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Abstract

Hereditary spastic paraplegias (HSPs) are a group of rare, inherited, neurological diseases characterized by broad clinical and 
genetic heterogeneity. Lower-limb spasticity with first motoneuron involvement is the core symptom of all HSPs. As spasticity 
is a syndrome and not a disease, it develops on top of other neurological signs (ataxia, dystonia, and parkinsonism). Indeed, the 
definition of genes responsible for HSPs goes beyond the 79 identified SPG genes. In order to avoid making a catalog of the 
different genes involved in HSP in any way, we have chosen to focus on the HSP with cerebellar ataxias since this is a frequent 
association described for several genes. This overlap leads to an intermediary group of spastic ataxias which is actively genetically 
and clinically studied. The most striking example is SPG7, which is responsible for HSP or cerebellar ataxia or both. There are 
no specific therapies against HSPs, and there is a dearth of randomized trials in patients with HSP, especially on spasticity when 
it likely results from other mechanisms. Thus far, no gene-specific therapy has been developed for HSP, but emerging therapies in 
animal models and neurons derived from induced pluripotent stem cells are potential treatments for patients. 
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Introduction
Hereditary spastic paraplegias (HSPs) are a group of rare,  
inherited, neurological diseases characterized by broad hetero-
geneity in terms of both their clinical manifestations and genetic 
causes. HSPs are characterized by degeneration of the corti-
cospinal tract, predominantly of the first motoneuron alone but  
often involving the second motoneuron1. The main symptom 
is progressive bilateral lower-limb spasticity as a component  
of pyramidal syndrome.

Pyramidal syndrome is largely a component of more fre-
quently occurring neurological diseases, such as progressive 
forms of multiple sclerosis or slowly evolving forms of amyo-
trophic lateral sclerosis, often resulting in delayed genetic  
diagnosis of HSP2. Without genetic diagnoses, it is difficult 
to establish the prevalence of HSP. The estimated prevalence 
based on genetic or clinical diagnoses (or both) from a recent  
Swedish study is 2.4 out of 100,0003. This prevalence is near 
those found in a previous international literature review (2.2 out  
of 100,000)4 and a Portuguese population-based study (4.1 out 
of 100,000)5. One meta-analysis included 13,570 patients with 
a genetic diagnosis of the most frequently occurring genes 
(SPAST, REEP1, ATL1, SPG11, SPG15, SPG7, SPG35, SPG54,  
and SPG5)6. Unsurprisingly, SPG4/SPAST-HSP represents 
the most frequent overall (25%)6 as an autosomic dominant  
transmission, followed by REEP1 and ATL1. The most com-
mon autosomic recessive form is SPG11. The relative preva-
lences vary greatly among populations. The frequency of each 
gene is influenced by the degree of consanguinity (autosomic 
recessive bias according to the population screened) and the 
existence of a founder effect. Furthermore, multilocus and mul-
tigenic inheritance as in inherited axonopathies could be the  
underlying genetic cause, resulting in complex transmission  
patterns that are more difficult to be recognized7.

SPG4/SPAST-HSP is characterized by extreme inter- and intra-
familial variability for the age at onset, ranging from birth 
to the eighth decade, based on recently updated data follow-
ing analysis of the world’s largest SPG4/SPAST-HSP patient  
cohort (n = 842)8. Analysis of this large cohort made it possi-
ble to firmly establish a bimodal distribution for the age at onset 
for SPG4/SPAST-HSP, and a first major peak occurs before  
10 years of age and a second smaller peak occurs between the 
third and fifth decades. Furthermore, such bimodality reflected 
the nature of the SPAST causative variants. Indeed, missense 
variant carriers were characterized by disease onset that was 
significantly earlier than those of truncating variant carriers. 
This highlighted, for the first time, a clear genotype–phenotype  
correlation8. Intrafamilial variation of the age at onset due to the 
same shared causative SPAST variant has yet to be unraveled 
and is most likely due to genetic or environmental modifiers (or 
both). To date, SPAST Exon 1 variant c.131C>T/p.(Ser44Leu) 
appears to be the most well-documented SPG4/SPAST-HSP 
genetic modifier, leading to marked lowering of the age at 
onset when carried in combination with a major pathogenic  
SPAST mutation9,10.

The age-at-onset phenotype appears to be narrower for 
other HSP types. SPG3A/ATL1-HSP, the second most fre-
quent dominant HSP, nearly always begins before the age of 
five years. Both SPG4/SPAST-HSP and SPG3A/ATL1-HSP  
are purely pyramidal and are associated with considerable sen-
sory loss at the ankles in the former. The distribution of the age 
at onset for relatively frequent autosomal recessive forms of 
HSP is narrower, such as that described for SPG11, which rep-
resents 8 to 18% of HSP cases6 and has an early onset (before  
10 years of age).

What genes are considered to be responsible for HSP? Certainly, 
more than simply the SPG genes. In a recent review, 79 SPG 
genes were identified11. Cerebellar ataxia is often associated, 
leading to an individualized group of spastic ataxias. There is a 
definite overlap between the two disease groups, both clinically  
and genetically12.

Spastic ataxias
The most striking example for overlap between HSP and 
ataxias is SPG7. The first description was based on two Italian  
pure-HSP families and one French family, which included 
three sisters with a pure spastic phenotype on examination, but  
showing a more complex disease upon imaging and fun-
dus examination, with cerebellar atrophy and optic atrophy13.  
Paraplegin, encoded by SPG7, is a member of the AAA (ATPases 
associated with a variety of cellular activities) protein family,  
which is localized to the inner mitochondrial membrane14,15.  
Paraplegin assembles with AFG3L2 (SCA28) to form the  
oligomeric mitochondrial AAA protease complex, which is 
involved in protein maturation and degradation16–21. Interestingly, 
SPG7 has been shown to be causative for up to 19% of undiag-
nosed cerebellar ataxias22,23. We were able to analyze the largest 
SPG7 cohort (241 patients), assembled through the European  
SPATAX network (https://spatax.wordpress.com/). We explored 
genotype–phenotype correlations in this cohort. We found 
that patients with loss-of-function variants have a more com-
plicated phenotype, with spasticity. On the contrary, patients  
carrying at least one Ala510Val variant showed more frequent 
cerebellar ataxia and later onset24. Although cerebellar atrophy  
is known to be a hallmark of SPG7, a specific pattern of  
gray matter cerebellar atrophy that affects long-distance 
regions of the brain was recently shown to be associated with  
cognitive and social-ability impairment25. SPG7 is not the only  
SPG associated with cerebral atrophy.

Aside from SPG7, there are other examples of overlap between 
cerebellar ataxia and spastic paraplegias (Table 1). Among poly-
glutamine expansion spinocerebellar ataxias, which share a 
mutational mechanism with other polyglutamine expansion  
diseases, such as Huntington disease and spinal bulbar muscular 
atrophy, the presence of spasticity is very common26. The pres-
ence of a pyramidal syndrome is linked to the size of the CAG 
repeat expansion. The longer the CAG repetition is, the more 
important the spasticity is in addition to the cerebellar ataxia.  
Neuropathological features showed the involvement of the 
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upper and lower motor neurons (that is, the corticospinal tracts  
or the anterior horn degeneration in SCA1, 2, 3, and 7 or both)53.

Like SPG7, mutations in GBA2 and PNPLA6 can result in 
either spastic paraplegia or cerebellar ataxia with an autosomal 
recessive transmission mode31–34. Other genes have been iden-
tified to promote diseases characterized by cerebellar ataxia 
with spasticity. Eight are known, such as Cerebrotendinous  
xanthomatosis, Friedreich’s ataxia, and Niemann–Pick disease 
type C. In less frequent diseases, such as those caused by muta-
tions of SCAR18, the intensity of clinical presentation and 
ataxia depends on the transmission mode42. Spasticity is at the 
forefront of several other genetic diseases related to FOLR1, 
CAPN1, AFG3L2, and SACS43,47–52. Knowledge of these diseases 
and their identification are indispensable for providing specific  
treatment.

Management of HSP
Magnetic resonance imaging and HSP diagnosis
New neuroimaging findings allow precise HSP diagnosis on 
cerebral magnetic resonance imaging (MRI). For example,  
in SPG11, most patients have a thin corpus callosum54 and 
another sign is known as the “ear of the lynx”55. This sign  
corresponds to long T1 and T2 values in the forceps minor of  
the corpus callosum, which appears hyperintense on FLAIR 
(fluid-attenuated inversion recovery) and hypointense on  
T1-weighted images. Furthermore, new MRI techniques identified  
specific gray and white matter damage56. Neuropsychological  
exam and neuroimaging were performed on 25 SPG11 patients. 
This study allows us to describe a widespread pattern of dam-
age in white matter probably linked to cognitive deficiency, 
described in this population, whereas progressive degenera-
tion of multiple gray matter structures and spinal cord seems  
to be correlated with disease duration.

Another HSP well described by MRI is Pelizaeus–Merzbacher 
disease (L1CAM/SPG1-HSP). It is characterized by hypo-
myelination of brain stem and corticospinal tract on internal  
capsule57. The hypomyelination underlines another over-
lap existing between HSP and leukodystrophies. Hypomy-
elinating disorders are observed in different genetic diseases. 
But the MRI pattern gives a clue to identify pathologies as  
Pelizaeus–Merzbacher disease, infantile GM1 and GM2  
gangliosidosis, or fucosidosis58.

Symptomatic treatment
Symptomatic treatments for ataxia and HSP are complex and 
need long-term engagement from the patient and caregivers59.  
The first step is to implement rehabilitation therapies to preserve  
functions and develop compensations. Prevention of ataxia  
complications is necessary below the ataxia evolution. A multi-
disciplinary team for evaluation and management is essential  
to accompany patients over the long term at best and some-
times up to palliative care. For example, oropharyngeal dys-
phagia is a common symptom of the bulbar syndrome. It is one 
of the first symptoms in cerebellar ataxia which affect quality of  

life60,61 and can lower life expectancy. It can occur in complica-
tions such as malnutrition, dehydration, and aspiration-related  
pneumonia. Therapy carried out by speech and language thera-
pists has a positive significant outcome61. Another cerebellar 
symptom is the downbeat nystagmus. Different GABAergic sub-
stances, such as the 3,4-diaminopyridine and the 4-aminopyridine,  
have been tested. They have no major side effects and are 
well tolerated for a moderate success62. Baclofen is another  
GABAergic substance used against upbeat nystagmus.

Baclofen is also used in HSP as an oral anti-spastic. There 
are no specific therapies for the treatment of HSP. Treatment 
for spasticity of various origins is well recognized but does 
not follow national or international recommendations, as only 
a very small number of studies have evaluated symptomatic  
treatment63, in HSP. Studies from 2016 have evaluated oral  
anti-spastic treatment in children with cerebral palsy and  
concluded that randomized trials are needed64,65. Nonetheless, 
oral treatment such as levodopa has shown their efficacy on  
specific subgroups of HSP (SPG11 mimicking dopa-responsive 
dystonia and variant phenotype linked to GCH1 mutations)66,67. In  
addition to being treated by baclofen or levodopa, spasticity is 
treated by intramuscular injection with botulinum toxin type A. 
This treatment is recommended for focal spasticity as well as 
dystonic postures in many neurological diseases (e.g., multiple  
sclerosis68 and cerebral palsy69). There has been only one retro-
spective study to evaluate the efficacy of combined treatment, 
consisting of botulinum toxin injection and intensive physi-
cal therapy for HSP70. Recruitment over five years included a 
small number of patients, including those with various genetic 
entities—SPG4 n = 5, SPG5 n = 1, SPG7 n = 1, SPG8 n = 2,  
SPG11 n = 1, SPG72 n = 1—and seven without a genetic  
diagnosis. All patients were given intramuscular injections of 
botulinum toxin followed by intensive physical therapy ses-
sions (10 individualized sessions lasting two hours). After three 
months, they reported significantly reduced disease severity 
by the Spastic Paraplegia Rating Scale, reduced muscle tone  
(Modified Ashworth scale), and increased walking speed.  
However, they were unable to untangle the effect of injection 
from that of intensive physical therapy. Furthermore, there was no  
specific botulinum toxin injection protocol. The muscles 
injected, botulinum type, and administration of doses were left 
to the discretion of the physicians. This study also highlighted 
the difficulty of recruiting a large number of genetically and  
clinically homogenous patients. Several other symptomatic 
treatments have been tested and described through case reports 
or a cohort with very few patients. The treatments tested are, 
for instance, transcranial magnetic stimulation71, spinal cord  
stimulation72, and specific rehabilitation protocol73.

HSP spasticity is a type of stiffness that emerges mainly during 
movement, such as walking or “catch and release” maneuvers. 
This aspect must be considered in establishing HSP-specific 
treatment for spasticity versus that for spasticity of any origin.  
At rest, spasticity is considerably reduced or absent, espe-
cially during the initial stages of the disease. This specific 
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dynamic pattern is underlined by two findings: (i) dying back 
and regeneration of the corticospinal tract (high density of small  
fibers with thin myelin fibers found in SPG4)8 and/or (ii) a lack 
of coordination of cerebellar origin between agonist and antago-
nist muscles during movement. Such a lack of coordination 
was revealed by gait analysis of 23 HSP patients versus that  
of 23 controls74. In that study, both knee and ankle muscles  
showed increased coactivity indices, and energetic parameters 
were higher for patients with HSP. The severity of the spasticity  
increased with coactivation, suggesting a lack of coordination:  
the abnormal activation of antagonist muscles obliged the 
agonist muscles to develop greater strength, resulting in  
spasticity.

There are only a few studies concerning how patients cope 
with their disease and the effectiveness of treatment from their 
point of view. One such study asked patients with HSP about 
their life with spasticity75. The patients felt ashamed of their 
disability and had difficulties tolerating their treatment. The 
symptoms of fatigue, depression, day-to-day fluctuations, and  
back pain76 are currently managed by patients but require more 
medical attention. A self-administered questionnaire completed  
six to eight times a day for a week by 35 patients with HSP 
showed that physical therapy and physical activity repre-
sented a very small proportion of their daily activities, and 
some reported no such activities despite their known usefulness  
against spasticity77.

Urinary and fecal disturbances, which are present and very 
frequent for 75% of patients with HSP, have been even less 
explored despite their recognized adverse impact on the quality  
of life of patients with HSP78. Women are more often affected 
than men78. Furthermore, there have been no studies on fecal 
disturbances and their effect on spasticity. These difficul-
ties are well described in Parkinson disease and multiple  
sclerosis79,80, for example, but rarely in HSP81.

Hope for a gene-specific therapy?
No gene-specific therapy for HSP has been developed thus  
far, but physiopathological studies performed in animal models  
or neurons derived from induced pluripotent stem cells have  
provided potential therapeutic targets for some forms of HSP.

The first treatment trials took place for SPG5, an autosomal 
recessive HSP, caused by pathogenic variants in CYP7B1, 
which encodes oxysterol-7alpha-hydroxylase. This enzyme is 
involved in cholesterol degradation and leads to the accumula-
tion of neurotoxic oxysterol (27-OH hydroxycholesterol) when  
altered82. Two treatment trials have been carried out, both  
aiming to lower 27-hydroxycholesterol levels in patient serum 
as a read-out; they achieved the lowering of oxysterol levels but  
with no clinical benefit.

A replacement therapy was recently investigated by adminis-
trating CYP7B1 mRNA in a CYP7B1 knockout mouse model83.  
Forty-eight hours after the injection of mouse or human  
CYP7B1 mRNA, 25-hydroxycholesterol levels were considerably  

lower in the liver and serum and modestly lower in the brain, 
whereas 27-hydroxycholesterol levels were lower only in the 
serum. It was not possible to test whether this treatment was 
associated with an improvement in the motor phenotype as the 
CYP7B1 knockout mouse model does not show any obvious  
motor symptoms83. Impaired lipid metabolism has also been 
observed in a mouse model of SPG11, in which the accumu-
lation of lipids in lysosomes has been shown to contribute  
to neurodegeneration. The absence of the SPG11 product,  
spatacsin, impairs cholesterol trafficking and leads to the accu-
mulation of certain glycosphingolipids and gangliosides in  
lysosomes84,85. Decreasing ganglioside levels using miglus-
tat improved the motor phenotype in a SPG11 zebrafish model, 
suggesting that this could be a viable therapeutic strategy.  
However, miglustat poorly crosses the blood–brain barrier and 
it would be informative to test whether an alternative strategy to 
decrease ganglioside levels in the brains of Spg11 knockout mice 
can improve the motor or cognitive symptoms that have been  
observed86. As SPG11 patients generally present their first 
symptoms before 10 years of age, it has been proposed that 
aside from neurodegeneration, altered brain development may 
contribute to the disease87. Consistent with this hypothesis,  
models derived from induced pluripotent stem cells of SPG11 
patients show reduced proliferation of neuronal progenitors, 
impaired neurogenesis, and impaired neuronal differentiation88,89. 
These phenotypes have been shown to result from impaired  
GSK3β/β-catenin signaling90. Tideglusib, a US Food and Drug 
Administration–approved GSK3β inhibitor, has been shown 
to restore the proliferation of neuronal progenitors and neuro-
nal differentiation and correct the abnormal growth of SPG11 
cortical organoids89–91. Tideglusib could thus be a therapy 
candidate for SPG11 patients, but its action on the devel-
opmental phase of the disease may preclude a beneficial  
effect in symptomatic patients. Preclinical and clinical studies 
are required to determine the efficacy of tideglusib as a therapy  
for SPG11 patients.

The product of SPG4, spastin, is a microtubule-severing  
protein. The downregulation of spastin or the expression of 
mutant spastin in Drosophila impairs locomotor performance and,  
at a subcellular level, leads to the stabilization of microtubules 
in synapses92. Treatment with the microtubule-targeting drug 
vinblastine reverts the synaptic phenotype in these Drosophila 
SPG4 models92. Similarly, neurons derived from Spg4 knockout 
mice show axonal swelling associated with impaired microtubule  
dynamics83. Microtubule-targeting drugs, such as nocoda-
zole, Taxol, or vinblastine, restore the pathological phenotype 
observed in Spg4-knockout neurons. Similar results have been 
obtained in neurons derived from induced pluripotent stem cells 
of SPG4 patients, supporting the idea that microtubule-targeting  
drugs could be of therapeutic interest for SPG4. However, this 
therapeutic strategy has yet to be translated into preclinical  
or clinical studies.

Spastin, together with atlastin-1 (SPG3) and REEP1 (SPG31), 
has been shown to play a role in linking microtubules to the 
endoplasmic reticulum (ER), thus controlling its shape94.  
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Caenorhabditis elegans and Drosophila models of SPG4 also 
show signs of ER stress, and drugs known to modulate ER stress 
are able to improve motor symptoms in these animal models95.  
ER stress has also been observed in a Drosophila model of  
SPG31, and naringenin, a drug that protects cells from ER stress, 
is able to improve motor activity and life span in this model96. 
These studies highlight the role of ER stress as a potential  
mechanism that contributes to the physiopathology of HSP. 
ER stress could be used as a biomarker and therapeutic target  
for some forms of the disease. However, the presence of ER 
stress has thus far been observed only in invertebrate HSP 
models and has not yet been validated in mammalian models  
of SPG4 or SPG31 or in patients. This knowledge is critical  
before envisaging the targeting of ER stress as a therapeutic  
strategy.

These data show that physiopathological studies can lead to 
the identification of therapeutic strategies for various forms 
of HSP. However, the challenge will be to develop a specific  
treatment for each HSP subtype, given the large heteroge-
neity of these diseases. The alteration of ER stress in both  
SPG4 and SPG31 models suggests that common physiopatho-
logical mechanisms and thus common therapeutic targets 
could emerge, grouping several genetic subtypes. However, 
they will need to be validated in each subgroup of patients with 
HSP and will rely on the development of specific biomark-
ers. Rare diseases merit specific trials to develop new treatment  
strategies97, especially the use of homogeneous cohorts. There is 
a lack of natural history data, especially longitudinal biomarker  

analysis. To overcome these limitations, collaborative work with 
multinational cohorts is needed and identification of biomarkers 
should start.

Conclusions
The genetic heterogeneity of HSP is continuing to be unraveled 
by the discovery of new genes. Clear correlations between geno-
type and age at onset have been established, and a search for 
genetic or environmental modifiers will be necessary. Certain 
genes are shared between HSP and ataxias, and SPG7 is the  
leading example. For patients with a negative HSP panel result, 
genes responsible for other overlapping disorders need to be 
considered and after the testing for SPG4 exome sequenc-
ing is justified. In addition, pathological repeat expansion  
disorders could be ruled out.

The problem of heterogeneity also arises in studies on symp-
tomatic treatment. Indeed, there is no consensus. Most studies  
have involved too few patients, sometimes with broad clinical  
and genetic heterogeneity, to allow global and generalizable 
conclusions. Thus, HSP is treated on the basis of the results  
of studies of other diseases without considering the character-
istics of this population. This is particularly true in terms of  
spasticity. Indeed, HSP spasticity likely has a mechanism  
different from that of inflammatory diseases in particular. If 
the lack of coordination is at the origin of such spasticity, treat-
ments must be rethought. This hypothesis strengthens the close  
links between HSP and spastic ataxia and opens up new  
avenues for the management of these diseases.
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