 K, and pressures between 0.12 and 1.44
GPa. The measurements have been carried out at the IN6-SHARP
spectrometer installed at the Institut Laue-Langevin (ILL) in
Grenoble, France. QENS is a well-suited technique to probe
single-particle dynamics of atoms and molecules in fields from
materials science to biology, and in particular for hydrogenated
samples. Our experimental results are compared with published
computational values for the dense hard-sphere fluid, and with
the prediction of the well-known phenomenological relation
linking the self-diffusion coefficient to the shear viscosity, namely
the Stokes–Einstein–Sutherland equation.

Results
Investigated pressure range. Two high-pressure setups were
employed to cover a wide P range between 0.12 GPa and the
freezing pressure. High-quality data over the P range from 0.12 to
0.50 GPa were collected with a continuously loaded pressure cell,
using methane both as the sample and the pressure transmitting
medium. A Paris–Edinburgh press was employed to collect data
up to 1.44 GPa, at which pressure freezing was not observed.
Details about the high-pressure setups are given in the “Methods”
section. The critical point of methane is at 191 K and 4.6 MPa, so
the T-P range investigated by the present experiment is entirely in
the supercritical region, far from the critical point and also far
from the maxima/minima in certain thermophysical properties
associated with the so-called Widom line23,24. The melting curve
given in ref. 25 passes through 300 K at 1.38 ± 0.02 GPa and our
highest investigated pressure was 1.44 ± 0.05 GPa, which is
slightly above the freezing pressure, meaning that the sample
could have possibly been in the metastable fluid region.

At the lowest investigated pressure (0.12 GPa) and 300 K, the
density is 0.3582 g cm−3, which is more than twice the density at
the critical point (0.1627 g cm−3). The covered P range
corresponds to a range of density variation of 70% of the initial
value, from 0.3582 g cm−3 at 0.12 GPa to 0.6161 g cm−3 at 1.44
GPa. The second value is considerably greater than the density of
liquid methane at ambient pressure (for example, 0.4389 g cm−3

at 100 K) and is also greater than the density of liquid methane at
any pressure. Density values given throughout this paper are
taken from the equation of state of ref. 26 up to 1 GPa and from
its extrapolation above. Above ~0.7 GPa, methane at room
temperature has a greater shear viscosity than the higher shear
viscosity that can be found in liquid methane (~250 × 10−6 Pa s,
along the low-T melting line27).

Fitting model, obtained diffusion coefficient, and comparison
with the literature data. Figure 1 depicts typical empty cell-
subtracted spectra of methane at selected P and Q values, Q being
the modulus of the wavevector transfer. The (quasi-elastic) signal
gets broader with decreasing P or with increasing Q, as expected
in case of translational motion, and is correctly reproduced by a
Lorentzian function. The rotational motion was ignored in the
fitting model, similarly to our previous QENS study of methane
diffusion at the interface of ice clathrate structures at 0.8 GPa28.
This choice is discussed in Supplementary Note 1. No systematic
deviations were observed during the fitting of the present data
that might indicate the presence of a significant contribution
from the rotational motion. Best Lorentzian fits to the spectra are
reported in Fig. 1 and can be seen to accurately describe the
measured signal with no systematic residuals.

Figure 2 depicts the half width at half maximum Γ(Q) of the
Lorentzians as a function of Q2, at each investigated pressure. Γ
(Q) is observed to increase linearly at small Q and to partially
saturate at high Q. At small momentum transfers, i.e., when one
is looking at the long distances, the translational motion is well
approximated by Fickian diffusion, for which Γ(Q) = ℏDQ2, with
D the self-diffusion (or translational diffusion) coefficient. At high
momentum transfers, i.e., when one is looking at shorter
distances, the microscopic details of the translational motion
become relevant and the Q2 dependence of Γ(Q) can show
considerable deviations from linearity29. The model that was
found to correctly describe the Q dependence of Γ(Q) in the
present data is the translational random-jump diffusion model
originally proposed by Singwi and Sjölander for liquid water30,
for which:

ΓðQÞ ¼ _DQ2

1þ τDQ2 ; ð1Þ
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where τ represents the time spent by the diffusing particle at quasi-
equilibrium sites between rapid jumps. The same model was
employed in our QENS work on interfacial methane28 and previously
in a QENS study of the diffusion of methane in microporous silica31.
QENS data of liquid water over wide ranges of temperature and
pressure have also been analysed using the Singwi–Sjölander
formula29,32–35. Best fits of Γ(Q) using Eq. (1) are reported in Fig. 2.
More details about the data analysis are given in the “Methods”
section.

The obtained self-diffusion coefficient D is plotted as a function of
pressure in Fig. 3. Values range from 22.59 × 10−9 m2 s−1 at 0.12
GPa to 3.69 × 10−9 m2 s−1 at 1.44 GPa. The values obtained for the
parameter τ are tabulated in Supplementary Table 1 and commented
in Supplementary Note 2. For comparison, D= 23200 × 10−9 m2 s−1

in ambient-pressure, room-temperature gaseous methane36,
when its density is only 0.00066 g cm−3 26. Values of 3.61 and
3.6 × 10−9m2 s−1 were reported for liquid methane at 0.0344 MPa

and 100.0 K (along the liquid-vapor coexistence line)18 and at
0.15 MPa and 102 K37, respectively. The self-diffusion coefficient was
found to be roughly constant in liquid methane along the freezing
(melting) line between 91 and 140 K18,20, but it has not been possible
to check if it is comparable at higher temperatures along the melting.
The only measurements that are available along the melting line in
the literature are: 2.52 × 10−9 m2 s−1 at 0.0117MPa and 91 K (the
triple point)18, 2.62 × 10−9 m2 s−1 at 0.08GPa and 110K20, and
2.85 × 10−9 m2 s−1 at 0.22GPa and 140 K20. Our results show that in
supercritical methane at 300K and the freezing pressure, the self-
diffusion coefficient is significantly larger than in liquid methane
along the low-T melting line.

A good fit to our values of D over the full investigated P range
is given by the following empirical relation:

D ¼ exp ð3:5495 � 4:3717P þ 4:1527P2 � 1:5306P3Þ; ð2Þ
where D is in units of 10−9 m2 s−1 and P in GPa. Equation (2)

Fig. 1 Examples of measured spectra. QENS spectra of methane at 300 K and the indicated pressure and wavevector transfer values. Experimental data
(empty circles) are compared to the resolution-corrected best Lorentzian fits (solid lines). Error bars were calculated by the square root of absolute
neutron count combined with the law of propagation of errors.
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accurately reproduces the measured P dependence of D (the
standard deviation is 3.3%) and can be used for interpolations. In
Fig. 3, we also compare our results with those available in
refs. 16–19 for room-temperature methane. The previous QENS
study16 covered a pressure range up to 0.4 GPa at 295 K and
reported greater D values than the present study, except at 0.4
GPa, for which an almost identical value was given. There are
three sets of NMR data along the room-temperature isotherm:

up to 0.16 GPa at 298 K by Harris17, up to 0.17 GPa at 298 K by
Oosting and Trappeniers18, and up to 0.207 GPa at 295 K by
Greiner–Schmid and co-workers19. Their respective precisions in
D were estimated to be ±2, ±2, and ±5%. Over the narrow
common pressure range, our results follow the same pressure
trend as the NMR values but are 10–15% smaller (see Fig. 3),
which can be considered to be satisfactory given the different
techniques. A larger (20–25%) discrepancy was remarked at
moderate pressures (up to 0.025 GPa) when comparing results
from the NMR17 and the tracer38 techniques. High-pressure
literature measurements of D exist at temperatures from 91 to
454 K and pressures up to a maximum of 0.207 GPa by NMR17–20

and QENS16,39. Supplementary Fig. 1 locates them in the T-P
phase diagram of methane. A molecular dynamics simulation
study40 of methane reported values for D of 19.6 and 23.4 × 10−9

m2 s−1 at 0.107 GPa and 295 K (not shown in Fig. 3), depending
on the choice of the potential model. The second value, which was
obtained using a Lennard–Jones potential with electrostatic
interactions, compares very well with our experimental value of
22.59 × 10−9 m2 s−1 at 0.12 GPa. Finally, in Supplementary Fig. 2,
we compare the pressure dependence of our data with results of a
molecular dynamics simulation study of the Lennard–Jones
fluid41. Supplementary Fig. 2 reports the logarithm of D as a
function of P in terms of reduced quantities as defined in the
ref. 41. The model is not able to catch the trend of the
experimental data.

Hard-sphere model. The hard-sphere model is a useful model for
calculating the transport properties of dense fluids, because these
properties are largely determined by the repulsive part of the
intermolecular potential for which the hard-sphere interaction is
the simplest representation. The self-diffusion coefficient of liquid
and supercritical methane up to ~0.2 GPa17,20 was initially shown
to be globally in good agreement with computational results from
ref. 42 for a fluid of hard spheres that are perfectly smooth,
meaning that the translation-rotation coupling is negligible.
Other computational results also gave a good fit to the experi-
mental self-diffusion data for methane at low and room tem-
perature leading to the conclusion that methane could be adopted
as a model smooth hard-sphere fluid with no translation-rotation
coupling as far as transport properties were concerned43. How-
ever, later, new data and simulations indicated that methane
shows some translation-rotation coupling at low and high
temperatures19,44. The effect of the translation-rotation coupling
can be taken into account by analogy with a rough hard-sphere
fluid45. This phenomenological model, which is valid between
twice the critical density and the freezing density of the hard-
sphere fluid, describes the lowering of the self-diffusion coeffi-
cient due to the translational-rotational coupling in an averaged
way, and assumes that the experimental self-diffusion coefficient
Dexp is:

Dexp ¼ Drhs ¼ ADshsðσÞ; ð3Þ

where Drhs and Dshs(σ) are the self-diffusion coefficients of the
rough and smooth hard-sphere fluids, respectively, A is a cou-
pling parameter smaller than unity and σ is the sphere diameter45.
Dshs(σ) is meant to be taken from molecular dynamics simula-
tions while A and σ are free parameters, which can be adjusted to
match the density dependence of Drhs with that of Dexp. Both
parameters should be independent of temperature and density by
definition, but in practice σ is often permitted to be temperature
(though not density) dependent. Greiner-Schmid and co-
workers19 compared their experimental data to the computa-
tional results of ref. 46 with a T-dependent coupling parameter A,
and found values ranging between 0.95 and 1.07 with no clear

Fig. 2 Wavevector transfer Q dependence of the QENS signal. Half-width
at half maximum Γ(Q) of the Lorentzian fits of the quasi-elastic signal as a
function of Q2. Error bars correspond to one standard deviation, as obtained
from fits such as those of Fig. 1. The best fits to the data using Eq. (1) are
shown as dashed lines.

Fig. 3 Pressure dependence of the diffusion coefficient. Self-diffusion
coefficient D of methane at 300 K as a function of pressure and its best fit
(solid line), reported in Eq. (2). Error bars correspond to one standard
deviation, as obtained from the fits of ten data points shown in Fig. 2.
Room-temperature literature values16–19 above 0.05 GPa are also shown.
The upper horizontal axis reports the density, as obtained from the
equation of state of methane at 300 K.
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trend with T. Harris44 re-analysed the data of ref. 19 using more
recent computational results47 and a T-independent coupling
parameter, and found A = 0.927 over the range 295–427 K. He
also re-analysed the data of refs. 17,20; he found A = 0.90 for the
range 110–323 K44.

In Fig. 4a, we compare our experimental values of D with
recent computational results48 for the dense fluid of smooth hard
spheres from molecular dynamics calculations carried out with
large system sizes. Ref. 48 reports the self-diffusion coefficient in
units of σðkBT=mÞ1=2 as a function of dimensionless reduced
number density nσ3, where kB is the Boltzmann constant, m is the
molecular mass, and n = ρNA/M is the number density, with ρ
the mass density, NA the Avogadro number, and M the molar
mass. In Fig. 4a, the simulated self-diffusion coefficient was
converted into the unit of the present work for six selected values
of σ and T= 300 K. Reduced number density was converted into
mass density. In Fig. 4a, we directly report results of ref. 48 for
smooth hard spheres so this approach corresponds to assuming
A= 1. One can see from the figure that the experimental D
coincides with the computational one for σ ~ 3.62Å at our two
lowest investigated densities. As ρ increases, the experimental D
corresponds to the diffusion coefficient obtained for a hard-
sphere fluid with decreasing values of σ and eventually for
~3.43Å at our two highest densities before crystallization. In
other words, the experimental results do not follow the results
simulated for a smooth hard-sphere fluid with a constant (ρ-
independent) sphere diameter σ. A small deviation from the
smooth hard-sphere prediction has been previously observed in
compressed liquid methane at low T for the few highest pressure
points available in ref. 20. However, the present study is the first
clear observation of such behavior for methane, to the best of our
knowledge. In ref. 20 data from six isotherms from 110 to 323 K
could be superposed when the reduced self-diffusion coefficient
was plotted against reduced number density through the choice of
a T-dependent, ρ-independent diameter σ. The present data
cannot be superposed to that common curve for any density-
independent σ. This approach is discussed further in Supple-
mentary Note 3 and the reduced diffusion coefficient is plotted in
Supplementary Fig. 3.

In Fig. 4b, our values of D are compared with those simulated
in ref. 48 for the hard-sphere fluid for σ = 3.5 Å (the value found
in ref. 44 for the room-temperature data of ref. 19) and T = 300 K
after multiplication by the coupling parameter A, for five different
values of A between 0.8 and 1.0. As can be seen in the figure, the
computational results for A = 0.85 reproduce the experimental D
within 7% up to ~0.5 g cm−3, but the model predicts considerably
smaller self-diffusion coefficients for any value of A at higher

densities. Our data can be reasonably well fitted with σ = 3.39 Å
and A = 0.67 over their entire range of pressures (see Fig. 4c), but
these values are by far too small compared to the literature low-P
results (σ = 3.47–3.50 Å and A = 0.90–0.9344). One must
conclude that, despite the correction accounting for the
translation-rotation coupling, the hard-sphere model does not
correctly describe the experimental results for any pair of
reasonable constant values of σ and A. In order to match the
computational results with our experimental results, one has to
relax at least one of the two assumptions that σ and A are density
independent. Since there is reason to believe that A does not
increase with increasing P21,22, we suggest that A should be kept
constant and equal to the low-P value while the diameter should
be allowed to change (decrease) with density. We compared our
values of D with the computational results48 after multiplication
by A= 0.927 (the value found in ref. 44 for the data of ref. 19) and,
at each investigated density point, we matched 0.927Dshs(σ) with
Dexp by adjusting the hard-sphere diameter σ. The values of the
density-dependent equivalent diameter σ so obtained are reported
in Fig. 4d with their best fit. They vary from 3.58 Å at our lowest
densities to 3.42 Å at our highest density. Finally, for A = 0.927
and the ρ-dependent σ of Fig. 4d, the computational values of D
are those plotted in Fig. 4c, where they can be seen to agree well
with the experimental ones. If A decreases with pressure, the
actual variation of σ should be even larger than that reported in
Fig. 4d.

Stokes–Einstein–Sutherland and fractional Stokes–Einstein–
Sutherland equations. It is common to compare the pressure
dependence of the microscopic self-diffusion coefficient
with that of the macroscopic shear viscosity η using the
Stokes–Einstein–Sutherland (SES) equation, which predicts:

D
T
¼ kB

πσC
1
η
; ð4Þ

with σ an effective (hydrodynamic) diameter and C a constant
depending on the geometry of the motion and comprised
between 2 (slip limit) and 3 (stick limit). Although the SES
relation strictly only applies to macroscopic spherical particles
diffusing in a solvent, it has been found to work remarkably
well on the molecular scale for the self diffusion of atomic and
molecular liquids, in which case the solute particle is the same
as the solvent particles, with some flexibility in the assignment
of σ and C. When the SES relation fails, the deviation can be
generally interpreted as being due to the fact that σ and/or C
depend on the thermodynamic conditions. Vice versa, if σ is
known to depend on the thermodynamic conditions (as we

Fig. 4 Comparison with the molecular dynamics simulations of the hard-sphere fluid. a–c Self-diffusion coefficient D from our measurements of methane
(full circles) and from the simulation results for the hard-sphere fluid reported in ref. 48 (lines), as a function of density. Simulated values are reported for:
a A = 1.00 and six different values of the hard-sphere diameter σ, b σ = 3.5 Å and five different values of the translation-rotation coupling parameter A, and
c A = 0.67 and σ = 3.39 Å, A = 0.927 and σ from the fit of d. d σ values for which Eq. (3) is satisfied with A = 0.927, as a function of density, and the best
sigmoidal fit (dashed line). Error bars correspond to one standard deviation.
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have shown in the previous subsection), then the SES relation
is expected to fail. Very often, the SES relation can be replaced
by a "fractional" Stokes–Einstein–Sutherland (FSES) equation,
which predicts:

D
T
/ 1

ηξ
; ð5Þ

where 0 ≤ ξ ≤ 1 is usually independent of both P and T49.
Harris49 examined the literature database available for the
self-diffusion coefficients and viscosities of molecular and
ionic liquids at modest pressures, and concluded that the FSES
equation holds over wide T ranges with fitted values of ξ
between 0.79 and 1.00.

Figure 5 depicts ln(D/T) as a function of ln(1/η) using our
values of D as well as the room-temperature values of refs. 17–19

and η values interpolated from refs. 22,50. The viscosity of
supercritical methane was measured up to 1 GPa at 298 K in ref. 22

and up to 1.32 GPa at 293–295 K in ref. 50; therefore, a small
extrapolation to 1.44 GPa was needed. In Fig. 5, the SES relation
(D/T= K/η, where K is a constant) simply appears as a straight
line with slope 1 and the FSES relation (D/T= K/ηξ) appears as a
straight line with slope ξ. As can be seen in the figure, a FSES
relation with an exponent ξ= 0.73 ± 0.02 successfully describes
our data over their entire range of pressures (0.12–1.44 GPa). The
maximum deviation of our data points from the best fit is 7% and
the standard deviation is 5.1%. Globally, the fit is believed to be
satisfactory given the extended range of pressure variation and the
error bars on D and P. On the other hand, the slope of ln(D/T)
versus ln(1/η) is strongly pressure-dependent in the literature self-
diffusion data17–19, which cover the pressure range from 4.6 MPa
(the critical pressure) to 0.2 GPa. It is larger than 1 below 0.04 GPa
and smaller than 1 above 0.04 GPa (see Fig. 5), meaning that the
SES relation is violated in both regimes but it holds at ~0.04 GPa.
This can be also appreciated by looking at the pressure
dependence of Dη, which is reported in Supplementary Fig. 4.
At constant T, the SES relation predicts a constant product

between D and η. Combination of our results with the literature
data17–19 unambiguously shows that the calculated product Dη for
methane along the room-temperature isotherm decreases sharply
with P below 0.04 GPa, has a minimum at ~0.04 GPa, and
increases slowly with P above 0.04 GPa (see Supplementary Fig. 4).
Similarly, in the Lennard–Jones fluid, Dη has a minimum as a
function of the temperature along isochores51. It should be
mentioned that the SES relation is not expected to hold below
twice the critical density, i.e., below ~0.08 GPa at room T. Some
considerations about the hydrodynamic diameters and parameters
C satisfying Eq. (4) along our isotherm are reported in
Supplementary Note 4. Supplementary Fig. 5 shows that the SES
relation holds in compressed liquid methane along the 110, 140,
and 160 K isotherms.

Finally, another simple scaling happens to describe our
experimental results: the factor Dη/ρ is constant with maximum
deviations of ±10% over the P range investigated here (both Dη
and ρ increase by ~70%). Such a scaling has been first suggested
by Dullien52 to work for a set of liquids, including methane at
very modest pressures. The pressure dependence of Dη/ρ is
reported in Supplementary Fig. 6 for our values of D as well as the
room-temperature values of refs. 17–19. The factor Dη/ρ decreases
fast with pressure for P up to ~0.2 GPa at room temperature (see
Supplementary Fig. 6) and decreases slowly with pressure along
the 110, 140, and 160 K isotherms (see Supplementary Fig. 7).
Should it be confirmed by future studies that the factor Dη/ρ is
constant for dense supercritical methane, it will be possible to use
it for extrapolations along the isotherms for which η is known,
and D is only available at low pressure in the literature (this is
presently the case between 327 and 454 K19,50). In a similar way,
the product Dρ is found53 to be constant from ambient to the
critical P (consistently with the zero-order approximation of the
binary-collision expansion of D in terms of the density18), which
is useful for extrapolations at those moderate pressures. Dρ drops
upon isothermal compression above the critical P54. More
sophisticated models for predicting the self-diffusion coefficient
(and viscosity) of fluids have been developed over the last four
decades55–57; reviewing them falls beyond the scope of the
present work. The popular simple relation Dη/ρ1/3 = constant,
which is a modification of the Stokes–Einstein–Sutherland
relation without a hydrodynamic diameter51, does not describe
well our experimental results along the 300 K isotherm.

Discussion
In the present study, we compared the experimental self-diffusion
coefficient of methane along the 300 K isotherm with published
computational values for a dense smooth hard-sphere fluid48, and
found poor agreement for any density-independent sphere dia-
meter. Similar deviations, with the experimental self-diffusion
coefficient being higher than that predicted based on the smooth
hard-sphere model, were also reported for more complex mole-
cular liquids approaching their freezing pressures, for example
CCl445, C6D6, and Si(CH3)458. These observations are examples of
limitations of the model when tested over wide ranges of pressure
variation. The hard-sphere model is often tested in a region of the
phase diagram of fluid systems, where the effects of the repulsive
interaction among molecules are averaged by the distances. When
the molecules are forced close together and the repulsive part of
the potential is probed in higher details, more accurate models are
needed to describe the dense fluid. A better agreement with our
experimental results is found when the coupling of the transla-
tional and rotational motions is taken into account through the
correction suggested in ref. 45 but still, the experimental values lie
well above the computational results at pressures above ~0.5 GPa.

Fig. 5 Test of the Stokes–Einstein–Sutherland and fractional
Stokes–Einstein–Sutherland relations. ln(D/T) as a function of ln(1/η),
with self-diffusion coefficient values from this work and from refs. 17–19

and viscosity values from refs. 22,50. Error bars correspond to one standard
deviation. The best fit to our data using a fractional Stokes–Einstein–
Sutherland relation (D/T= K/ηξ) is shown as dash-dotted line and the
values of K and ξ are indicated. The Stokes–Einstein–Sutherland relation
(dashed line) predicts D/T= K/η.
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We concluded that the equivalent hard-sphere diameter of
methane must be reduced upon compression along the 300 K
isotherm. Possible reasons for this might be the softness of the
intermolecular potential and/or orientational ordering arising at
high density, both neglected in the rough hard-sphere model. It
was similarly suggested that the effective hard-core diameters of
C6D6 and Si(CH3)4 become a function of density at high packing
fractions58. The good quality of our data allows us to quantify this
effect. Values of the diameter were estimated assuming a constant
translation-rotation coupling, and a significant decrease from 3.58
to 3.42 Å was found with increasing density. It is interesting to
note that the equivalent hard-sphere diameter is not found to
decrease linearly with density, but decreases faster in the high-
density regime, where rotational locking was inferred from pre-
vious melting and viscosity data21,22, as mentioned in the intro-
duction. The more recent viscosity measurements50 confirmed
that the viscosity increases with P more rapidly than expected
above 0.8 GPa at room temperature, but did not show a radical
divergence in viscosity along the investigated high-T isotherms
(up to 6 GPa and 673 K). Thus, the scenario of a locking of the
rotational motion remains to be corroborated. Orientational
ordering would enable the system to get more tightly packed, thus
reducing the equivalent single-molecule size as observed in the
present study. Furthermore, at the highest pressures, enhanced
orientational correlations would make the motion of adjacent
molecules occurring without significant overlap between core
repulsion regions, which would also imply larger values of the
diffusion coefficient than those predicted by the rough hard-
sphere model. Further investigations, including computational
studies, are needed to confirm these hypotheses. Interestingly, if
orientational ordering were confirmed, the rotation of the
molecules would be more hindered in the fluid phase close to the
freezing pressure than in the crystal.

We also tested the validity of the Stokes–Einstein–Sutherland
equation against our findings for dense supercritical methane.
To our knowledge, the Stokes–Einstein–Sutherland equation
had never been tested experimentally on a supercritical fluid up
to the freezing pressure. We found that the SES equation is
violated in our data, as the product Dη increases by 70% from
0.12 to 1.44 GPa at the constant temperature of 300 K. A
fractional Stokes–Einstein–Sutherland equation with an expo-
nent ξ= 0.73 ± 0.02 correctly represents our data over their
entire range of pressures (0.12–1.44 GPa). This value of ξ is
close to the value (0.76) obtained for hot dense liquid water
along the 400 K isotherm32, and is slightly smaller than the
bottom limit (0.79) of the range of values reported for mole-
cular and ionic liquids at modest pressures and different
temperatures49. Both the smooth hard-sphere fluid and the
model Lennard–Jones fluid were predicted to follow FSES
relations with considerably larger values of ξ of 0.9648 and
0.9249, respectively. It is worth emphasizing that Dη has a
shallow minimum as a function of pressure at ~0.04 GPa. The
minimum might also exists in other systems and might explain
why the SES relation appears to hold in part of the thermo-
dynamic phase diagrams.

Breakdown of the SES equation is common in the literature of
supercooled and glass-forming liquids, including supercooled
water59. The failure of the Stokes–Einstein–Sutherland relation in
the supercooled regime has been addressed by various theoretical
perspectives60,61; it is often attributed to the presence of dyna-
mical heterogeneity62,63 and its quasi-universality has been
recently explained by isomorph theory64. However, the case of a
dense fluid subjected to a strong density variation upon iso-
thermal compression is very different and to our knowledge has
so far not been considered theoretically. We hope that our study
will motivate the development of theories for explaining the

breakdown of the SES relation observed here in dense super-
critical methane.

To conclude, we found that all of the popular models tested
here (D = constant along the melting line, the Lennard–Jones
model, the smooth and rough hard-sphere models, the
Stokes–Einstein–Sutherland equation, and the fractional
Stokes–Einstein–Sutherland equation with the power–law expo-
nent of the Lennard–Jones fluid) are inadequate to reproduce the
measured high-pressure behavior of the self-diffusion coefficient
of methane along the room-temperature isotherm. This highlights
the lack of a simple model for predicting the single-particle
dynamics in dense fluid methane, and in molecular fluids at high
densities in general. A fractional Stokes–Einstein–Sutherland
equation describes well our data for an exponent (0.73) smaller
than the typical values reported49 for simple fluids. The factor
Dη/ρ remains fairly constant at constant temperature over the
pressure range investigated here, and it would be very interesting
to check if this empirical scaling holds along other isotherms.

The present study might be extended to fluid methane along
lower-T isotherms in the vicinity of the critical point as well as
along higher-T isotherms, where higher pressures and densities
can be achieved. There is also a need for more high-pressure
viscosity data of methane at temperatures below 273 K, the cur-
rent limit being 0.031 GPa in the experimental literature dataset65

and 0.2 GPa from the equation of state-like viscosity model of
ref. 27. In general, data on the properties of compressed super-
critical fluids are surprisingly scarce, despite the increasing
number of applications of supercritical fluids in extraction and
purification technologies, for example in food, petrochemical,
nuclear waste, and pharmaceutical industries. The solubility in
supercritical fluids depends on density and diffusivity. A better
knowledge of the diffusivity of supercritical fluids would allow for
an optimization of their dissolving ability by tuning pressure and
temperature. We believe that technology would benefit from such
a guidance. We must acknowledge that significant progresses
have been made in recent years concerning the fundamental
problem of dividing the phase diagram into separate regions,
where a supercritical fluid possesses liquid-like and gas-like
properties23,24. There is still a lot to do on compressed fluid
binary mixtures. Pressures of the order of a fraction of GPa are
increasingly accessible by the industry and are also relevant for
Earth and planetary science. As an example, methane-rich
hydrous fluids are ubiquitous in the Earth, where they exist
down to upper mantle conditions, and are believed to have a
strong impact on elastic waves propagation at depth66.

Methods
High-pressure setup. For the measurements up to 0.5 GPa, we used a cylindrical
pressure cell of aluminum alloy whose internal diameter was 6 mm. A cylindrical
aluminum spacer of 5.5 mm in diameter was inserted to reduce the multiple
scattering contributions and about 200 mm3 of methane was contained in the
resulting hollow circular cylinder (thickness of 0.25 mm, height of about 40 mm).
The CH4 (purity > 99.95%) bottle was purchased from AirLiquide, Saint Priest,
France. The sample pressure was changed using a methane-compatible gas com-
pressor, and was directly measured by a manometer attached to the capillary
connecting the compressor with the cell (no piston or separator was used; methane
filled the sample chamber as well as the capillary). Fluctuations of this value around
the desired pressure were always below 5MPa. Spectra of methane at 300 ± 1 K
were recorded at six pressures between 0.12 and 0.50 GPa: 0.12, 0.16, 0.23, 0.28,
0.40, and 0.50 GPa. The acquisition time was typically 3–4 h per P point. After the
measurements of methane, the sample was evacuated and the empty cell was
measured at the same experimental conditions.

Additional data were collected using the VX5 Paris–Edinburgh press67 in
combination with a loading clamp68. In this setup, a quasi-spherical ~50 mm3

sample is encapsulated inside a metallic gasket and squeezed between two anvils.
QENS measurements in the Paris–Edinburgh press have been previously
performed by our group on liquid water32–34 and solid methane clathrate
hydrate28. For the present work, a setup similar to that of ref. 28 was employed: we
used a copper-beryllium gasket and anvils made of zirconia-toughened alumina
ceramics, described in the ref. 69. The clamp module of the Paris–Edinburgh press
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was inserted into a high-pressure vessel and methane was loaded at room
temperature and 0.2 GPa. The employed gas compressor and high-pressure vessel,
which are installed at the ILL, were described in ref. 68. Approximately 30 mm3 of
Na2Ca3Al2F14 powder was loaded in the sample chamber to reduce multiple
scattering and to serve as a pressure gauge.

Three sample loadings were performed in the Paris–Edinburgh press and for
each of them, the gasket was sealed by applying a different load. Two samples were
loaded by applying 60 and 115 kN and measured at IN6-SHARP at only one P
point each. In a second step, both samples were measured at the neutron
diffractometer D20 at the ILL to determine their pressure from our equation of
state of Na2Ca3Al2F14 (Birch–Murnaghan, B0 = 62.8 GPa, B 0

0 = 3.8, V0 = 1080.7
Å3). The sample at the lower pressure had a lattice parameter for Na2Ca3Al2F14 of
10.2463 ± 0.0010 Å, corresponding to P = (0.29 ± 0.03) GPa. The sample at the
higher pressure was found to be at 1.44 ± 0.05 GPa (lattice parameter of 10.187 ±
0.002Å). The third sample was loaded by applying 85 kN and measured at IN6-
SHARP, then compressed to 100 kN and measured again. These two values
correspond to pressures of 0.81 ± 0.05 and 1.13 ± 0.05 GPa, by linearly
interpolating the pressures obtained for the two previous samples. Upon further
compression to 120 kN, the gasket failed and the sample was lost. The force was
released completely and the empty cell was measured. All the measurements were
performed at 300 ± 1 K. Acquisition times ranged between 6 and 12 h per
pressure point.

Data analysis. IN6-SHARP is a time-of-flight spectrometer for cold neutrons with
variable resolution. We set the wavelength of the incident neutrons to 5.12Å,
resulting in an instrumental energy resolution of about 0.08meV (full width at half
maximum) at zero energy transfer. Constant-Q spectra from 0.4 to 1.7Å−1 with
0.1Å−1 steps were extracted for each P point. Their intensity was normalized using
the measurement of a vanadium standard and the empty-cell signal was subtracted
using P-dependent and Q-dependent transmission values. Each spectrum (whose
intensity is proportional to the self-dynamic structure factor Sinc(Q, E)) was fitted over
a narrow quasi-elastic region using a Lorentzian function plus a flat background:

SincðQ; EÞ ¼
IðQÞ
π

ΓðQÞ
ðE � E0Þ2 þ Γ2ðQÞ þ BðQÞ: ð6Þ

Four free fitting parameters were used: area I(Q) and half-width-half-maximum Γ(Q)
of the Lorentzian, zero shift E0 of the energy-transfer axis, and flat background B(Q).
Fits were performed with weights inversely proportional to the error bars so that the
scattered points close to E= 0 barely affect the fit results. Multiple scattering con-
tributions to the spectra were neglected as the sample transmission was above 90% of
the incident beam in both high-pressure setups. Stokes/anti-Stokes detailed balance
was also ignored. Convolution with the instrumental resolution function was taken
into account in the fits. The energy resolution function of the spectrometer was
obtained by fitting the measurement of the vanadium standard with a pseudo-Voigt
distribution; its width was found to vary from 0.076 meV at low Q to 0.081 meV at
high Q. We checked that the Q dependence of I(Q) accurately follows
exp ð�Q2<u2>=3Þ at each pressure. The fitted values of <u2>1=2 have no pressure
dependence over the measured P range within their error bars (typically 5%) and
amount to 1.03Å on average, which is within the range of values reported in the
literature for liquid water at ambient conditions70, for which many QENS studies
exist. Finally, Γ(Q) was fitted over the Q range from 0.4 to 1.3 Å−1 using the
Singwi–Sjölander random-jump diffusion model reported in Eq. (1) to determine the
two parameters D and τ at each pressure. In the fits, the data points were weighted
according to the estimated error in Γ(Q). At the highest P (1.44 GPa), the lowest Q
value (0.4 Å−1) was not considered because Γ(Q) was found to be smaller than the
instrumental resolution, and thus is unreliable.

Data availability
Data were generated at the ILL large-scale facility and are stored on the ILL data portal
under https://doi.org/10.5291/ILL-DATA.CRG-2506.
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