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The orthopedic characterization 
of cfap298tm304 mutants validate 
zebrafish to faithfully model 
human AIS
Marie‑Hardy Laura 1*, Cantaut‑Belarif Yasmine2, Pietton Raphaël1, Slimani Lotfi3 & 
Pascal‑Moussellard Hugues1,2 

Cerebrospinal fluid (CSF) circulation relies on the beating of motile cilia projecting in the lumen of the 
brain and spinal cord cavities Mutations in genes involved in cilia motility disturb cerebrospinal fluid 
circulation and result in scoliosis‑like deformities of the spine in juvenile zebrafish. However, these 
defects in spine alignment have not been validated with clinical criteria used to diagnose adolescent 
idiopathic scoliosis (AIS). The aim of this study was to describe, using orthopaedic criteria the 
spinal deformities of a zebrafish mutant model of AIS targeting a gene involved in cilia polarity and 
motility, cfap298tm304. The zebrafish mutant line cfap298tm304, exhibiting alteration of CSF flow due 
to defective cilia motility, was raised to the juvenile stage. The analysis of mutant animals was based 
on micro‑computed tomography (micro‑CT), which was conducted in a QUANTUM FX CALIPER, with 
a 59 µm‑30 mm protocol. 63% of the cfap298tm304 zebrafish analyzed presented a three‑dimensional 
deformity of the spine, that was evolutive during the juvenile phase, more frequent in females, with a 
right convexity, a rotational component and involving at least one dislocation. We confirm here that 
cfap298tm304 scoliotic individuals display a typical AIS phenotype, with orthopedic criteria mirroring 
patient’s diagnosis.

Zebrafish is a frequently used animal model in genetic and could be used to investigate 
AIS. In human, adolescent idiopathic scoliosis (AIS) is by far the most common form of non-congenital 
scoliosis seen in practice, occurring in the absence of associated  pathologies1–3. It is the most frequent muscu-
loskeletal disorder occurring in 1–3% of the population, arising in childhood and worsening before the peak 
of growth during adolescence. If the frequency of AIS is higher in female patients (80%), no major differences 
in the curves pattern has been demonstrated  yet4,5. If untreated, AIS can lead to chronic low back pain, pulmo-
nary restrictive syndrome and severe disabilities along  life2,6–10. While bracing is an efficient way to contain the 
progression of spinal curves, surgical correction may be needed to correct severe and resistant curves. Thus, a 
clear understanding of patients’ physiopathology is essential to appreciate the clinical behavior and may help to 
prevent the disease by identifying the progression factors and then individually adapt treatments.

Among genetic model organisms helping to understand AIS pathogenicity and etiology, zebrafish has recently 
emerged as an advantageous animal  model11–13. A biomechanical study in finite elements recently showed that 
the zebrafish spine is a relevant model of human spine  deformation14. While scoliosis occured rarely in quadru-
pedal animals, the longitudinal shape of zebrafish coupled with their ability to experience spinal loads in water 
make them naturally sensitive to three-dimensional spine deformities, which they even naturally develop with 
elderliness, highly similarly to  humans15,16. Recent studies have demonstrated a link between spinal curves and 
cilia motility involved in cerebrospinal fluid (CSF)  circulation11–13,17,18, as mutants defective in cilia motility 
develop AIS phenotypes. A cilium-linked physiopathology in AIS patients is highly suspected, as mutations 
related to cilium has been found in AIS cohorts (POC5, PAX1) and due to the correlation between CSF-flow 
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and AIS illustrated by the higher prevalence of scoliosis in AIS  patients19–22. Cfap298 is a gene involved in cilium 
dysfunction, that has been investigated on a Zebrafish model, concluding to spine deformities mimicking AIS, 
as well as ptk7 mutants for  example11–13,23. However, in these studies, the orthopedic characterizations of spinal 
deformities are sometimes lacking analysis through the eyes of clinicians used to analyze spine deformities, 
scoliosis, among others.

Indeed, although zebrafish are susceptible to develop spinal curvatures naturally or upon targeted gene muta-
tions, it is not clear whether these AIS animal models faithfully recapitulates the attributes of human pathologies 
of the spine. Here, using micro-computed tomography and clinical criteria, we characterized spine deformities 
developed in the zebrafish mutant line cfap298tm304 that affects cilia motility and polarity to confirm the link 
between these deformities and  AIS12,24,25.

Methods
A genetically modified zebrafish for cilium related gene and exhibiting spine deformities was 
investigating in micro‑CT. Animal husbandry. All procedures were performed on juvenile and adult 
zebrafish in accordance with the European Communities Council Directive (2010/63/EU) and French law 
(87/848) and approved by the Paris Brain Institute (Institut du Cerveau). An approval agreement was obtained 
from the French ethic committee for experimentation on juvenile and adult zebrafish (APAFIS agreement num-
ber 2018071217081175). All experiments were performed on Danio rerio of AB, Tüpfel long fin (TL) and nacre 
background. The study was carried out in compliance with the ARRIVE guidelines. Animals were obtained from 
a natural mating and were raised under a 14/10 light/dark cycle.

This study did not involve human subjects. All methods were carried out in accordance with relevant guide-
lines and regulations.

Induction of cilia motility defects and spine deformities. 27 sibling animals were obtained from the natural 
mating of a cfaptm304/+ male and a cfap298tm304/tm304  female24,25, resulting in the progeny in 50% of homozygous 
mutant animals (n = 17 animals analyzed) and 50% of heterozygous siblings (n = 10 animals analyzed) . As the 
cfap298tm304 mutation is thermosensitive, the induction of cilia motility defects was based on a temperature shift 
as described in a previous  work12. Animals were first raised at 25 °C until 6 days post-fertilization (dpf) to allow 
normal embryonic development and then switched at 30 °C from 18 to 23 dpf as described in a previous  work12. 
Homozygous mutant animals subjected to this restrictive temperature (30 °C) developed defects in spine align-
ment as previously reported. Heterozygous animals were subjected to the same temperature shift and used as 
control siblings.

Scannographic analysis. Juvenile zebrafish were imaged at 8 and 12 weeks old under general anesthesia using 
0.02% MS-222 (Sigma). Micro-Computed Tomography (micro-CT) was performed using a QUANTUM FX 
CALIPER, with a 59  µm – 30  mm protocol. The DICOM images were analyzed with RADIANT DICOM 
VIEWER 5.0.0 software. All scannographic analyses were performed on three-dimensional reconstructions, 
oriented in sagittal and coronal planes as described  in26 and were performed by an orthopedic surgeon to avoid 
bias. The thoracic and lumbar segments of the zebrafish’s spines were defined according to the sagittal alignment: 
zebrafishes present one long thoracic kyphosis followed by a lumbar lordosis. The classical criteria for scoliosis 
characterization taken into account in this study were the number of spine curves, the side of the main curve, 
the Cobb angles, the number of dislocations, the Lenke  classification27, apical vertebral rotation (AVR) and api-
ces of the curves. The Lenke classification was applied to the zebrafish’s spines considering the main curves and 
the contra-curves (I: main thoracic, II: double thoracic, III: double major, IV: triple major, V: thoraco-lumbar/
lumbar and VI: thoraco-lumbar/lumbar/main thoracic), without the sagittal modifier rules. Dislocations were 
analyzed in 3D reconstruction, as known to be more precise than 2D measurements and defined by an AVR > 10° 
associated to a lateral listhesis on the frontal plane between two adjacent  vertebras28. They were measured from 
frontal reconstructions as described in Marie-Hardy et al.26.

Statistical analysis. All values are represented as histogram distributions or mean ± SEM (stated for each in the 
figure legend). Differences were analyzed with two-tailed-t-tests. Significance was set at 0.05. Statistical details 
related to sample size in each group and p-values are reported in the figures and figure legends. Asterisks denote 
the statistical significance: *p < 0.05; **p < 0.01; ***p < 0.001; ns, p > 0.05.

Results
63% of the zebrafish cohort exhibits a three‑dimensional spinal deformity of the spine with 
right convexity, similar to AIS. cfap298tm304 zebrafish carries a temperature sensitive mutation in the cilia 
motility gene cfap298, where cilia beating can be inactivated in a temporally controlled manner to alter CSF 
flow in brain and spinal cord  cavities12. Shifting the environmental temperature of the animals from permissive 
(25 °C) to restrictive (30 °C) results leads to the development of three-dimensional spinal deformity of the spine 
during  growth12. While the zebrafish appears to be an effective model for exploiting the pathogenicity hypoth-
eses underlying the development of AIS, its usefulness for orthopaedic research lacks validation with the clinical 
criteria used for the diagnosis of human patients.

Here, we took advantage of the cfap298tm304 mutation to characterize spinal deformities on the basis of 
orthopedic criteria and to fully validate this AIS model. We performed micro-CT imaging on a cohort of 17 
homozygous mutant animals (cfaptm304/tm304) and 10 heterozygous siblings (cfap298tm304/+), which were subjected 
to a temperature shift to allow the development of spinal misalignment in the homozygous mutant experimental 
group (see “Methods” for details).
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Radiological confirmation of a suspected scoliosis relies on the observation of a three-dimensional and rota-
tional spinal deformity characterized by a thoracic curvature in the frontal plane with a Cobb angle greater than 
10 degrees on frontal  radiographs1,3. Here, we observed that 63% of the cfap298tm304 population analyzed (n = 17 
out of 27 animals) had three-dimensional spinal deformity in the frontal and sagittal planes (Fig. 2A, B), with 
curves exceeding 10 degrees in the frontal plane (42.1° ± 4.1°, [min–max: 23°–78°]). In the scoliotic population 
analyzed, we observed that most of the animals had double or triple curves (n = 13 out of 17 scoliotic fishes) 
(Fig. 2C). If classified as human adolescent idiopathic scoliosis, 29% of the curves were Lenke 3, 29% Lenke 4, 
18% Lenke 5, 6% Lenke 1 and 6 or 1 and 2 animals were unclassifiable according to Lenke  classification27. The 
Fig. 1 displays some example of the Lenke classification applied to Zebrafish spine.

To fully describe the curve pattern of scoliotic animals, we measured the amplitude of the main curve at 
8 weeks old, and observed it was larger when the apex was located in the thoraco-lumbar junction (Fig. 2D), 
reflecting the anatomical location of the main curve observed in the patients. Moreover, the magnitude of the 
main curve for the 17 scoliotic zebrafishes was 42.1° ± 4.1°, [min–max: 23°–78°], while we observed a mean 
angle of 36.5° ± 6.7° [min–max: 13°–77°] for the first minor curve and 27.9 ± 4.8°, [min–max: 16°–43°] for the 
second compensatory curve.

Spinal deformities associated with AIS in human pathology are also characterized by a progression of the 
curve severity over time, most notably during the period preceding the pubertal growth  spurt29. Thus, we ana-
lyzed the evolution of the curve severity on scoliotic cfap298tm304 animals between 8 and 12 weeks of age. The 
mean length of the zebrafishes (all cohort) at 8 weeks old was 15.3 mm ± 1.86; [11.7;18.9 mm] and 19.8 mm ± 3.37 
[12.4;25.5 mm] at 12 weeks old. We observed that the mean Cobb angle of the scoliotic cfap298tm304 zebrafish 
increased by 5.5° ± 7.3° (mean ± SEM) during this period, showing the progressive development of spine tor-
sion. The mean Cobb angle for the second curve at 12 weeks was 47.6° ± 13° [29; 82°]. Moreover, the mean 
apical vertebral rotation for the main curve was 31° ± 13° [min–max: 20°–69°], reflecting its three-dimensional 
shape. The analysis of the curve patterns at 12 weeks also showed that spine curves remained mainly thoracic 
or thoraco-lumbar with double or triple curves and that 82% of the scoliotic juvenile fishes presented at least 
one dislocation (Fig. 2E). The dislocations were located at the thoraco-lumbar junction or at the lumbar spine 
for 79% of the animals.

Another feature of AIS is its sexual dimorphism. While female are a least more likely to develop scoliosis by 
a ratio of  two30,31 and most severe curves are ten times most prevalent in females than  males32 and the risk of 
progressive deformity requiring surgical treatment is five times higher in girls than in  boys33. Thus, we compared 
the frequency of scoliosis occurrence in male and female siblings obtained from the cross of cfap298tm304/+ and 
cfaptm304/tm304 parents (Fig. 3A). At 8 weeks old, 76% (n = 13 out of 17 animals) of scoliotic fish were females, 
compared to 30% in the non-scoliotic population (n = 3 out of 10), suggesting a female bias in the penetrance of 
scoliotic curves. Moreover, only 4/13 (31%) of the male fishes developed scoliosis, compared to 13/14 (93%) of 
the females, that difference being statistically significative according to Fischer’s test (p = 0.001). Although curve 
patterns may vary in AIS patients, right-sided thoracic deformities are by far the most  common34. Figure 3B 
shows the distribution of the convexity of the main thoracic curve in cfap298tm304 scoliotic animals, which was 
located to the right in 71% of the scoliotic fish. Overall, these results showed that the cilia-defective cfap298tm304 
mutant displayed characteristics of spinal curvature defects observed in human AIS patients.

Figure 1.  Three examples of frontal 3D-reconstructions of zebrafish’s spine deformities, classified according 
to Lenke and compared to corresponding human scoliosis. Left: Reconstructions from RaDiant Dicom Viewer 
5.0.0 software (https:// www. radia ntvie wer. com/); Right: Clinical plain radiographs (personal collection of 
LMH).

https://www.radiantviewer.com/
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Conclusions
The cfap298tm304 mutant seems to be after orthopaedic analysis of the curves a relevant model 
of AIS. The scannographic analysis of cfap298tm304 mutants at two different ages (8 and 12 weeks) conducted 
in this study is based on orthopedic criteria. It indicates the presence of dislocations for 82% of the cohort as 
well as a three-dimensional deformity of the spine with a frontal Cobb angle above 10° for 63% of the scoliotic 
animals analyzed. The presence of an apical rotation is a clue element to define scoliosis rather than other spine 
deformities and was found at 31° ± 13° in this cohort, which is a strong argument for scoliosis. As previously 
 described12, spine deformities are seen precociously, at 8 weeks old in cfap298tm304  mutants35. Consistently with 
previously reported AIS phenotype, we characterize here the evolutive severity of spinal deformities associated 
with scoliosis between 8 and 12 weeks. An increase of 5.5° was observed in four weeks, for an average Cobb angle 
of the main curve reaching 47.6° ± 13°.The predominance of a right thoracic convexity more frequent in female 
is also coherent with  AIS36,37. Thus, our orthopedic analysis of spinal deformities confirms the relevance of the 
mutant cfap298tm304as a model for human  AIS12,38,39.

One limitation of this study is of course the number of animals in the cohort, that render some statistics 
regarding male–female dimorphism and analysis of the curves weak. However, the analysis in an orthopaedic 
fashion does provide the clue elements to firmly link this phenotype to AIS.

How can we go further on the link between the cfap298tm304 mutation and the pathogenicity of AIS? The 
cfap298tm304 mutation affects a cytoplasmic protein that is expressed at the base of cilia, little sensory and motile 
organelles protruding from the surface of specialized cells in the  organism24. Cilia dysfunction may be clini-
cally linked to AIS, since variants in ciliary genes, especially involved in cellular mechanotransduction (LBX1: 
spinal cord differentiation, somatosensory signal transduction, POC5: centrin and inversin interaction in the 
centrioles, GRP126: axons myelinization), were found in AIS  patients20,21,40,41. Recent literature focusing on 
AIS etiology also highlighted a link with elongated osteoblasts cilium, related to several transduction genetic 

Figure 2.  Juvenile  cfap298tm304/tm304 zebrafish mutants develop an evolutive thoraco-lumbar curvature of the 
spine. (A) Frontal views of scannographic reconstructions of 8-week-old non-scoliotic (top) and cfap298tm304 
scoliotic sibling (bottom). (B) Frontal and sagittal view of the same cfap298tm304 scoliotic fish after scannographic 
reconstruction showing a 3-dimensional torsion of the spine reminiscent of AIS. (C) Distribution of the 
frequency of the number of spine curves observed in the sagittal plane of scoliotic (grey) and non-scoliotic 
(white) animals. The population analyzed was raised from a cross of cfap298tm304/+ with cfap298tm304/tm304. Most 
of cfap298 scoliotic animals display double or triple curves in the frontal plane. (D) Distribution of the Cobb 
angle of the main curve in cfap298 scoliotic fish depending on the localization of the apex of the main curve. 
Bars represent the average Cobb angles ± SEM. Each point represents a single fish. Most of the main curve apices 
are located between T6 and L10 (11 out of 17 fish) (E) Histogram showing the distribution of the number of 
dislocations observed in the scoliotic population (frequency, %).
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defects have been found in AIS patients, suggesting a complex molecular and cellular cilium involvement in 
 scoliosis17,42. Impairments in the inner ear system (lateral semi-circular canal asymmetry and vestibular canals 
morphology) possibly linked to cilia defects have also been identified in AIS patients and suggest the involve-
ment of the vestibular system to keep the spine properly  aligned43–45. no clear mechanism has emerged from 
these tissue-specific candidates.

On contrary, cilia beating in the brain and spinal cord cavities have been thoroughly explored and investigated 
recently in zebrafish. A link between CSF flow and AIS seems particularly relevant due to the frequent associa-
tion of type I Chiari malformation with scoliosis and the possible regression of the spinal curves observed in 
these patients after a sub-occipital  decompression19. The initial finding that disturbing CSF flow generates three-
dimensional spine deformities placed cilia and CSF as essential players for keeping the spine straight during 
the juvenile period of growth. This explanation had recently been clarified and deepened by the generation of 
zebrafish mutants targeting the SCO-spondin protein forming the Reissner fiber. While cilia beating is necessary 
to form this acellular thread bathing in  CSF46, zebrafish mutants devoid of this fiber have recently been shown to 
develop AIS-like spinal  curves47,48, possibly with an involvement of the signaling pathway of Urotensin-related 
 peptides39,49. These early forays into the genetics of AIS in zebrafish together with our orthopedic characteriza-
tion of the cfap298tm304 mutant bolsters now the use of this model to find novel mechanisms regulating spine 
alignment.

Received: 1 January 2021; Accepted: 15 March 2021
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