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Abstract
The neurons of the deep cerebellar nuclei (DCNn) represent the main functional link
between the cerebellar cortex and the rest of the central nervous system. Therefore,
understanding the electrophysiological properties of DCNn is of fundamental
importance to understand the overall functioning of the cerebellum. Experimental
data suggest that DCNn can reversibly switch between two states: the firing of spikes
(F state) and a stable depolarized state (SD state). We introduce a new biophysical
model of the DCNn membrane electro-responsiveness to investigate how the
interplay between the documented conductances identified in DCNn give rise to
these states. In the model, the F state emerges as an isola of limit cycles, i.e. a closed
loop of periodic solutions disconnected from the branch of SD fixed points. This
bifurcation structure endows the model with the ability to reproduce the F → SD
transition triggered by hyperpolarizing current pulses. The model also reproduces the
F → SD transition induced by blocking Ca currents and ascribes this transition to the
blocking of the high-threshold Ca current. The model suggests that intracellular
current injections can trigger fully reversible F ↔ SD transitions. Investigation of
low-dimension reduced models suggests that the voltage-dependent Na current is
prominent for these dynamical features. Finally, simulations of the model suggest that
physiological synaptic inputs may trigger F↔ SD transitions. These transitions could
explain the puzzling observation of positively correlated activities of connected
Purkinje cells and DCNn despite the former inhibit the latter.

Keywords: Deep cerebellar nuclei; State transition; Biophysical model

1 Introduction
The connectivity of the cerebellum places deep cerebellar nuclei neurons (DCNn) in a
strategic position. Their axons are the main output of the cerebellum, projecting to the
forebrain, the brain stem and the spinal cord. In turn, DCNn are the main target of the
Purkinje cell (PC) axons, which are themselves the sole output system of the cerebellar
cortex. As noted by Lllinás and Muhlethaler [1] the cerebella nuclear cells are therefore
the main functional link between the cerebellar cortex and the rest of the central nervous
system. It follows that a detailed understanding of electrophysiological properties of the
DCNn is one of the fundamental prerequisites to understanding the overall functioning
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of the cerebellum. Several experimental studies have demonstrated that DCNn are not
simple leaky integrators of their synaptic inputs but exhibit a repertoire of intrinsic active
electric properties. Recordings using sharp electrodes or patch clamps have evidenced
that isolated DCNn are spontaneously active, producing pacemaker firing of fast spikes
at a low frequency of about 20 Hz [2–7]. DCNn also exhibit rebound depolarizing poten-
tials at break of a hyperpolarizing current pulse in a variety of preparations (see [3]). In
addition, Jahnsen [2] reported that pulses of injected hyperpolarizing current can switch
DCNn from their spontaneous firing state to a silent mode of activity. As this silent mode
was observed to persist over time spans >1 s, Jahnsen’s results putatively point at the ex-
istence of a stable point attractor in the DCNn phase space. Moreover, the observation of
Jahnsen that a subsequent hyperpolarizing pulse can switch the DCNn back to their spon-
taneous firing activity (see Fig. 5 in [2]) suggests that transitions between the two modes
of activity are reversible. Reversible transitions between spontaneous firing and a silent
depolarized state were also reported later by Raman et al. [4] in patch-clamp recordings
of DCNn, thus ruling out the possibility that these transitions are artifacts resulting from
experimental membrane leaks created by sharp electrodes used by Jahnsen. While sparse,
these experimental results hint at the coexistence of two different stable electric states in
the DCNn phase space: a silent depolarized state (stable fixed point, sFP) and an active
state characterized by low frequency firing of large-amplitude spikes (stable limit cycle,
sLC).

Such dynamics was early predicted as possible solutions of the Hodgkin–Huxley (HH)
model of the action potential by Cooley et al. as early as 1965 [8]. They pointed out that (i) if
the HH model had only two variables, the surrounding of the sFP by the orbit of the sLC
(see Theorem 6.2 in Grimshaw [9]) would imply the existence of an unstable limit cycle
(uLC) to separate the basins of attraction of the two ω-limit sets but (ii) that the existence
of such an uLC is not a necessary condition for the (four-dimensional) HH model to exhibit
such dynamics. Hassard and Shiau [10] and Rinzel and Miller [11] subsequently showed
that the HH model has actually a branch of unstable limit cycles in addition to the branch
of limit cycles in the range of input currents where the sFP and the sFP coexist. Moreover
Guttman et al. [12] subsequently proved the physiological soundness of the premises of
Cooley et al. [8] by reporting that the squid axon can be switched by short pulses of electric
current between a silent mode and a firing mode. They also went beyond Cooley et al. [8]
by suggesting that, since the HH model has a four-dimensional phase space, the basins of
attraction of the sFP and the sLC are separated by a d ≥ 2 manifold rather than by a single
curve and that this separatrix presumably contains the previously identified uLC.

These conjectures deserve explanation. Firstly, uniqueness of the solution of a Cauchy
problem for systems of ordinary differential equations (ODE) imply that, in a 2D phase
space, the separatrix between a sLC and a sFP must be a Jordan curve, say C, obviously
corresponding to a limit cycle solution of the system. Secondly, this limit cycle must be
unstable to ensure that all solutions starting from the interior (resp. exterior) of C converge
onto the sFP (resp. the sLC). A limit cycle always has one of its Floquet exponents ρ1 = 1
(see e.g. [13], p. 223) and, for a 2D system, its second exponent ρ2 is >1 if the limit cycle is
unstable. The local stable and unstable manifolds of the uLC are, respectively, spanned by
ρ1 and ρ2 and both have dimension 1. According to the stable manifold theorem for peri-
odic orbits (see [13], p. 220), the global stable (resp. unstable) manifolds of the uLC have
the same respective dimensions as the local stable (resp. unstable manifolds of the uLC.
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It is therefore tempting to conjecture that, in systems with dimension >2, the separatrix
is also the global stable manifold of the uLC, that is a manifold with dimension k + 1 with
k being the number of Floquet exponents <1. Such a manifold may have a complicated
shape. But if solutions are bounded, the simplest manifold achieving separation of the at-
traction basins of the sFP and sLC would be a closed manifold (i.e. compact and without
bounds). Characterizing the separatrix may have remained a theoretical issue since the
coexistence of the sFP and the sLC has, to our knowledge, only be reported in squid axons
bathed in non-physiological low Ca salines. However, the observation of such a coexis-
tence in DCNn put this mathematical question into a neurophysiological context since
characteristics of the separatrix obviously constrain the types of stimuli capable to trigger
sFP ↔ sLC state changes.

The repertoire of membrane conductances expressed by DCNn has been the subject of
several studies. These conductances comprise two calcium carried currents [14], a non-
inactivating high-threshold Ca current (ICaH) and an inactivating (transient) one (ICaT)
and a calcium-dependent potassium current (IKCa, [15]). In addition, Raman et al. [4] have
identified a tonic non-cationic current, ITCN. However, in spite of these characterizations,
we still lack an understanding of how this set of conductances actually implements the in-
trinsic properties of the DCNn. In the absence of a theoretical framework, it is difficult to
relate the response of the DCNn membrane voltage to its active conductances. In particu-
lar, several of the available experimental observations raise unsolved issues. For instance,
transitions from the spontaneous firing state to the silent depolarized one can be triggered
by inhibition of the calcium currents ICaH and ICaT [4] but it is not clear whether the in-
hibition must concern both currents or only one of them. Likewise, it is not known if the
transitions observed in vitro using current pulse injection are also triggered by synaptic
currents.

Biophysical models have proven highly useful to understand how active conductances
interact to underpin active electrical signals in neurons. For instance, the acclaimed
Hodgkin and Huxley model of the action potential in the squid axon has proved a very
powerful approach to our understanding of the generation of action potentials [16]. For
DCNn, the only detailed (compartmental) biophysical model of DCNn thus far (to our
knowledge) has been proposed in a pioneer study by Steuber et al. [7]. The more recent
model of Sudhakar et al. [17] actually adopts the structure and equations of the Steuber et
al.’s model and only uses different values for the densities of active conductances. However,
neither of these articles evidences capabilities of this model to reproduce state transitions
experimentally observed by Jahnsen [2] and Raman et al. [4]. Moreover, the Steuber et al.’s
model relies on several assumptions which experimental support can be questioned. Thus,
it assumes that DCNn express two different Hodgkin–Huxley-type voltage-dependent Na
currents, a fast one and a slowly inactivating one (i.e. persistent). Expression of a persis-
tent Na current by DCNn was postulated by Jahnsen [2] and Lllinás and Muhlethaler [1]
and its existence has since been confirmed by two experimental studies (Raman et al. [4]
and Afshari et al. [18]). However, these studies suggest that the persistent Na current be-
longs to the class of so-called resurgent Na currents (Raman and Bean, [19]). Resurgent
currents involve a specific mode of channel aperture whose faithful modeling requires
a set of 12 ODEs (Raman and Bean, [19]). Moreover, the Steuber et al.’s model assumes
a non-uniform distribution of active conductances between the dendrites and soma of
DCNn which remained to be proved (with the exception of T Ca channels that cluster to
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the soma and proximal dendrites of DCNn; see McKay et al. [20]). Here we propose a new
biophysical model of DCNn electrogenesis. To allow mathematical analysis of the model,
we focus on an isopotential (non-compartmental) description, in which the DCNn mem-
brane potential evolves under the influence of the 6 conductances mentioned above (INaV,
IKdr, ICaH, ICaT, IKCa, and ITCN). Spontaneous firing of fast spikes emerges in the model as
an isola of limit cycles in a range of driving currents. Within this range, the model ex-
hibits another coexisting stable attractor: a stable depolarized stationary-state. Owing to
this peculiar bifurcation structure, the model reproduces the transitions between sponta-
neous firing and a silent state that have been reported experimentally [2, 4]. Like in these
experimental reports, the transitions in the model can be triggered by hyperpolarizing
current pulses or by blocking Ca currents in the absence of hyperpolarization. Analysis of
the model suggests that the latter transition is specifically due to the inhibition of the ICaH

current. Finally, simulations of the model suggest that physiological synaptic inputs may
trigger the state transitions.

2 Methods
It is currently unknown whether DCNn are electrically compact neurons nor whether
their ion channels have non-uniform distributions over their membrane surface (with the
exception of high threshold voltage-dependent Ca channels [14]). In the absence of ev-
idence for a functional role of these heterogeneities, we chose to build an isopotential
model of DCNn to (i) investigate the hypothesis that DCNn have two coexisting stable
states of activity, (ii) identify the interactions between the active membrane ion currents
that are responsible for this electric feature and (iii) investigate whether physiological in-
puts could trigger transitions between these states. DCNn do not form a homogeneous
population from the phenotypic standpoint. Their population has been divided into two
classes (see [21] for an introduction) which partially correlate with the location of their
target neurons. Glutamatergic DCNn project excitatory inputs to motor centers in the
brain stem, the mesencephalon, the thalamus and pre-cerebellar nuclei though the mossy
fiber pathway. GABAergic DCNn achieve inhibitory synapses on neurons of the inferior
olive [22] and glutamatergic DCNn [23]. A class of rare small-sized DCNn has also been
identified [24]. In addition to their neurotransmitters and projection sites, these classes
of neurons can also express different sets of ion channels [25]. However, it is unknown
to what extent their intrinsic electrophysiological properties are heterogeneous. In the
absence of this information, we propose below a generic model for the electrogenesis of
DCNn.

2.1 State variables and equations of the model
Our standard model has 6 state variables. The dynamics of these variables is governed by
6 associated ordinary differential equations (ODE) that we describe below. The two main
state variables of the model are the membrane potential, V (mV), and the cytoplasmic
concentration of free Ca2+ ions [Ca] (μM). Their respective ODE read

C
dV
dt

= –
∑

i

I ion
i + IS (1)
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and

d[Ca]
dt

= –
102(ICaH + ICaT)Rc/F + 2k([Ca] – [Ca]b)(Rc – δ)

δ(2Rc – δ)[1 + BT

KD(1+ 10–11[Ca]
KD

)2
]

. (2)

Equation (1) is standard for biophysical models of neurons (see e.g. [26]). It can be de-
rived from the first Kirchhoff law of electromagnetism which states that electric charges
can neither be created nor destroyed. The set of membrane ion currents I ion

i (nAcm–2)
appearing in Eq. (1) is detailed below. For the input current IS we distinguish tonic (IDC)
and phasic (Iϕ) components and write IS = IDC + Iϕ . The phasic component was written
as the product of an ohmic term gϕ(V – Eϕ) and the product of two Heaviside step func-
tions of time H(t – tstart)H(tend – t) =

{ 1 for start < t < end,
0 elsewhere. The ODE for the cytoplasmic free

calcium ions concentration (Eq. (2)) is a balance equation. The source term corresponds
to calcium ions entry into the cytoplasm through membrane channels underlying the ICaH

and ICaT currents. The sink term corresponds to the extrusion of cytoplasmic Ca2+ ions by
cytoplasmic membrane pumps and their internalization by Ca pumps in the endoplasmic
reticulum membrane, both processes being modeled with a simple linear term. The ODE
actually includes a second sink term corresponding to Ca2+ ions buffering by Ca-binding
proteins. It appears as the denominator of the right-hand side of Eq. (2) owing to the hy-
pothesis that the binding of Ca2+ ions is very fast (see [27] for the derivation of Eq. (2) and
Table 1 for parameter values).

The ion membrane conductances (for currents obeying the Nernst equation) and per-
meabilities (for currents obeying the Goldman constant-field equation) were modeled as
the product of a maximum conductance g (μS/cm2) or permeability P (cm/s) and either
the product of voltage-dependent activation and inactivation variables m and h or a Ca-
dependent variable w, i.e.

g(P) = g(P)mphq,

g(P) = g(P)w,
(3)

in which p and q are integers. The remaining four states variables of the model correspond
to in(activation) variables of ion currents INaV, IKdr and ICaT and namely are hNaV, mKdr,
mCaT and hCaT. Their dynamics obey first order differential equations of the form [16]

∀x ∈ {hNaV, mKdr, mCaT, hCaT}dx
dt

=
x∞ – x

τx
, (4)

in which x∞ and τx stand for the steady-state value and the exponential time constant
of variable x, respectively. The available experimental data on the voltage-dependence in
DCNn [4, 18] were insufficient to constrain a fully detailed Hodgkin–Huxley-type model
of these currents since they do not document the voltage dependence of rate functions
governing state transitions of ion channels. We therefore adopted the modeling approach
of Hughenard and McCormick [29] in which x∞ and τx are considered as independent
functions of V (however, see the discussion) of the form

x∞ =
1

1 + e±(V –Vx)/kx
, (5)
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Table 1 List of parameter values. The abbreviation ‘cstd’ indicates that the value was constrained to
reproduce experimental dynamics of DCN

Parameter Value Reference

Calcium ions dynamics
Rc 5× 10–4 cm [26]
δ 3× 10–4 cm
k 10–2 cm/s
[B]T 1.5× 102 μM
KD 1 μM

Membrane potential dynamics
C 1 μF/cm2 [25]

Membrane ion currents
Maximum conductances and permeabilities

gL 2× 101 μS/cm2 cstd
gNaV 5× 103 μS/cm2

gKdr 4.5× 103 μS/cm2

gTCN 4.5× 101 μS/cm2

gKCa 10 μS/cm2

PCaH 2× 10–4 cm/s
PCaT 7× 10–4 cm/s

Nernst potential
EL –60 mV cstd
ENa +86 mV [4]
EK –80 mV –83 mV in [28]
ECl –75 mV –75 mV [2] and –74.3 mv in [28]; however, see [5]
ETCN –34 mV [4]

Steady-state (in)activation parameters (mV)
VmNaV –32 cstd
kmNaV 8.5
VhNaV –55

khNaV 5.5 [4]

VmKdr –25 [29]
kmKdr 11.5

VmCaH –22 cstd
kmCaH 4.53

VmCaT –56 [30]
kmCaT 6.2
VhCaT –80
khCaT 4

Parameters of time constants
τnKdr0 0 s cstd
τnKdr1 5.4× 10–3 s
ατnKdr

6× 10–1

VτnKdr1
= VτnKdr2

–30 mV

kτnKdr1
= kτnKdr2

25 mV

τhNaV0 5× 10–3 s
τhNaV1 3× 10–2 s
ατhNaV

1

VτhNaV1
= VτhNaV2

–65 mV

kτhNaV1
= kτhNaV2

7 mV

τmCaT0 2× 10–4 s [30]
τmCaT1 3.33× 10–4

VτmCaT1
–131 mV

kτmCaT1
16.7 mV

ατmCaT 1
VτmCaT2

–15.8 mV

kτmCaT2
18.2 mV
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Table 1 (Continued)

Parameter Value Reference

τhCaH0 1.2× 10–2 s cstd (to produce a C1 function for τhCaT )
τhCaH1 2 s
ατhCaT

1

VτhCaH1 = VτhCaH2 –81 mV

kτhCaH1 = kτhCaH2 8 mV

τx = τx0 +
τx1

e±(V –Vτx1 )/kτx1 + ατx
e(V –Vτx2 )/kτx2

. (6)

Equation (5) is a so-called Boltzmann function in which the ‘–’ and ‘+’ signs hold, respec-
tively, for the inactivation (hNaV, hCaT) and the activation (mKdr, mCaT) variables. Vx and
kx are referred to as half-activation potentials and activation slopes of the variable x, re-
spectively. Equation (6) is standard for reproducing the bell-shape of the activation time
constant of voltage-dependent currents [29]. The parameter τx0 accounts for the obser-
vation that limV→+∞ τx > 0 for the inactivation variable of some particular currents (e.g.
INa in the squid giant axon [11]. The ατx parameter allows one to introduce asymmetry in
the shape of the time constant as observed for some currents (see e.g. [26], p. 48). We give
below a detailed account of the model equation for each of the currents.

INaV: As in most neurons studied so far, the spikes of the DCNn are blocked by
tetrodotoxin (TTX) [4] suggesting that the depolarizing phase of these spikes is under-
lain by a Hodgkin–Huxley-type of voltage-dependent Na current, INaV. For this reason, we
used the classical Hodgkin–Huxley formalism to model INaV in DCNn. However, the time
constant of mNaV in neurons is usually much smaller than that of hNaV. We therefore used
the classical quasi-steady-state approximation replacing mNaV by its steady-state value
mNaV∞ (see e.g. [31]). Llinás and Muhlethaler [1] initially suggested that INaV in DCNn
could have a persistent component. Afshari et al. [18] have confirmed that INaV in DCNn
has a persistent component that they attribute to the mechanism of resurgent current ini-
tially identified in cerebellar Purkinje cells [19]. Given that the resurgent component only
amounts to <4% of the total INaV in DCNn [18] and that a faithful modeling of INaV en-
dowed with resurgence properties requires a set of 12 ODE [19], we chose to not introduce
(see, however, the Discussion) a persistent INaV in our model and we rather used a classical
Hodgkin–Huxley INaV

INaV = gNaVm3
NaV∞hNaV(V – ENa), (7)

where mNaV∞ is given by Eq. (5) and hNaV by Eqs. (4)–(6).
IKdr: voltage-dependent K currents of the Kv3-type exhibit fast activation allowing

∼1 ms-duration Na spikes in several neuron types [32]. Lllinás and Muhlethaler [1] report
spike duration (measured at half-width) ranging from 0.44 to 0.7 ms in DCNn suggesting
that spike repolarization in these neurons is achieved by Kv3 channels. Raman et al. [4]
have dissected out a high-threshold voltage-dependent potassium current in DCNn that is
be presumably involved in the repolarization of their spikes. The activation time constant
of this current (12 ms at +12 mV) is too large for Kv3 channels and rather points to the
Kv2 family of K channels [33]. However, Raman et al. [4] only used 1 mM TEA whereas to
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block voltage-dependent K channels whereas blocking Kv2 channels require several mil-
limolar concentration of TEA to block [34]. Moreover, no molecular study has yet, to our
knowledge, demonstrated expression of Kv2 channels in DCNn. On the opposite, several
studies have shown that DCNn express all four Kv3 subunits (see e.g. [35] and [32]) and the
electrophysiological study of Lamont [28] suggests that Kv3 channels in DCNn are func-
tional. DCNn can fire spikes at frequencies up to >100 Hz which seem unattainable with
Kv2 serving to repolarize spikes. Owing to these findings, our model assumes that IKdr is
carried by fast-activating K channels (however, see the discussion for the involvement of
putative Kv2 channels),

IKdr = gKdrm
4
Kdr(V – EK), (8)

where mKdr is given by Eqs. (4)–(6). The parameters from this current were taken from a
model of Purkinje cell dendrite [27].

ITCN: There is experimental evidence for a TTX-insensitive current in DCNn that
can depolarize them beyond their spike threshold [4], this current being tonic (i.e. V -
independent) and non-selective for cations [4]. We modeled this current using Ohm’s law
with a constant conductance, i.e. as an effective leak current:

ITCN = gTCN(V – ETCN). (9)

Calcium currents ICaH and ICaT: Owing to the large gradient of Ca2+ ions across the
cytoplasmic membrane of neurons (typically [Ca]o/[Ca]i 	 2 × 105 in a neuron at rest),
voltage-dependent Ca currents are not adequately modeled by the Nernst equation. This
equation accurately describes ion fluxes only close to thermodynamic equilibrium (see
e.g. [26]). Far from equilibrium, Ca currents exhibit a rectification in their I/V relation
which is well accounted for by the constant-field equation of Goldman (see e.g. Chap. 13 in
[26]). We therefore used this equation to describe Ca currents in our model. As mentioned
above, two types of Ca currents have been identified in DCNn [14]: a non-inactivating
high-threshold current ICaH and an inactivating current ICaT. Both currents are given by

ICax =
PCax (zF)2V

RT(1 – α(V ))
(
[Ca] – α(V )[Ca]o

)
, (10)

where Cax ∈ {CaT, CaH} and α(V ) = e– 2FV
RT . A temperature T = 298 K was used in all sim-

ulations. The molecular identity of ion channels underlying ICaH in DCNn is currently not
precisely known. Gauck et al. [14] have shown that a large fraction of ICaH in DCNn is
non-inactivating and is therefore likely composed of L-, T- or R-type currents. They have
also observed that a small fraction of ICaH inactivates, thereby also indicating the presence
of N-type calcium channels. For the sake of simplicity and since L-type calcium channels
open as quickly as N-types channels in neurons [36], we derived a simple equation for
PCaH by assuming that it activates instantaneously and does not inactivate, i.e.

PCaH = PCaHmCaH∞, (11)

where mCaH∞ is given by Eq. (5).
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Setting an equation for ICaT proved more challenging. Indeed, this current can be under-
lain by three isoforms of calcium channels, Cav3.1, Cav3.1 and Cav3.3 which have marked
different time constants for both activation and inactivation [18]. Molineux et al. [25] have
demonstrated the expression of Cav3.1 in both GABAergic and non-GABAergic DCNn,
whereas Cav3.3 expression is restricted to non-GABAergic DCNn. Since both types of
DCNn exhibit rebound properties, these findings suggest that the expression of Cav3.1
is sufficient to generate a rebound in both cell types. McKay et al. [20] have shown that
Cav3.1 channels are largely confined to the soma of the DCNn. McRory et al. [30] have
found that both τact and τinact of Cav3.1–3 channels decay monotonically with voltage to-
ward a voltage-independent nonzero minimum. This feature is well reproduced by the
thalamic ICaT model of Destexhe et al. [37] which we adopted here for the DCNn. Its per-
meability equation reads

PCaT = PCaTm2
CaThCaT, (12)

where mCaT and hCaT are given by Eqs. (4)–(6). Nevertheless, we had to adapt the origi-
nal model of Destexhe et al. [37] to provide a faithful account of ICaT in DCNn. Firstly, we
adapted the values of the time constants τmCaT and τhCaT of the original model to match the
properties of the Cav3.1 channels expressed by DCNn [25]. Secondly, the model by Des-
texhe et al. uses a discontinuous piecewise function to describe τhCaT . This prevents guar-
antying existence and uniqueness of the solutions of the model according to the Cauchy-
Lipschitz theorem (see e.g. [38]). We therefore replaced the original formulation of τhCaT

in Destexhe et al. by the continuous and differentiable formulation of Eq. (6).
IKCa: The DCNn express calcium-dependent potassium currents of the SK (small-

conductance) type [25]. Those potassium-specific channels are gated by calcium accord-
ing to a Hill-type equation (see e.g. [39])

IKCa = gKCawKCa(V – EK) (13)

which assumes instantaneous gating of SK channels by calcium:

wKCa =
[Ca]5

C5
KCa + [Ca]5

. (14)

Finally, the model includes a leakage current. The value of its conductance gLeak was set to
a value allowing the model to reproduce the passive time constant of DCNn recorded in
vitro (as probed by small hyperpolarizing pulses)

ILeak = gLeak(V – ELeak). (15)

Table 1 lists the standard value of all parameters appearing in Eqs. (5)–(15).

2.2 Boundedness of solutions
We follow the approach of Cronin [40] to prove that all physiologically significant so-
lutions of the model are bounded. Let us first consider the dynamics of state variables
hNaV, mKdr, mCaT and hCaT which all obey ODE of the form of Eq. (4). The function
τx∈{hNaV,mKdr,mCaT,hCaT}(V ) in Eq. (4) is positive whatever the value of V according to Eq. (6).



Berry and Genet Journal of Mathematical Neuroscience            (2021) 11:7 Page 10 of 34

Moreover, for all physiologically significant initial conditions on V we have 0 < x < 1 ac-
cording to Eq. (5). It follows that dx

dt > 0 if x = 0 and dx
dt < 0 if x = 1. This implies that all

physiological solutions remain in the

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩
(hNaV, mKdr, mCaT, mCaT)

∣∣∣∣∣∣∣∣∣

hNaV

mKdr

mCaT

mCaT

∈ [0, 1]

⎫
⎪⎪⎪⎬

⎪⎪⎪⎭

region of the model phase space.
Let us now turn to Eq. (1) in the particular case where PCaH = PCaT = 0 (namely

the model deprived of its Ca currents) and let Emax = max{ENa, EK, ELeak} and Emin =
min{ENa, EK, ELeak}. Recall then that currents INa, EK and ELeak all have the form Ii =
fi(V )(V – Ei), i ∈ {Na, K, Leak} with 0 < fi(V ) < 1. Then Eq. (1) with IS = 0 implies that
dV
dt > 0 if V < Emin and that dV

dt < 0 if V > Emax. It follows that all physiological solutions
remain in the

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩
(V , hNaV, mKdr, mCaT, hCaT)

∣∣∣∣∣∣∣∣∣

V ∈ [Emin, Emax],

hNaV

mKdr

mCaT

hCaT

∈ [0, 1]

⎫
⎪⎪⎪⎬

⎪⎪⎪⎭

subset of the phase space.
Proof of the boundedness of solutions is finalized by extending the above result to the

full model (i.e. including Ca currents) as follows. Let now Emax = max{ENa, EK, ELeak, ECa}
and Emin = min{ENa, EK, ELeak, ECa}. The factor α(V ) in Eq. (10) of the Ca currents is easily
shown to be positive whatever the value of V . The sign of the [Ca] – α(V )[Ca]o factor de-
pends on both V and [Ca]. Nevertheless, it is easily shown that ICax < 0 for {(V , [Ca])|V <
Emax

Ca , [Ca]b < [Ca] < [Ca]0} and positive for {(V , [Ca])|V > Emax
Ca , [Ca]b < [Ca] < [Ca]0}

where Emax
Ca = RT

2F ln [Ca]0
[Ca]b

. According to Eq. (2), it follows from this last result that d[Ca]
dt > 0

if [Ca] < [Ca]b and d[Ca]
dt < 0 if [Ca] > [Ca]0 and therefore that physiologically solutions of

the model stay in the set

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩
(V , Ca, hNaV, mKdr, mCaT, hCaT)

∣∣∣∣∣∣∣∣∣

V ∈ [Emin, Emax],

[Ca] ∈ [
[Ca]b, [Ca]0

]
,

hNaV

mKdr

mCaT

hCaT

∈ [0, 1]

⎫
⎪⎪⎪⎬

⎪⎪⎪⎭
.

3 Results
3.1 Theoretical evidence for two stable states of electric activity in DCNn
Consistent experimental data show that DCNn are pacemaker neurons in vitro [2–7]. In
the absence of a depolarizing bias current (IDC = 0), our neuron model successfully repro-
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Figure 1 A–C. Basic I/O relationship of the model probed with injected pulses of hyperpolarizing current
(300 ms duration). Amplitudes from left to right: –2× 103, –2.5× 103 and –3.9× 103 nAcm–2. A: membrane
potential. B: cytoplasmic free Ca2+ concentration [Ca]. C: instantaneous spiking frequency. D. Transition of the
model from silent mode to firing mode triggered by hyperpolarizing (D1, –0.5× 103 nAcm–2) and
depolarizing current pulses (D2, 0.75× 103 Acm–2). Bottom: corresponding time course of the hNaV
(INa inactivation) andmKdr (IKdr activation) variables

duces this property, with the spontaneous emission of self-sustained fast (∼1 ms duration)
spikes (Fig. 1A1). We refer to this mode of activity as the firing (F) mode. The spontaneous
firing frequency in the model is 28.9 Hz (versus 26 Hz in [2] and ∼20 Hz in [4]). The ampli-
tude of spontaneous spikes is 67 mV (in the range of extreme values reported experimen-
tally: 57 ± 5 mV in [1] and 82 mV in [4]). As shown in Fig. 1A1, a 300 ms hyperpolarizing
pulse of –2 μAcm–2 amplitude interrupts spike firing in the model. Firing resumes at the
end of the pulse with an initial phase of increased firing frequency of ∼200 ms duration
(Fig. 1A1 and C1). The concentration of free cytosolic calcium [Ca] first decreases dur-
ing the pulse and quickly recovers its baseline level after the end of the pulse (Fig. 1B1).
Increasing the pulse amplitude shows non-monotonous effects. A moderate increase of
the amplitude of the pulse (to e.g. –2.5 μAcm–2, Fig. 1A2–C2) yields the same behavior,
but with a larger transient firing frequency increase at pulse break. The peak frequency
during this rebound is close to twice the basal frequency (Fig. 1C2), in close agreement
with the experimental data of Raman et al. [4]. We also note the appearance of a rebound
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[Ca] increase at the pulse break, which is consistent with the observations of Raman et al.
[4] (Fig. 1B2). Large pulse amplitudes, however, produce a dramatic change of response
(Fig. 1A3–C3). For instance, a –3.9 μAcm–2 pulse triggers a switch of the model to a silent
depolarized (SD) state in which the membrane potential settles at –38 mV (Fig. 1A3). This
model feature reproduces the observation of Jahnsen ([2]; see Fig. 5C) that a hyperpolar-
izing current pulse can switch spontaneously firing DCNn to a silent mode of activity. In
the model, the SD state is stable as evidenced by the fact that, once settled in this state, the
model remains in this state despite small depolarizing or hyperpolarizing pulses of cur-
rent (Fig. 1A3). However, this stability is only local since larger-amplitude hyperpolarizing
current pulses (Fig. 1D1) readily switch the model back to its firing mode. This new behav-
ior is also consistent with the following experimental result by Jahnsen ([2]; see Fig. 5E):
when DCNn are switched to the SD state, a subsequent hyperpolarizing pulse can switch
them back to the F mode. However, our model extends this finding by showing that de-
polarizing current should also be able to trigger this transition (Fig. 1D2). Therefore, our
model reproduces the experimental observations that hyperpolarizing pulses can switch
the DCNn from their spontaneous low frequency firing (F) state to a stable depolarized
(SD) state. The SD state is only locally stable and injection of large hyperpolarizing or de-
polarizing current pulses switches the DCNn model back to its F state. In the following
we provide a mathematical analysis of the model in order to dissect the contribution of
the different membrane ion currents to these dynamical features.

3.2 Bifurcation analysis of the model and the silent depolarized state (SD)
Bifurcation analysis provides an explanatory scheme for the emergence of the overall prop-
erties of a dynamical system (see e.g. [41] for an introduction). In bifurcation analysis of
neuron models, the steady injected current (IDC in our model) is the most important bifur-
cation parameter as it is used in experiments as a model of synaptic inputs to investigate
the electric properties of the neuron. The power of this approach was first demonstrated
by Rinzel and Ermentrout [41] who showed that the type I and II responses identified
by Hodgkin [42] in crab neurons are due to different bifurcations (see Izhikevich [43] for
a comprehensive exposure of the geometry of excitability of nerve cells). We therefore
followed this approach and we built bifurcation diagrams of the model with IDC as the
bifurcation parameter.

In the presence of hyperpolarizing bias currents, the model has a unique stable attractor,
the SD state (Fig. 2A). This state is actually stable in the global sense (i.e. with respect to
any perturbation whatever its amplitude) since it is the only attractor in the phase space.
Firing arises upon increasing the bias current IDC to IF1 = –255.3 nAcm–2, a value at which
a unique neutrally stable periodic orbit appears (Fig. 2A). Two different branches of Limit
Cycles (LC) emerge from this orbit: one of them (green) corresponds to stable LC (sLC)
whereas the other one corresponds to unstable LC (uLC). This type of bifurcation is usu-
ally referred to as fold bifurcation of LC. The neutrally stable LC has a frequency of 17.8 Hz
at the F1 bifurcation point (Fig. 2B). These results suggest that the DCNn are type II neu-
rons characterized by both a nonzero frequency and a nonzero spike amplitude at the
bifurcation point [38]. Upon increasing IDC, the amplitude of the sLC steeply increases
while that of the uLC first decreases, exhibiting a minimum at IDC 	 1000 nAcm–2 (inset
Fig. 2A), and increases afterwards. Likewise, the amplitude of the sLC shows a maximum
at IDC 	 1000 nAcm–2 then decreases beyond this value. The parallel decrease of the am-
plitude of sLC and increase of the amplitude of uLC ultimately results in the merging of



Berry and Genet Journal of Mathematical Neuroscience            (2021) 11:7 Page 13 of 34

Figure 2 Bifurcation analysis of the standard model with IDC as the bifurcation parameter. A. Red: branch of
stable fixed points (FP). Green: envelop (min and max) of a branch of stable limit cycles (sLC). Blue: envelop of
a branch of unstable limit cycles (uLC). sLC and uLC appear as a fold of limit cycle (bifurcation F1) and
disappear in another fold of limit cycle (bifurcation F2). Inset: amplitude (mV) of spikes corresponding to the
branches of sLC and uLC. B. Firing frequency of stable and unstable spikes as a function of IDC. C. V (black) and
[Ca] (red) trajectories following blocking of INaV. D. The FP branch in the standard model (red) is altered by
blocking INaV (green) and blocking INaV and ITCN (blue)

the two LC branches into another neutrally stable LC through a second fold bifurcation
at IF2 = 4256 nAcm–2 (Fig. 2A). The theoretical maximum firing frequency of DCNn oc-
curs at IF2 and is 108 Hz, in the range of experimental maximum frequencies (80–120 Hz
[7]). The branches of sLC and uLC thereby form a closed loop of limit cycles solutions
of the model which is usually referred to as an isola of limit cycles (see e.g. Avitabile et
al. [44] and Labouriau [45, 46] in the case of the HH model). This isola coexists with a
branch of stable FP. Figure 2A thereby suggests that DCNn could switch between silent
and firing modes of activity within the range of current [IF1 , IF2 ] in response to proper
inputs. Spontaneous firing in the model disappears upon zeroing gNaV (Fig. 2C). This re-
sult reproduces the finding that INa underlies the rising phase of the spike in the DCNn
[4]. After gNaV is zeroed, the membrane potential settles to a stable state with membrane
potential V = –44.4 mV, i.e. above the spike undershoot (VU = –58.1 mV). This result is
at odds with properties of all neuron types studied so far (to the best of our knowledge)
of which the membrane potential converges to values below VU after blocking of the Na
currents with TTX. Nevertheless, this model feature closely reproduces the experimental
observation that, after blocking INaV with TTX, the DCNn settle to a depolarized stable
voltage of –42 ± 2 mV [4]. This property is well explained by the finding that ITCN pro-
vides a depolarizing current to the membrane, as illustrated in Fig. 2D which shows that
the branch of FP is shifted downright when ITCN is blocked.

The report of a bistability between an isola of LC and a stable FP branch in a neuron
membrane model is not unprecedented. Guttman et al. [12] have described similar dy-
namics in a model of the squid axon, which exhibits a stable point attractor coexisting with
a stable firing mode of spikes when bathed in low [Ca]0 solutions. This prompted us to in-
vestigate the hypothesis that [Ca]0 may control bistability in DCNn by studying how [Ca]0

affects the bifurcation diagram of the model (Fig. 3). With 0.5 mM external Ca2+ (Fig. 3A),
the isola is characterized by the coexistence of a stable fixed point (red), an unstable limit
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Figure 3 Extracellular calcium controls the emergence of the isola of limit cycles. A–F: bifurcation diagram of
the model with IDC as the bifurcation parameter for different external Ca2+ concentrations ([Ca]0). The
color-code is the same as in Fig. 2, in particular for the envelope of the sLC (green), the uLC (blue) and the
stable branch of fixed points FP (red). Around 1.3 mM extracellular Ca (panel D), the uLC collides with FP thus
creating two Hopf bifurcation points (H1 and H2). Bifurcation F2 is also altered by the appearance of two
additional folds of limit cycles (F3 and F4). F1 is also eventually modified by the appearance of another fold of
limit cycles (F5). Panels in (G) show the corresponding two-parameter bifurcation diagrams: G1 is the overall
diagram while G1 and G2 show magnifications of G1 around [Ca]0 = 1.3 and 2.0 mM, respectively. The curves
show how the bifurcation points described in A–F change when [Ca]0 or IDC are varied. The branch of folds F1
and F2 are shown in pink and the two branches corresponding to the Hopf bifurcations H1 and H2 are shown
in cyan. The additional folds associated to F1 (F3 and F4) are shown in purple and the additional fold that is
associated to F2 (F5), is in black. Those Fold branches appear and disappear by collisions with each other at
codimension-2 bifurcation points called cusps of limit cycles, show as points C . Thus, F3 and F4 collides at
cusp C1, F3 and F1 at C2, and F2 and F5 at C5

cycle (min-max values in blue) and a stable limit cycle (min-max values in green) within
the range IDC = [0, 4] μA/cm2. Two folds of limit cycles (F1 and F2, pink in Fig. 3G) locate
the coalescence of the two limit cycles. With increasing external Ca2+, the unstable limit
cycle gets closer to the fixed point (Fig. 3B, C), colliding it for [Ca]0 	 1.26 mM (Fig. 3C).
The collision with the fixed point gives birth to (Fig. 3G1) two subcritical Hopf bifurca-
tions (H1 and H2, blue in G) between which the fixed point becomes unstable (black in
D). In addition, a pair of limit cycles (one stable, one unstable) appears by a cusp of LC
(C1 in Fig. 3G2), thus giving rise to two new folds of LC (F3 and F4, purple in Fig. 3G2). F4

disappears by coalescence with H1 and F3 with F1 in the cusp of limit cycles C2 (Fig. 3G2),
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leaving H1 as the only bifurcation point in the zone for [Ca]0 > 1.4 mM (Fig. 3E). At even
larger [Ca]0 (around 2 mM), a new stable LC appears close to F2 and H2 as a result of
H2 becoming supercritical, giving rise to F5 (Fig. 3F, gray in Fig. 3G3). F2 and F5 in turn
disappear by coalescence at the cusp of limit cycles C3 (Fig. 3G3), leaving H2 as the only bi-
furcation point in the zone for [Ca]0 > 2.1 mM (Fig. 3G1). These results therefore suggest
the existence of a bistability (stable fixed point SD + stable limit cycle sLC) at physiological
[Ca]0 in the electro-responsiveness of DCNn.

3.3 Reversible F ↔ DB transitions induced by blocking ICaH: role of the separatrix
between the F and SD states

Raman et al. [4] report that blocking Ca currents of DCNn switches their spontaneously
firing activity to a silent depolarized mode at –37 mV. Our model reproduces this exper-
imental result as it switches onto a silent depolarized state (SD) after blocking both of its
Ca currents, ICaH and ICaT (not illustrated). The membrane voltage adopted by our model
(–38 mV) is very close to the experimental value reported by Raman et al. [4]. The ex-
perimental protocol of Raman et al. prevented them to determine whether the F → SD
switch results from blocking both Ca currents or from blocking only one of them because
they blocked both currents with 2 mM cobalt (see [47]). We could readily address this
question with the model. Blocking ICaT (i.e. setting PCaT = 0) does not induce a F → SD
transition (result not shown). This finding is not surprising since ICaT is almost completely
inactivated at the spikes undershoot voltage (hCaT 	 5.5 × 10–4), which is the more nega-
tive V value spontaneously reached by the model in its F mode. On the opposite, blocking
ICaH induces a F → SD transition (Fig. 4A). Following this switch, brief pulses of hyper-
(Fig. 4A) or depolarizing (Fig. 4B) injected current reset firing in the model. Figure 4C
explains this finding by showing that both the branch of FP and the isola of LC of the stan-
dard model are preserved after blocking ICaH, thereby allowing theoretical F ↔ SD state
transitions. We now give evidence that the mechanism of the F → SD transition induced
by blocking ICaH finds its origin in the modifications of the shape of the isola of LC illus-
trated in Fig. 4C. Recall from Sect. 1 that the SD state is only locally stable. It therefore
has a basin of attraction that is the set of initial conditions from which the model con-
verges onto the SD state. However, in the bistable regime the coexisting sLC also has its
own basin of attraction. Cooley et al. [8] early conjectured that for membrane models with
only two variables, this situation implicates the existence of an uLC separating the basins
of attraction of the two stable states. In other words, the separatrix between the basins of
attraction of the SD and the F states in two-dimensional models is the orbit of the uLC in
the phase plane. In n > 2 dimension models the separatrix must be a manifold of higher
dimension than the one-dimensional uLC since the separatrix partitions the phase space
into two attraction basins. Guttman et al. [12] have hypothesized that the separatrix con-
tains the uLC and it is reasonable to suppose that it is a n – 1 dimension manifold. To our
knowledge, neither of these two conjectures have been proved until now. Assuming that
they are true (see the appendix), we propose that blocking ICaH in our six-dimensional
model triggers the F → DB transition by reducing the maximum amplitude of the uLC
(compare blue and yellow undershoot voltages of the uLC in Fig. 4C). This shrinks the
attraction basin of the sLC at such point that a trajectory located in the basin of attraction
of the sLC before blocking ICaH finds itself on the other side of the separatrix (inside the
basin of attraction of the FP) when ICaH is blocked and eventually converge to the SD state.
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Figure 4 Reversible F ↔ SD state transitions induced by blocking ICaH. A. Blocking ICaH switches the model
from its F to its SD state. Spike firing resumes in response to a hyperpolarizing pulse of injected current
(–2× 103 nAcm–2, 100 ms). B. The model can also be switched back to its firing mode by a depolarizing pulse
(2× 104 nAcm–2, 100 ms). C. Bifurcation diagrams in the standard model and after blocking ICaH show that
coexistence of the branch of FP and the isola of LC remains after blocking ICaH. Blocking ICaH induces the
F→ SD transition by reducing the attraction basin of the sLC (see text). D. In the presence of a depolarizing
bias current, blocking ICaH fails to trigger the F → SD transition, despite the membrane potential transiently
goes above the undershoot of the uLC, VUuLC (blue box)

When a small tonic current (IDC = 37 nAcm–2) is injected, blocking ICaH is no more able
to trigger the F → SD transition although the membrane voltage crosses several times the
undershoot voltage of the uLC (Fig. 4D). This confirms that the separatrix between the
F and SD attraction basins does not reduce to the uLC and is rather a manifold of larger
dimension. We provide further evidence for this conjecture and that of Guttman et al. [12]
in the Appendix. Taken together these results suggest that the coexistence of a branch of
stable silent states with an isola of LC in the DCNn does not rest on the expression of Ca
currents by the DCNn. IKCa cannot play a central role in these dynamical features since it
is almost completely inactivated at the low [Ca] level reached by the model when the Ca
currents are blocked (mKCa 	 10–3 at [Ca] 	 50 nM). The origin of the peculiar bifurca-
tion diagram of the standard model illustrated in Fig. 2A has therefore to be searched in
the interactions between the remaining active currents in the model, namely INa, IKdr and
ITCN. This question is addressed after the following section, in which we expose the role
played by ICaT in the F → SD transitions triggered by hyperpolarizing current pulses in
the standard model.

3.4 A mechanism for F → SD transitions triggered by current injections: the role
of ICaT

Figure 5A1 (reproducing Fig. 1A1 above) recalls that large hyperpolarizing current pulses
can trigger a F → SD transition in the model. However, Fig. 5A2 shows that the same cur-



Berry and Genet Journal of Mathematical Neuroscience            (2021) 11:7 Page 17 of 34

Figure 5 Contribution of ICaT to F → SD transitions triggered by hyperpolarizing current pulses. A. Response
of the standard model to a 300 ms hyperpolarizing pulse (–3.9 μAcm–2) before (A1) and after (A2) blocking
ICaT . B. Evolution of the bifurcation diagram of a variant model where the inactivation variable hCaT is
considered an adjustable parameter. C. Minimum amplitude of a hyperpolarizing current pulse capable to
trigger the F → SD transition as a function of the pulse duration
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rent pulse fails to induce this transition if ICaT is blocked. This result evidences the crucial
role played by ICaT in deciding whether a hyperpolarizing input can trigger a F → SD
transition. Understanding the impact of ICaT was complicated by the fact that both the
steady-state value h∞

CaT and the time constant τhCaT of the inactivation variable hCaT of ICaT

are voltage-dependent so that both the magnitude and the duration of the current pulses
determine the amount of recruited ICaT (see Eq. (12)). We first investigated whether long
duration current pulses (i.e. of duration 
 τhCaT ) are able to trigger a F → SD transition in
a variant model in which hCaT is no longer a function of time and membrane voltage but a
constant value freely adjustable in the [0, 1] continuous interval. With hCaT = 0, the bifur-
cation diagram of this variant model is nearly identical to that of the standard model (not
illustrated). Increasing hCaT to 0.025 induces a loss of stability of the FP branch with the ap-
pearance of two saddle-node bifurcations, SN1 and SN2 (Fig. 5Ba). The FP branch is stable
below ISN1 and above ISN2 . The model is hence bistable for IDC ∈ [ISN1 , ISN2 ], the unstable
intermediate branch of FP points (black in Fig. 5B1) delimiting the attraction basins of the
two stable FP states. The gap between the two saddle-node bifurcations widens when hCaT

is increased (Fig. 5B2). In addition, the F1 limit of the isola of LC is shifted leftward so that
IF1 ∈ [ISN1 , ISN2 ]: the model becomes tristable in this range of injected currents (two stable
silent FP states and a stable LC). Both modifications of the bifurcation diagram go on as
hCaT is further increased up to 0.045 where the branch of uLC collides the unstable branch
of FP points resulting in a homoclinic bifurcation of uLCs (Fig. 5B3). Above this hCaT value,
another bifurcation occurs with the homoclinic bifurcation splitting into two homoclinic
bifurcations, Hm1 and Hm2 (see Fig. 5B4 for hCaT = 0.05). Both bifurcations correspond to
the collision of homoclinic orbits (corresponding to uLCs with a frequency equal to zero)
with the unstable branch of FP. But as hCaT keeps increasing, the F1 limit of the isola keeps
shifting to the left and the Hm1 bifurcation turns into a homoclinic bifurcation of sLC at
saddle node (for hCaT = 0.07, Fig. 5B5). In parallel with these effects on the left-hand side
of the isola, increasing hCaT also shifts the F2 bifurcation to the left (see the sequence of
Fig. 5B1–6). Above hCaT = 0.06, IF2 < 0 so that the only attractor remaining in the phase
space for IDC = 0 is the SD state (solid red circle in Fig. 5B6–7) and the model is therefore
forced to converge onto this SD state. We therefore conclude that hyperpolarizing cur-
rent pulses trigger the F → DB transition because they de-inactivate ICaT which leads to
the disappearance of the isola of LC. In support of this conclusion, Fig. 5C shows that the
minimum amplitude of a hyperpolarizing pulse to trigger the F → DB transition decreases
with the pulse duration, in agreement with the fact that having longer duration pulses al-
lows for recruiting larger fractions of ICaT owing to the non-instantaneous activation of
this current.

3.5 Mechanism of SD → F transitions triggered by current injections: crossing
the separatrix

From a biological standpoint, the hypothesis of the existence of a silent depolarized state
only holds if the DCNn in the SD state are one way or another capable to switch back
to their F mode. Otherwise, the entire population of DCNn would eventually become
trapped to the SD state. As this prediction contradicts observations of active DCNn in
fully developed organisms, our model had (i) to provide evidence for physiological stimuli
capable to trigger SD → F transitions and (ii) explain the mechanism of these transitions
in order to sustain the hypothesis of the SD state in DCNn. Our standard model does
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Figure 6 Mechanism of the SD → F transition with pulses of injected currents. The model is initially in the SD
state. Pulses of injected current of various amplitude are then used to probe the switch of the model from the
SD to the F mode. A. Small hyperpolarizing pulses. B. Large hyperpolarizing pulses. C. Depolarizing pulses.
Left: membrane voltage (V ) responses to pulses. Right: percentage activation of the ICaT current

produce such SD → F transitions when hyperpolarizing (Fig. 1D1) or depolarizing pulses
(Fig. 1D2) are injected. We next studied the mechanism of this transition.

Figure 6A shows that a hyperpolarizing pulse must have a minimum amplitude in order
to trigger a SD → F transition. However, this minimum amplitude is clearly not a simple
threshold value since Fig. 6B shows that if its amplitude is too large, a hyperpolarizing pulse
fails to trigger the switch because it de-inactivates ICaT (Fig. 6B, the first two pulses are large
enough to activate 40 to 80% of this current). On the other hand, the mechanism of the
SD → F transition triggered by pulses of moderate amplitude like the third pulse in Fig. 6A
cannot involve ICaT. Indeed, this current remains inactivated during and after the pulse
(<0.15 % activation, Fig. 6A) so one does not expect significant changes in the bifurcation
diagram due to ICaT deinactivation. In this case, the transition can only be explained by the
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fact that hyperpolarizing pulses of moderate amplitude bring the trajectory of the model
across the separatrix between the F and SD attraction basins. After entering the F state
attraction basin, the model eventually converges to this state. Therefore, to trigger a SD →
F transition in the model, the amplitude of a hyperpolarizing pulse must be within an
effective range: it must be large enough to drive the system on the other side of the F–SD
separatrix but weak enough so as not to de-inactivate ICaT.

A fundamental consequence of the above analysis is the prediction that any perturbation
driving only once the trajectory across the separatrix should be able to trigger a SD → F
transition. The result illustrated in Fig. 6C confirms this prediction as it shows that not
only hyperpolarizing currents but also depolarizing current pulses can trigger a SD → F
transition. Altogether, these results support the hypothesis that crossing the separatrix
between the basins of attraction of the F and SD state is the basic mechanism by which
phasic inputs, either depolarizing or hyperpolarizing, trigger a SD → F state transition. As
shown above, altering the calcium currents induces qualitative changes of the bifurcation
structure (i.e. changes of the size of the basins of attraction or translations of the bifurca-
tion points), but preserves the overall structure, i.e. the coexistence of a branch of stable
silent states with an isola of limit cycles. Therefore, the origin of the peculiar bifurcation
diagram of the standard model illustrated in Fig. 2A does not rest on the expression of Ca
currents in the DCNn but has to be searched in the interactions between the remaining
active currents in the model, namely INaV, IKdr and ITCN.

3.6 The {V, mKdr, hNaV} sub-system and the role of ITCN in stabilizing the SD state
We next investigated how the interactions between INa, IKdr and ITCN explain the coex-
istence of a branch of FP with an isola of LC in the DCNn. We have shown above that
neither the Ca currents nor the Ca-dependent K currents are required to produce the ba-
sic bifurcation diagram of Fig. 2A. After withdrawing these currents, the standard model
reduces to a simplified model with only three variables: the membrane potential V , the
activation variable of IKdr, mKdr and the inactivation variable of INaV, hNaV. We therefore
refer to this reduced model as to the {V , mKdr, hNaV} sub-system. Figure 7A shows that this
sub-system retains the basic dynamical features of the standard model. In particular, the
FP branch is nearly identical in the two models. Moreover, the {V , mKdr, hNaV} sub-system
also exhibits an isola of LC albeit in a narrower range of tonic currents. Simulations of
the reduced model reveal that pulses of injected current can trigger reversible SD ↔ F
like those described above in the full model (not illustrated). The FP branch exhibits a
marked sensitivity to the magnitude of the gTCN conductance. Reducing this parameter
from its standard value (45 μScm–2) shifts to the right the entire branch of FP along the
IDC axis. This result stems from the value of the ITCN reversal potential (ETCN = –34 mV)
that defines this current as inward (depolarizing) for all points of the FP branch, since they
all are below ETCN. Hence, reducing gTCN requires increasing the value of IDC to achieve
a FP with the same voltage. As gTCN is reduced to 11.75 μScm–2, the FP branch exhibits
a point of infinite slope (red dot in Fig. 7B). This point corresponds to a cusp bifurca-
tion. Below the cusp bifurcation, the FP branch is no longer stable for every IDC value, but
exhibits two saddle-node bifurcations (SN1 and SN2) that form a hysteresis loop (green
rectangle in Fig. 7B) for the example of gTCN = 0). Hence, the model has two coexisting
stable silent modes of activity for values for gTCN values below the cusp bifurcation. The
isola of LC still exists in the {V , mKdr, hNaV} sub-system without ITCN (Fig. 7C). But the
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Figure 7 Properties of the {V ,mKdr,hNaV} reduced model. A. Comparison of the bifurcation diagrams of the
standard model and of the 3d reduced model. B. Effects of the gTCN conductance on the branch of fixed
points in the bifurcation diagram of the 3d model. C. Effects of gTCN on the isola of limit cycles in the 3d model

model has now three stable attractors, the sLC and the two stable points of the FP branch
mentioned above. Appropriate stimuli can theoretically trigger transitions between these
three modes of activity in the range of IDC values delimited by green box in the inset of
Fig. 7C. These results therefore suggest that the functional role of ITCN in the DCNn is
to stabilize the SD state over the entire range of tonic currents provided by the synaptic
inputs.

3.7 Reduction of the model to 2D: evidence for a central role of INaV in setting the
DCNn electric personality

The properties of the {V , mKdr, hNa} reduced model suggest that the interactions between
INaV and IKdr play a crucial role in the emergence of the basic bifurcation diagram of the
standard model. However, this sub-system does not allow a deep understanding of these
interactions owing to their nonlinear nature. This prompted us to search for an even
stronger reduction of the standard model to two dimensions, i.e. the minimum dimen-
sion for the emergence of limit cycles in ODE systems. To achieve this goal, we followed
the approach of Fitzhugh [48] and searched for a relation between mKdr and hNaV along
the trajectory of a spike in the model ([48, 49] and see Rinzel [50] and Gerstner et al. [31]
for developments of Fitzhugh’s mathematical approach on biophysical grounds). Fitzhugh
observed that, in the squid axon, the projection of a spike trajectory in the (mKdrOhNaV)
plane is close to a straight line. This allowed one to lump together mKdr and hNa into a so-
called recovery variable, w, exploiting their linear relation interdependence. Combined
with the assumption of instantaneous equilibrium for mNaV, this process allowed for the
reduction of the original four-dimensional Hodgkin and Huxley model [16] to a simpler,
two-dimensional model that keeps the fundamental dynamical features of the original
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Figure 8 Reduction of the {V ,mKdr,hNaV} sub-system to a 2d model. A. Time constants of themKdr and hNaV
variables plotted as functions of the membrane potential V . B. Black: projection of the trajectory of a spike of
the {V ,mKdr,hNaV} sub-system onto the {mKdr,hNaV} subspace (IDC = 0). Red curve: best nonlinear fit of the
mean spike trajectory (see text). C. Bifurcation diagram of the 2d reduced {V ,hNaV} model. D. Sample of
characteristic trajectories of the 2d model in its phase space (IDC = 0). Blue: unstable LC. Green: trajectory of
the 2d model starting from a state located outside the uLC orbit. Red: trajectory for initial conditions located
inside the uLC orbit

model. Nevertheless, the implementation of this method of reduction of dimensionality
also requires an appropriate expression for the (voltage-dependent) time constant τw for
the new variable w. The solution was simple in the squid axon because the voltage depen-
dencies of τmKdr and τhNaV have similar shapes so that the voltage dependency of τw can
be set as a trade-off between that of τmKdr and τhNaV (see Fig. 17, Chap. 2 in [22]). On the
opposite, in our DCNn model, the magnitudes and voltage-dependent characteristics of
τmKdr and τhNaV are too different to be reconciled by a single, trade-off behavior model for
τw (Fig. 8A). We therefore turned to another approach and built 2d models that preserve
either τmKdr or τhNaV . In our model the trajectory of a spike in the {V , mKdr, hNaV} model
projected into the (mKdrOhNaV) plane is not a simple curve (Fig. 8B). Like the projected
curve of the Hodgkin–Huxley model, it exhibits two double points (see Fig. 6 in [49])
and we therefore searched for the best nonlinear fit of the trajectory in the (mKdrOhNaV)
plane. Firstly, we built a 2d model preserving the properties of IKdr by fitting the hNaV ver-
sus mKdr relation. We found that the power law hNaV = 0.07/m0.65

Kdr provides a good fit of
the mean trajectory of a spike in the (mKdrOhNaV) plane (not illustrated). By substitut-
ing this expression for hNaV into the INaV equation we obtained a first 2d reduced model,
the {V , mKdr} sub-system, that comprises a unique voltage-dependent time constant τmKdr .
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However, this model fails to capture the features of the {V , mKdr, hNaV} model given that
it fails to produce repetitive firing (not illustrated). We therefore turned to the alternative
and fitted the mKdr versus hNaV relation. We found that this relation is well fitted by the
equation mKdr = 0.0145/h1.6

NaV. After substituting mKdr by this equation into the IKdr cur-
rent equation, ones obtains a second 2d reduced model, the {V , hNaV} sub-system. Like
the {V , mKdr} sub-system, it contains a unique voltage-dependent time constant but it is
τhNa instead of τmKdr . Figure 8C shows that the {V , hNa} sub-system retains the qualita-
tive dynamical features of the {V , mKdr, hNaV} model with an isola of LC coexisting with
a branch of stable FP. The global properties of the {V , hNaV} sub-system can be under-
stood geometrically since the model is 2d. Figure 8D depicts characteristic trajectories of
the model for IDC = 0. The blue closed curve is the trajectory of the uLC corresponding
to IDC = 0 in the bifurcation diagram. We found that any trajectory starting from an ini-
tial condition located inside the region bounded by the blue curve converges onto the FP
point (see for example the red trajectory in Fig. 8D). On the opposite any trajectory start-
ing outside the region defined by the blue curve converges onto the corresponding sLC
in the bifurcation diagram (see for instance the green trajectory in Fig. 8D). We conclude
that the blue curve is the separatrix between the attraction basins of the FP and of the sLC.
Moreover, we observed that the {V , hNaV} sub-system loses the characteristic features of
the {V , mKdr, hNaV} reduced model if τmKdr rather than τhNaV is used in the INaV equation:
the isola of LC disappears whereas the FP branch remains unaffected. This shows that the
characteristics of the voltage-dependent time of inactivation of INaV are also fundamental
for the coexistence of an isola of LC and of a branch of FP. Together these results suggest
that the most important current for these dynamical features is INaV.

3.8 The triggering of reversible F ↔ SD transitions by synaptic inputs
From a functional standpoint, it is crucial to determine whether F ↔ SD transitions in
DCNn actually occur in response to synaptic inputs provided by MF and PC. Indeed, the
ideal phasic current sources used in previous sections have an infinite resistance whereas
synaptic currents have a nonzero conductance that may prevent state transitions to occur
by shunting the neuron membrane. Moreover, synaptic currents have an inversion po-
tential which sets limits to voltage changes that can be triggered by activating these con-
ductances. We therefore investigated this question with a variant model in which ideal
phasic currents were replaced by models of synaptic currents, i.e. current sources having
a nonzero conductance and an inversion potential: Isyn = gsyn(V – Esyn). Experiments es-
timate the Nernst potential of Cl– ions in DCNn to be ECl = –75 mV [3, 51]. Figure 9A
illustrates the response of the standard model to a pair of successive pulses of synaptic
current that model the inhibitory inputs of PC synapses onto the DCNn. Both pulses (of
different amplitudes) interrupt the tonic firing of spikes in the model in agreement with ex-
perimental observations that PC inputs can silence DCNn [51]. After the pulse, the DCNn,
however, resumes firing spikes after a ∼300 ms period of increased firing frequency. We
found that such synaptic inhibitory pulses cannot trigger a F → DB transition in those
conditions, whatever the duration or amplitude of the pulse (data not shown). Examina-
tion of ICaT dynamics during the pulse showed that inhibitory synaptic conductances de-
inactivate a smaller amount of ICaT compared to direct current injections, thus explaining
the absence of F → SD transition by inhibitory synaptic conductances. These results may
lead one to conclude that physiological inputs from PC are unable to trigger F → SD tran-
sitions in DCNn. However, Boehme et al. [52] have observed that large synaptic inhibition
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Figure 9 Triggering of F ↔ DB transitions in the model by inhibitory (chloride) synaptic inputs. The traces
illustrate the voltage response to square pulses (300 ms) of an inhibitory conductance. Labels indicate pulse
magnitude in μScm–2. A. Standard model with a reversal potential ECl = –75 mV. B. Variant model with
voltage-dependent parameters of ICaT shifted to depolarized potentials by +10 mV (see text). C. Standard
model with ECl = –85 mV (see text)

of DCNn by Purkinje cells potently elicit rebound potentials that are underlain by ICaT.
These authors suggested that these observations could result from an erroneous estimate
of either the voltage dependence of ICaT or the value of the chloride Nernst potential ECl.
They noticed that the previous estimates of the voltage characteristics of ICaT have been
derived from DCNn recordings made in the soma where the density of ICaT is smaller than
in the DCNn dendrites [14]. Owing to difficulties to achieve perfect space-clamp of the
membrane voltage over the entire neuron surface, these authors estimated that the actual
voltage-dependent parameters of ICaT could be less negative by as much as 10 mV. Fig-
ure 9B illustrates the model response to the same stimulation protocol as Fig. 9A but after
a +10 mV shift of the voltage-dependence of ICaT. The first current pulse now is able to trig-
ger a F → SD transition while the second pulse induces the opposite transition, switching
back the model to its F state. Boehme et al. [52] further suggested that ECl in the DCNn
may also be wrongly estimated by whole cell recordings since the patch pipette imposes
its electrolytes composition to the recorded neuron. They estimated that the physiological
ECl could be more negative, down to –85 mV. This negative shift of ECl induces effects that
are qualitatively identical to positive shifts of the ICaT voltage-dependency (Fig. 9C), the
first pulse triggering a F → SD transition and the second pulse resetting the neuron to its
firing state.
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4 Discussion
The mathematical model presented in this study sketches an original electric personality
for the neurons of the deep cerebellar nuclei (DCNn) which remained unsuspected until
now in spite of experimental data evidencing puzzling state transitions in these neurons.
The pioneer investigation of DCNn intrinsic electric properties by Jahnsen ([2] and [51])
reported that spontaneously active DCNn can be switched to a silent state and back to
their firing mode by pulses of injected current (Fig. 5 in [2]). Jahnsen referred to the silent
state as a ‘steady depolarization and inactivation of the spikes’ and our terming ‘SD sate’
stands as a shortcut for this description. The study of Raman et al. [4] subsequently re-
ported strikingly similar results with patch-clamp recordings showing that depolarizing
current pulses can switch DCNn up to a silent depolarized state until the membrane is
actively hyperpolarized by a current injection. Notice that the calling of this state a ‘de-
polarization block’ (DB) by Raman et al. [4] actually appears misleading. Indeed, many
(if not all) neurons exhibit an inactivation of their spike mechanism in response to large
depolarizing currents which is called DB (see e.g. midbrain dopamine neurons [53], hip-
pocampal CA1 pyramidal neurons [54] and layer 5 pyramidal neuron of rat’s visual cortex
[43]). However, the DB does not outlast the duration of its triggering depolarizing current
in all cases that we aware of, showing that the DB is not a self-sustained state. In order to
highlight these differences, we have chosen to term lasting depolarizations of DCNn as
a ‘SD state’, this acronym standing for a shortcut of properties of these lasting sustained
depolarizations initially described by Jahnsen [2]. Experimental data of Jahnsen [2] and
Raman et al. [4] therefore suggest that the SD state may be a genuine state of the DCNn
distinct from their spontaneously firing regime (F mode). Since a previous model of DCNn
intrinsic electrical properties did not reproduce the coexistence of distinct firing regimes
[7], we have built a new model to investigate the hypothesis of a stable depolarizing state in
the DCNn, its relation with the spontaneous firing state and interactions between mem-
brane ion currents that give rise to the coexistence of these two states.

Our model uses the latest experimental findings on active membrane ion currents in
DCNn to suggest that DCNn have two coexisting stable electrical states. One them is the
F mode in which neurons fire fast spikes at low spontaneous frequencies in agreement
with in vitro studies [2–7]. The other state is a silent mode of activity characterized by
a depolarized membrane potential at around –38 mV. We call it the SD state (for stable
depolarized state) to stress the proposition that it is locally stable and excitable according
to our model. This is evidenced by the fact that our model can be switched back and forth
between its SD and F modes by brief pulses of de- or hyperpolarizing currents (see Fig. 1).
According to our results (Fig. 2), these bistability properties of the DCNn may reflect the
fact that these neurons lay at rest between two-fold bifurcations delimiting an isola of
limit cycles which coexists with a branch of stable fixed points. The FP for IDC = 0 would
correspond to the plateau depolarization reported by Jahnsen [2] and by Raman et al. [4].
To our knowledge, such dynamical properties have been previously described only in the
squid axon bathed in low [Ca]0 saline [12].

Our model is a single-compartment, isopotential simplification of a cell that actually
exhibits a more complex morphology with dendrites and soma. This simplification is in
part justified by previous modeling studies of the passive properties of these cells that sug-
gest that these cells are moderately electrotonically compact [7]. A first extension of our
model consists in lumping the whole dendritic tree into a unique effective isopotential
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compartment and connecting it to our initial soma model with a coupling conductance.
Preliminary investigation of the resulting two-compartment system suggests that the ca-
pacitive and passive resistance loads imposed by the dendritic compartment to the soma
are unlikely to challenge the basic mechanism that we propose to explain the transitions
from the firing to the SD state in DCNn. In fact, the documented enrichment of DCNn
dendrites in CaT current (14) could even boost the facility with which hyperpolarizing
inputs can trigger these transitions.

4.1 Experimental testing of the model predictions
Our analysis of the mechanisms underlying F ↔ SD transitions with the standard ver-
sion of the model and variant versions mimicking pharmacological block of the different
membrane ion currents suggests three experiments to unambiguously test the hypothesis
of F–SD states bistability in the DCNn. These experiments could be achieved with stan-
dard intracellular recording of DCNn in cerebellum slices. Experiment I—evidence for a
branch of SD states: our model predicts that recorded DCNn should reach a silent state
of activity upon injecting them with sufficiently large amounts of steady depolarizing cur-
rents. Notice that this behavior is expected for any neuron type whose rising phase of the
spike is underlain by a voltage-dependent Na current exhibiting inactivation. Unlike other
neurons however, our model predicts that a DCNn should remain in this silent state when
the amplitude of injected currents is decreased back at a rate sufficiently slow to prevent
crossing of the separatrix between the F and SD states. Then, starting from hyperpolar-
ized membrane potentials, our model predicts that the recorded DCNn should remain
silent when the magnitude of the hyperpolarizing current is slowly reduced down to zero
and even upon injecting large depolarizing currents. Experiment II—evidence for an isola
of limit cycles: this second experiment investigates the firing mode of the DCNn with the
help of standard (firing frequency vs IDC) curves. Injecting depolarizing steady currents
of growing magnitude into spontaneously active DCNn should increase their firing fre-
quency up to a maximum current value (IF2 in Fig. 1) beyond which the DCNn should
switch to a silent state. Conversely, in a spontaneously firing DCNn, increasing the mag-
nitude of the tonic hyperpolarizing current above IF1 should abruptly switch the neuron
to its silent mode. The observation of this result would lead one to categorize the DCNn as
type II neurons according to the Hodgkin classification [42]. The latter part of this experi-
ment should especially be achieved in the presence of broad-spectrum inhibitors of post-
synaptic channels to remove spontaneous synaptic activity in slices. Membrane poten-
tial fluctuations due to ongoing synaptic activity would hinder determining if the DCNn
minimal firing frequency is actually nonzero. Experiment III—changing the external Ca2+

concentration: this experiment tests the model prediction that the DCNn can be made to
adopt the classical bifurcation scenario for type II neurons, by turning the left-hand side
fold bifurcation of the isola into a subcritical Hopf bifurcation and the right one into a
supercritical Hopf bifurcation (see [43]) by increasing [Ca]0. These changes of bifurcation
would not be accompanied by qualitative modification of the f/I relationship. But they
could be identified by a continuous decrease of the spike amplitude down to zero upon in-
creasing the driving current up to the right-hand side bifurcation. Experiment IV—extent
of INa inactivation in the SD state: intracellular recordings could (i) check that INa is not
fully inactivated in the SD state and (ii) investigate whether the full blockage of INa with
TTX prevents DCNn state transitions by removing the SD state.
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4.2 Ionic currents and dynamics of the model
The analysis of the standard model and its lower dimension variants suggest that the
voltage-dependent properties of Na currents are of paramount importance in the state
transitions displayed by the DCNn in vitro. In order to justify this major conclusion,
we come back to the biophysical foundations of our model, namely the set of ion cur-
rents extracted from the experimental literature on the DCNn to build our model and
their mathematical formulation. To avoid introducing unjustified hypotheses, we assumed
that voltage-dependent currents obey the classical Hodgkin–Huxley formalism which has
proven capable to reproduce the qualitative dynamics of most neuron types studied so far
with mere parameter adjustments. For IKdr this hypothesis is consistent with the finding by
Raman et al. [4] of a classical delayed rectifier K current in DCNn. However, the large time
constant of activation reported in this study (12 ms at +12 mV) suggests that this voltage-
dependent current is carried by (slow) Kv2 channels (see e.g. [29]) whereas other studies
give no evidence for the expression of Kv2 channels by DCNn. These studies rather show
that DCNn express (fast) Kv3 channels and that these channels are functional (see Meth-
ods). Our model was accordingly designed with a voltage-dependent time constant for IKdr

corresponding to fast Kv channels. Nevertheless, we investigated the possible involvement
of Kv2 channels in the DCNn electro-responsiveness with a variant model comprising a
slowly activating K current, IKdrS, in addition to IKdr. IKdrS was given the same voltage-
dependence as IKdr but its time constant was multiplied by 11 to achieve a value of 12 ms
at +12 mV. Adding IKdrS to the model with the same conductance as IKdr did not change the
overall structure of the model’s bifurcation diagram (compare panels A and B in Fig. 10).
However, it increased the width of the isola of LCs and reduced the spontaneous firing
frequency from 28.9 Hz to 25.5 Hz. This frequency could even be reduced to 20 Hz (the
spontaneous firing frequency of DCNn in vitro [2–7]) by increasing the gKdrS value to 3.3
times that of gKdr (not illustrated). These results suggested that previous studies of Kv
channels in DCNn may have missed the Kv2 channels implied by the results of Raman et
al. [4] and that currents through Kv2 channels underlie the low spontaneous frequency fir-
ing of DCNn. To address this hypothesis, we fixed the value of gKdrS and decreased that of
gKdr to determine to what extent slow KV3 channels are mandatory to explain the observed
firing dynamics of DCNn. Decreasing gKdr diminishes the width of the isola of LC down
to gKdr = 3 × 103 μScm–2, where the branch of SD states loses its stability (Fig. 10C check).
Nevertheless, overall stability of the FP branch was restored by increasing the conductance
of ITCN to 3 × 103 μScm–2, suggesting that the functional role of ITCN is to stabilize the SD
state of DCNn. We tested this proposal by reducing gKdr down to the complete withdrawal
of the fast KV current in the model. The range of tonic currents over which the FP branch
is unstable in the hybrid Kdrs–Kdr variant model (Fig. 10B) was even more enlarged after
switching the IKdr model to solve Kv2-like dynamics (Fig. 10E). Nevertheless, increasing
gTCN proved again capable to resolve this issue as shown by panel F in Fig. 10 displaying the
bifurcation diagram of the model endowed with gTCN to 215 μScm–2. Beyong strengthen-
ing our proposal on the functional role of ITCN, these results demonstrate that the basic
bifurcation scenario of the standard model can be achieved by a model comprising only
slow Kv channels.

Adequacy of the classical HH formalism to model voltage-dependent Na currents in
DCNn proved more challenging owing to two reasons: (i) the integer power to which
raise variable mNaV and (ii) the evidence for a resurgent Na current in DCNn (Ref ) not
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Figure 10 Robustness of the model’s bifurcation diagram to parameters-models of IKdr and INaV (see text).
A. Impact of putative Kv2 channels. Symbol IKdrS stand for the standard IKdr after its voltage-dependent time
constant was scaled up to model (slow) Kv2 channels. A1. Standard model. A2. After addition of IKdrS (with the
same conductance as IKdr). A3. Same as A2 with gNa decreased to 3000 μScm–2. A4. Same as A3 with gTCN
increased to 75μScm–2. A5. With IKdrS as the sole voltage-dependent K current (mode’s standard
conductance value). A6. Same as A5 with gTCN = 215 μScm–2. B. Impact of the persistent component of INaV
identified in DCNn. Symbol INaRB stands for the model of voltage-dependent Na current of Raman and Bean
[55]. B1. INaV replaced by INaRB with conductance gNaRB = 5× 103 (same as that of INaV in the standard model).
B2. gNaRB = 3.5× 103. B3. gNaRB = 3× 103. B4. Same as B3 with gTCN = 75 (standard value = 45). B5. With
gKdr = 1.25× 104 (standard value = 4.5 × 103). B6. gNaRB = 3× 103, gKdr = 1.25× 104 and gTCN = 9.5× 101
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introduced in our model. Raman et al. [4] fitted their data for the steady-state activation
of Na currents with a Boltzmann function of the form given by Eq. (5) for mNaV∞ (see their
Fig. 3C). The standard HH formalism for this current uses the same function but raised to
a power of three (see e.g. [26]), i.e. m3

NaV∞. Assuming that the error between the data points
and the model prediction are independently and identically distributed according to a nor-
mal law, we computed the Bayesian information criterion (BIC) for both models [56]. We
found that BICm∞ – BICm3∞ > 16, which means that the standard m3

NaV∞ formalism yields
a better description of the experimental data than a mNa∞ formalism. The classical HH
formalism hence appears to be capable to describe adequately the transient component of
INaV currents in DCNn. Notice that the two studies on INaV in DCNn that we are aware of
([4] and [18]) provide divergent results regarding the inactivation parameters of this cur-
rent. Our model adopts as standard parameters the values reported in [18] in physiological
salines rather than values in [4] as the latter were obtained in low external Na conditions.
Nevertheless, we found that the basic bifurcation diagram and F ↔ SD state transitions
are robust to changes in the inactivation parameters of INaV which include the values re-
ported in [4], thereby showing that these properties do not result from an unrealistically
precise setting of the INaV parameters. We then investigated the possible role of the resur-
gent component of INaV reported in DCNn by Afshari et al. [18]. This current, which was
initially identified in cerebellar Purkinje cells [55], corresponds to a transient block of NaV
channels in their open state that is not accounted for by the classical HH formalism. For
this reason, we investigated the properties of a variant model in which INaV was modeled
with the state transition scheme of Raman and Bean [19], which produces a resurgent cur-
rent. Figure 10B summarizes the results of this investigation. When endowed with INaRB

instead of the standard INaV (same conductance as INaV ), the model can no longer produce
F ↔ SD transitions due to the loss of overall stability of the FP branch (Fig. 10B1). The ex-
change of Na current models also induces the appearance of saddle-node (SN) bifurcation
in this branch. Rather than forming an isola of LC as in the standard model, the branch
of sLC ends into a homoclinic bifurcation at regular saddle at the left of the bifurcation
diagram and into a Hopf bifurcation (H1) at the right of the diagram. As INaRB adds a resur-
gent component to the transient Na current modeled with INaV, we reasoned that loss of
stability of the FP may stem, at least partly, from the Na current having become excessively
large. In agreement with this reasoning, panels B2 and B3 in Fig. 10 show that a progressive
decrease of gNaRB shifts the H1 point to the left of the bifurcation diagram. It also removes
the SN bifurcation point to leave a second Hopf bifurcation point (H2) which shifts to the
right of the bifurcation diagram as gNaRB is decreased furthermore. However, decreasing
gNaRB alone proved unable to restore the standard bifurcation diagram as the branch of LCs
was lost when the FP resumed overall stability (not illustrated). As our study suggests that
the ITCN current contributes to the stability of the FP branch, we then increased gTCN in
addition to decreasing gNaRB. Figure 10B4 shows this additional parameter change brought
the H1 and H2 closer to each other and allowed the model to recover two short branches
of uLC at ends of the branch of sLC. However, further increases in gTCN proved unable
for the variant model to recover the isola of LC as they exchanged the stability of the left
uLC branch (not illustrated). Given that IKdr exerts a counteracting effect to INa, we finally
examined the effects of increasing gKdr. Figure 10B5 shows that increasing gKdr has similar
effects to that of increasing gTCN. However, increasing gKdr alone also proved unable for the
model to recover the isola of LC (not illustrated). Nevertheless, panel B6 shows that com-
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bining the three effects of decreasing gNaRB and increasing gTCN and gKdr allows the variant
model to recover the overall structure of the bifurcation diagram of the standard model.
These results show that a variant model endowed with an accurate biophysical model of
INaV including a resurgent component can produce a bifurcation diagram consistent with
that of the standard model and therefore support the mechanism that our study proposes
to explain F ↔ SD transitions of DCNn.

Given that not all DCNn currents have been thoroughly characterized, matching DCNn
salient electrophysiological properties (spontaneous spiking frequency, f –I relationship,
spikes under- and overshoot values and voltage of the SD state) resulted in trade-off values
for parameters of INaV (i.e. VmNaV , kmNaV , VhNaV , and khNaV ) in our model that deviate from
mean experimental values documented in Raman et al. [4] and Afhsari et al. [18]. Never-
theless, we observed that dynamical properties of our model, including its F ↔ SD states
transitions, could be retained when using these mean experimental values provided that
membrane conductances gNaV and gTCN were adjusted in ways that strictly agree with our
findings on the effects of these conductances on the bifurcation diagram of the model.

At least two different kinds of DCNn have been characterized: GABAergic DCNn and
non-GABAergic DCNn [24]. The former exhibit a lower spontaneous firing frequency
(∼10 vs ∼30 Hz) and a lower maximal firing frequency than the latter (∼50 vs >100 Hz).
With standard parameter values, our model has a spontaneous firing frequency of ∼29 Hz
and a maximal frequency of ∼110 Hz, so our model unambiguously corresponds to non-
GABAergic large neurons. From a preliminary exploration of the parameter space, we
think that it may be possible to reproduce the firing range of GABAergic DCNn with our
model. The spontaneous firing rate mostly depends on the TCN current, so decreasing
this conductance leads to a decreased spontaneous firing rate. However, this also alters
the bifurcation diagram, destroying the isola of limit cycles and suppressing the possibil-
ity of transitions between a firing and a SD state. However, it is not clear if those transi-
tions do arise in GABAergic DCN experimentally. Therefore, our model with its standard
parameter values corresponds to non-GABAergic DCNn and further work is needed to
determine if it can be adapted to account for GABAergic DCN too.

4.3 Functional implications
An unresolved central issue in the cerebellum functioning is the observation that activ-
ities of connected Purkinje cells (PC) and DCNn can exhibit negative as well as positive
correlations [57]. The observation of a positive correlation is puzzling since PC inhibit
DCNn (with a ratio of 800 PCs to 1 DCNn) so that one would expect negative correlations
between PC and DCNn firings. The basic bifurcation scenario of our DCNn model offers
a fresh look at this question. It suggests that salient sensorimotor information transmitted
by the phasic inhibitory inputs of Purkinje cells or the excitatory inputs of mossy fibers
collaterals can trigger reversible ‘on’–‘off’ transitions of the DCNn (see Fig. 6). Accord-
ing to our model a DCNn can be in its firing ‘on’ state even if PC targeting it are active
provided that the total tonic inhibitory current fed by PC is not large enough to shift the
model below the left bound of the isola of limit cycles (see Fig. 2A). Moreover, our model
predicts that the state of an initially silent DCNn after a PC inhibitory signal depends on
the amplitude of the input: moderate-amplitude inputs will switch the DCNn to its firing
state whereas large-amplitude inputs will keep the DCNn in the silent state. Because of
this counter-intuitive behavior, the activity of the DCNn and of the PC can exhibit posi-
tive and negative correlations, as reported by McDevitt et al. [57]. Our findings therefore
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strongly suggest to study computational models of the cerebellum network endowed with
the basic DCNn state transition features disclosed by our study.

Appendix: On the separatrix between the basins of attraction of the SD and F
states
We show in the Methods section that solutions of our model are bounded. Moreover, our
model has no strange (fractal dimension) attractor in addition to the F and SD attractors.
It follows that any trajectory of the model, whatever its initial conditions, must eventually
converge on either the F or the SD attractor. This implies the existence of a closed manifold
(i.e. compact and without bounds) separating the phase space. This leads us to propose
that the separatrix delimiting the basins of attraction of the F and SD attractors is a (n – 1)-
dimension closed manifold. We give here information supporting this hypothesis.

A virtue of the reduced {V , mKdr, hNa} model is that it possesses a three-dimensional
phase space allowing one to visualize its dynamics, contrary to the standard six-dimen-
sional system. We used this property to study in more detail the separatrix between the
basins of attraction of the SD and F states. We were able to sample the separatrix in the
{V , mKdr, hNaV} model by imposing a fixed value to two its three state variables model
and then finding by dichotomy values of the remaining variable that are closest to the
separatrix. We illustrate the results in Fig. 11A for three different orientations in the
{V , mKdr, hNaV} phase space. The black mesh locates the points of the separatrix sampled
for different fixed values of either mKdr or hNaV. This mesh clearly forms a closed surface
showing that the separatrix in the {V , mKdr, hNaV} reduced model is two-dimensional. The
small parallelogram in panels A represents a flat surface locally tangent to the separatrix
at a point in the phase space with coordinates (V = –30.1, mKdr = 0.3, hNaV = 0.06). The
inner side of this surface is depicted in light gray and its outer side in dark gray. Figure 11B
illustrates an example of the fate of all trajectories starting from initial conditions located
inside the volume delimited by the separatrix: all these trajectories eventually converge
to the SD state (red dot). On the opposite, all trajectories of the model starting from a
point located outside of this volume converge onto the sLC (green curve) as illustrated by
Fig. 11C. These results confirm that the surface delineated by the black mesh in Fig. 11A1–3

is the separatrix between the attraction basins of the F and SD states. Numerical investi-
gation of the uLC in the {V , mKdr, hNaV} reduced model revealed that this limit cycle has
one of its Floquet exponents equal to 1 (as expected from Floquet theory, (see e.g. [13])), a
second one being <1 and the remaining one being >1. Hence, the local unstable manifold
of the uLC is of dimension 1 whereas its local stable manifold is of dimension 2. Since the
global stable and unstable manifolds of the uLC are locally tangent, respectively, to the
local stable and unstable manifolds in a neighborhood of the uLC and according to the
above results showing that the separatrix is a closed surface, we are led to propose that
the SD/F separatrix is actually the global stable manifold of the uLC. The finding that this
manifold is of dimension 2 agrees with the hypothesis that the separatrix is of dimension
n – 1 in the {V , mKdr, hNaV} reduced model. Moreover, numerical analysis of the uLC in the
standard six-dimensional model revealed that one of its Floquet exponents is equal to 1,
four of them are <1 and the last one >1 so that the sLC stable manifold is of dimension 5.
According to the conclusion derived from the {V , mKdr, hNaV} reduced model, it follows
that the F/SD separatrix is likely of dimension 5 in the standard model, thereby providing
support for the n – 1 dimension hypothesis on the separatrix.
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Figure 11 A. Sampling of the separatrix between the basins of attraction of the SD and the sLC for three
different orientations. Curves tangent to the separatrix were computed for different fixed values of one the
model state variables. Red:mKdr = 0.3, green: hNaV = 0.06, Blue:mKdr = 0, magenta: hNaV = 0. Black curve: uLC.
Gray box: flat surface patch tangent to the separatrix; light and dark grays, respectively, indicates inside and
outside of the separatrix surface. B. The model converges to its SD state from a state point of the phase space
located inside the phase space volume bounded by the separatrix. C. Convergence of the model to the sLC
from initial conditions located outside of this volume. All data depicted in the figure were computed with
IDC = 0
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