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SQUID GROWTH 
STATOLITHS 

AGE VALIDATION 
METABOLISM 

TELEMETRY 

ABSTRACT. - Squids are important components of many marine ecosystems and 
continue to corne under increasing commercial fishing pressure. In some heavily 
fished régions, squid have replaced their teleost competitors. They achieve this 
through rapid growth and short life spans. Valuable insights have been made regar-
ding squid life historiés by both statolith ageing studies and culture experiments 
where growth could be observed in the laboratory. Thèse studies continue to reveal 
that most species of squid live for a year or less and there is only évidence from a 
small number of species for life spans longer than a year. Small warm water species 
can complète their life spans in just a few months. While there has been some re-
cently published statolith incrément validation experiments, there is a need for in-
creased work in this area. Squids appear to have fast growth rates and short life 
spans due to: (1) a combination of efficient digestion with a protein based metabo-
lism; (2) the ability to sustain continued growth by a combination of both an in-
crease in muscle fibre size (hypertrophy) along with continuai recruitment of new 
muscle fibres (hyperplasia); (3) efficient use of oxygen and (4) low levels of an-
tioxidative défense. Heavy fishing pressure on large late maturing fishes may have 
irreversibly tipped the balance of the ecosystem in favour of the fast growing short-
lived squids. Detailed studies of marine protected areas (MPA's) including the use 
of telemetry technology will help clarify if and how overfished ecosystems can be 
brought back to their original 'balance'. 

CROISSANCE DU CALMAR 
STATOLITHES 

DATATION 
MÉTABOLISME 

TÉLÉMÉTRIE 

RÉSUMÉ. - Les Calmars représentent une partie importante de nombreux écosystè-
mes marins et sont soumis à des pressions croissantes de la pêche commerciale. 
Dans certaines régions où la pêche est intensive, les Calmars ont remplacé leurs 
compétiteurs, les Poissons Téléostéens. Cette réussite est due à une croissance ra-
pide et à un cycle de vie court. L'étude de la croissance du Calmar en laboratoire et 
de la datation par les statolithes a permis d'approfondir les connaissances sur son 
cycle de vie. La durée de vie de la plupart des espèces est de un an ou moins et 
quelques espèces seulement ont un cycle de vie supérieur à un an. Certaines espèces 
tropicales de petite taille complètent leur cycle de vie en quelques mois seulement. 
Des expériences de validation sur la croissance évaluée à partir des statolithes ont 
été publiées récemment. Cependant, il est nécessaire d'étendre les connaissances 
dans ce domaine. Les Calmars semblent avoir une croissance rapide et un cycle de 
vie court pour plusieurs raisons : (1) ils combinent une digestion efficace et un mé-
tabolisme protéinique ; (2) ils sont capables de maintenir une croissance continue 
en combinant un accroissement de la taille des fibres musculaires (hypertrophie) 
avec l'addition continuelle de nouvelles fibres (hyperplasie) ; (3) ils utilisent l'oxy-
gène de manière efficace et (4) leur niveau de défenses antioxidantes est bas. La 
pêche intensive des espèces de Poisson à maturité tardive pourrait avoir modifié de 
manière irréversible l'équilibre de l'écosytème en faveur d'espèces à croissance ra-
pide et à cycle de vie court. Des études détaillées utilisant notamment les techni-
ques de télémétrie dans les zones marines protégées (ZMP) permettront de vérifier 
si les écosytèmes surexploités peuvent être ramenés à leur équilibre initial. 
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Considérable progress has been made in the last 
décade on the growth dynamics of squid. Studies 
continue to reveal éléments of their life history that 
point to life spans that are short, growth rates that 
are rapid and populations that turnover quickly. 
Our best understanding of the dynamics of squid 
growth has arisen as a resuit of both controlled cul-
ture experiments (e.g., Lee et al. 1994, Forsythe et 
al. 2001) and statolith based ageing studies (e.g., 
Jackson et al. 1997). As a resuit we have better 
data on how squid grow and how this can impact 
the environment where they live. 

Evidence now suggests that as longer lived 
finfish stocks have been depleted, they have been 
replaced by cephalopods (Pauly & Christensen 
1995, Caddy & Rodhouse 1998). Circumstantial 
évidence strongly suggests that increased 
cephalopod abundance in Tunisian waters, the 
Adriatic Sea and the Gulf of Thailand is due to a 
decrease in the standing stock of groundfish com-
petitors by half or more along with a decrease in 
predators (Caddy & Rodhouse 1998). Furthermore, 
it is likely that oceanic squid stocks may have in-
creased due to a réduction in predators. In consi-
dération of tuna consumption alone, Caddy & 
Rodhouse (1998) pointed out how tuna landings 
have risen from 2 to 4 million t y-1. Given that tuna 
diet is approximately 25% oceanic squids and con-
sumption is about 10% body weight d-1, this 2 ton 
différence accounts for an extra 20 million t of 
squid in the world's océans in récent years. 

The réduction in traditional groundfish landings 
has resulted in squid stocks coming under increa-
sing fishing pressure. While total world catch of 
groundfish has remained stable or decreased in ré-
cent years the catch of cephalopods has increased 
dramatically (Caddy & Rodhouse 1998). The 
growth dynamics of squid populations appear to be 
well suited to filling niches once their teleost com-
petitors have been removed. They are essentially 
'weeds of the sea' O'Dor (1998), filling spaces just 
as fast growing weeds quickly colonise an area of 
ground after a forest is felled. Rapid population 
turnover also provides challenges to those needing 
to sustainably manage squid fisheries (Murphy & 
Rodhouse 1999). 

So where do we stand now with regard to our 
understanding of the population dynamics of 
squids? A comprehensive review of squid growth 
based on statolith ageing was compiled by Jackson 
(1994) and statolith-based loliginid studies were 
reviewed by Jackson (1998). The Jackson (1994) 
review summarised what ageing work had been 
carried out and how this data was used to model 
growth. To some extent, many of the studies cov-
ered in that review were simply a preliminary ap-
plication of statolith incrément counts. Since then 
work has expanded on both the mechanisms and 
dynamics of squid growth. This paper intends to 

provide a status report of where we are in our un-
derstanding of squid growth. 

Statolith validation 

An important area of research has been continu-
ing work on statolith validation (e.g., Estâcio et al. 
1999) to verify the periodicity of statolith incré-
ments. Jackson (1994) reported validation studies 
for 11 squid species and one sepioid (Idiosepius 
pygmaeus). Since 1994 work has continued with 
validation studies (Table I). Especially noteworthy 
is the study of Lipinski et al.(1998a) as this study 
is the only one thus far to document directly, daily 
periodicity of adult squid in the wild. The number 
of studies is small which indicates the problems as-
sociated with maintaining squid successfully under 
expérimental conditions. The results continue to 
support daily incrément periodicity in statoliths 
and reveal the need for further work to be carried 
out with more species of squid and especially with 
oceanic and deep sea oegopsid squids. 

The study by Arkhipkin et al. (1996) on 
Berryteuthis magister reveals that other indirect 
methods of âge vérification such as following 
modes may work for cold water species with dis-
crète cohorts. However, trying to identify modes 
for many species in relation to âge is not possible 
due to the extrême plasticity in squid growth and 
the poor relationship between size and âge (Jack-
son et al. 2000a). Research by Villanueva (2000a) 
showed that incrément periodicity was daily in 
Loligo vulgaris regardless of the culture tempéra-
ture. However, this was not the case for L. vulgaris 
embryos (Villanueva 2000b). Work by Yastsu & 
Mori (2000) who compared known âge paralarvae 
raised in culture to aged field-captured spécimens 
indicated agreement in the form of growth for both 
groups which suggested that the statolith based 
field estimâtes were realistic descriptors of growth 
in paralarvae and young juvéniles. 

Statoliths as ageing tools 

A number of papers continue to use statoliths for 
routine ageing. The précision of statolith incrément 
counts continues to be refined (Arkhipkin et al. 
1998a, Durholtz & Lipinski 2000, Gonzalez et al. 
1998, 2000, Jackson & Moltschaniwskyj 1999) and 
the technique is becoming more widespread and in-
corporated into large scale studies (e.g., Arkhipkin 
2000, Arkhipkin et al. 1998b, Bower 1996, Macy 
& Brodziak 2001). Since the review of Jackson 
(1994) there have been a number of studies that 
have undertaken a comprehensive ageing analysis 
for a variety of squid species (Table II) 

An update of statolith based loliginid life history 
studies (Jackson 1998) included 17 species from 



ECOPHYSIOLOGY OF SQUID GROWTH 207 

Table L - Studies published since Jackson (1994) that have used validation techniques for statolith incrément periodici-
ty in squids. 

Species Number of 
individuals 

Technique Référence 

Loligo vulgaris 8 Tetracycline staining in field Lipinski et al. 
reynaudii 1998a 
Loligo vulgaris 31 Tetracycline staining in culture Villanueva 2000a 
Loligo vulgaris 36 Tetracycline staining in culture Villanueva 2000b 
embryos 
Loliolus noctiluca 6 Tetracycline staining in culture Dimmlich & 

Hoedtl998 
Lolliguncula brevis 43 Tetracycline staining in culture Jackson et al. 

1997 
Sepioteuthis 5 Alizarin red staining in culture Balgos & Pauly 
lessoniana 1998 
Sepioteuthis 11 Tetracycline staining in culture Jackson & 
lessoniana Moltschaniwskyj 

2001a 
Gonatus onyx 4 Counting incréments from Arkhipkin & 

capture stress check Bizikov 1997 
Gonatus borealis 2 Counting incréments from Arkhipkin & 

capture stress check Bizikov 1997 
Gonatus magister 1 Counting incréments from Arkhipkin & 

capture stress check Bizikov 1997 
Galiteuthis phyllura 1 Observing incrément from check Arkhipkin 1996a 
Eogonatus tinro 4 Counting incréments from Arkhipkin & 

capture stress check Bizikov 1997 
Berryteuthis 88 Comparing statolith incréments Arkhipkin et al. 
magister to gladius incréments 1996 
Berryteuthis 60 Comparing incrément number to Arkhipkin et al. 
magister elapsed days between 2 cohorts 1996 

around the world. Ages ranged from less than a 
hundred days for small warm water and tropical 
species {Lolliguncula brevis Jackson et al. 1997; 
Loligo duvauceli Chotiyaputta 1997) to around a 
year for more temperate species. However, of the 
17 loliginids reviewed in Jackson (1998) only three 
had life spans of over a year (Loligo vulgaris 
Arkhipkin 1995, Heterololigo bleekeri Kinoshita 
1989, & Loligo vulgaris reynaudii Lipinski 1991). 
More récent work (Table II) also supports a life 
span > 1 yr for L. vulgaris (Raya et al. 1999) and 
possibly for L. forbesi as well (Rocha & Guerra 
1999). The majority of loliginids however, appear 
to have life spans of less than a year. 

Oegopsid squids also appear to not have exten-
sive life spans (Table II). Only 7 species from ré-
cent studies have reported life spans of < 1 yr 
(Berryteuthis magister, Nototodarus sloanii, N. 
gouldi, Martialia hyadesi, Gonatus fabrici, 
Ancistrocheirus lesueurii, and Architeuthis) and 
only Gonatus fabricii has a life span of 
> 22 months. More surprising are the extremely 
short life spans of small tropical species such as 
Pterygioteuthis gemmata with a life span of 
< 3 months and Abralia trigonura, Abraliopsis 
pfefferi and Loliolus noctiluca with life spans 
< 6 months (Table II). Small tropical species ap-
pear to have an extremely rapid population turn-
over. 

The majority of squid âges reviewed in Table II 
are based on assumed daily periodicity of statolith 
incréments, as many have not been validated (Ta-
ble I, see also Jackson 1994). However, advances 
in culture techniques provide a means to directly 
observe squid growth and life spans. There is now 
a substantial body of information available for a 
single squid species: the Indo-Pacific squid 
Sepioteuthis lessoniana which allows for a direct 
comparison of growth between culture experiments 
and field-based statolith ageing studies. 

Statolith ageing and validation studies of S. 
lessoniana include Jackson (1990), Jackson & 
Choat (1992), Jackson et al. (1993), Jackson & 
Moltschaniwskyj (2001a) and, Balgos & Pauly 
(1998). Furthermore, a comprehensive seasonal/ 
geographical ageing study of 5. lessoniana was 
carried out by Jackson & Moltschaniwskyj (2001b) 
and reproductive stratégies of Sepioteuthis were 
examined by Pecl 2001. In ail thèse studies the 
post-hatching life cycle of S. lessoniana was less 
than 250 d. Moreover, there have been extensive 
culture experiments with this species both in Japan 
(Tsuchiya 1982, Segawa 1987), Texas USA (Lee et 
al. 1994, Forsythe et al. 2001) and in Thailand 
(Nabhitabhata 1995, 1996). Ail the culture studies 
indicate a life history of < 1 yr with growth to as 
much as 2 kg. The growth information for this spe-
cies based on validated statolith âge estimâtes and 
direct observation of growth of cultured individu-
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Table II. - Studies published since Jackson (1994) that have used statolith incrément counts to détermine âge and life 
spans of squids. See also Jackson (1998) for other studies of loliginid âge and growth. The asterisk indicates pen length 
rather than mantle length. 

Species Estimated 
maximum 
âge (days) 

Mantle 
length 
(mm) 

Location Comments Référence 

Loligo vulgaris 361 (F) 255 (F) North-west Spain Some seasonal variation in Rocha&Guerra 1999 
382 (M) 383 (M) growth 

Loligo vulgaris 294 (F) 285 (F) Saharan Bank Tropical Raya et al. 1999 
308 (M) 534 (M) 

Loligo vulgaris 335 (F) 290 (F) Saharan Shelf Tropical Arkhipkin 1995 
396 (M) 498 (M) 

Loligo vulgaris -253 (F) -308 (F) Southern Portugal Warmwater Bettencourt et al. 1996 
-288(M) -311 (M) 

Loligo gahi 366 (F) -146 (F) Patagonian Shelf Seasonal variation in growth Hatfield 2000 
339 (M) -169 (M) 

Loligo opalescens 238(F) ~128(F) California No différences between maies or Butler et al. 1999 
243(M) ~138(M) females 

Loligo pealei -275 (F) -213 (F) North-west Atlantic Growth variable depending on Brodziak & Macy 1996 
-295 (M) -295 (M) season 

Lolliguncula brevis 172 (F) 72 (F) Gulf of Mexico Growth variable depending on Jackson et al. 1997 
150 (M) 61 (M) season 

Sepioteuthis lessoniana 173 (F) 276 (F) Australia, Thailand Subtropical, tropical, Jackson & 
224 (M) 256 (M) seasonal/geographical Moltschaniwskyj 2001b 

différences in growth rates 
Sepioteuthis lessoniana -186 (F) -174 (F) Australia Tropical Semmens & 

~174(M) -212 (M) Moltschaniwskyj 
2000 

Photololigo sp. -91 -102 Northeastern Australia Tropical Moltschaniwskyj 1995 
Photololigo sp. 1 158 (F) 115 (F) Northwest Shelf of Tropical Jackson & Yeatman 

119 (M) 87 (M) Australia 1996 
Loliolus noctiluca -250 (F) -69 (F) Eastern Australia ~38°S Temperate Dimmlich & Hoedt 

-256 (M) -54 (M) 1998 
Loliolus noctiluca 148 (F) 80 (F) Eastern Australia -33°S Temperate Jackson & 

129 (M) 52 (M) Moltschaniwskyj 2001c 
Loliolus noctiluca 121 (F) 54 (F) Eastem Australia ~19°S Tropical, seasonal variation in Jackson & 

107 (M) 61 (M) growth Moltschaniwskyj 2001c 
Loligo forbesi 514 (F) 322 (F) North-west Spain Some seasonal variation in Rocha&Guerra 1999 

480 (M) 400 (M) growth 
Abralia trigonura 188 (F) -36 (F) Hawaii Abundant species in Young & Mangold 

182 (M) -31 (M) mesopelagic boundary 1994 
community 

Abraliopsis pfefferi 154 (F) 33 (F) Central East Atlantic Tropical, small, short life span Arkhipkin 1996c 
127 (M) 25 (M) 

Âncistrocheirus lesueurii 609 (F) 423 (F) Central-East Atlantic Females strikingly larger and Arkhipkin 1997b 
360 (M) 90 (M) older than maies 

Pterygioteuthis gemmata 77 (F) 30 (F) Central East Atlantic Tropical, extremely short life Arkhipkin 1997a 
-73 (M) -26 (M) span < 3 months 

Onychoteuthis banksi 261 (F) 130 (F) Atlantic, Pacific and Females not mature, full life Arkhipkin & 
224 (M) 77 (M) Indian Océans span not known Nigmatullin 1997 

Moroteuthis ingens 358 (F) 544 (F) New Zealand Sexually dimorphic with females Jackson 1997 
393 (M) 382 (M) bigger 

Gonatus fabricii -644 (F) -205*(F) Norwegian Sea Arctic, suggested 2 year life Arkhipkin & Bjarke 
654 (M) 182* (M) cycle 2000 

Berryteuthis magister 473 (M) 295 (M) Bering Sea Coldwater Arkhipkin et al. 1996 
479 (F) 369 (F) 

Architeuthis 294 (M) 1028 (M) Offlreland Ail mature maies Lordanetal. 1998 
375 (M) 975 (M) 
422 (M) 1084 (M) 

Illex illecebrosus -247 (F) -280 (F) Newfoundland Growth variable depending on Dawe&Beck 1997 
-216 (M) -246 (M) season of hatch 

Illex illecebrosus -198 -205 Nova Scotian shelf Arkhipkin & Fetisov 
2000 

Illex coindetii 286 (F) 300 (F) Western Sahara 2 groups (young 0.5 yr and older Arkhipkin 1996b 
233 (M) 203 (M) -1 yr maturing squid) 

Illex coindetii 242 (F) 190 (F) Sierra Leone Tropical Arkhipkin 1996b 
189 (M) 140 (M) 



ECOPHYSIOLOGY OF SQUID GROWTH 209 

Table II. - (continued). 

Illex coindetii 176 (F) -159 (F) Central Mediterranean Warmwater Arkhipkin et al. 1999a 
191(M) ~124(M) 

Illex coindetii 240 (F) 197 (F) Central Mediterranean Warmwater Arkhipkin et al. 2000 
230 (M) 143 (M) 

Illex coindetii -422 (M) -164 (M) Spanish Mediterranean Warmwater, summer population Sànchez 1995 
477 (F) -201 (F) appeared to grow faster than 

winter population 

Illex coindetii -442 (F) -377 (F) NW Spain Seasonal variation in growth Gonzalez et al. 1996 
-380 (M) -243 (M) 

Todarodes sagittatus 409 (F) 473 (F) Irish & Scottish waters Larger squid were deeper Lordanetal. 2001 
suggesting ontogenetic 
downward migration 

Todarodes sagittatus 262 (F) 319 (F) Western Sahara Tropical Arkhipkin et al. 1999b 
231 (M) 201 (M) 

Todaropsis eblanae 220 (F) 139 (F) North West African Tropical, suggested 1 year life Arkhipkin & 
Shelf span Laptikhovsky 2000 

Nototodarus sloanii 374 (F) 406 (F) New Zealand Seasonal variation in growth Uozumi 1998 
Nototodarus gouldi 373 376 New Zealand Seasonal variation in growth Uozumi 1998 
Nototodarus hawaiiensis 195 (F) 183 (F) North West Slope of Tropical Jackson & Wadley 

192 (M) 164 (M) Australia 1998 
Martialia hyadesi 357 (F) -343 (F) Patagonian Shelf Cool, no mature females Gonzalez et al. 1997 

330 (M) 
Martialia hyadesi 399 (F) 398 (F) South-west Atlantic Coldwater Arkhipkin & 

354 (M) 295 (M) Silvanovich 1997 
Martialia hyadesi 330 (F) 330 (F) South Georgia Coldwater Gonzalez & Rodhouse 

360 (M) 314 (M) 1998 
Ommastrephes bartramii 306 (F) 454 (F) North Pacific Small sample size Yatsuetal. 1998 
Ommastrephes bartramii -306 (F) -458 (F) North Pacific Some seasonal and geographical Yatsuetal. 1997, see 

-306 (M) -348 (M) différences in growth rates also Yatsu 2000 
Ornithoteuthis antillarum 182 (F) 117 (F) Central-east Atlantic tropical Arkhipkin et al. 1998c 

173 (M) 83 (M) 
Thysanoteuthis rhombus 305 (F) 750 (F) Eastern tropical One of fastest growing squid Nigmatullin et al. 1995 

309 (M) 770 (M) Atlantic/ Southwest species 
Pacific 

Cranchia scabra 166 (F) 118 (F) Central East Atlantic Tropical, fast growing, life span Arkhipkin 1996d 
unknown only immature 
individuals 

Liocranchia reinhardti 146 (M) 183 (M) Central East Atlantic Tropical, fast growing, life span Arkhipkin 1996d 
unknown only immature 
individuals 

als throughout their life cycle is unambiguous (see 
also Jackson et al. 2000a). We thus have a high de-
gree of confidence in the growth rate and life span 
data for this loliginid. The synopsis of the research 
over the last several years along with earlier re-
views (Rodhouse & Hatfield 1990, Jackson 1994, 
1998) suggests that in fact it is difficult to find 
many squid species older than a year. Furthermore, 
extensive studies have revealed that growth of 
squid is very plastic and growth rates vary accord-
ing to changes in température (Forsythe 1993, 
Forsythe et al. 2001, Hatfield 2000, Jackson & 
Moltschaniwskyj, 2001b, 2001c). 

Mechanisms responsible for squid growth 

Squids successfully compete with their teleost 
counterparts. Their strategy is to complète their life 
span quickly (Le., life in the fast lane). The life his-
tory of squids would be a fraction of many of their 

teleost counterparts. Their major strategy appears 
to be a protein-based metabolism that converts en-
ergy into growth rather than storage (O'Dor & 
Webber 1986, Lee 1994, Moltschaniwskyj & 
Semmens 2000). Their high metabolic rates and 
growth rates are in fact higher than pokilothermic 
vertebrates and as high as mammals (Pôrtner & 
Zielinski 1998, Zielinski & Pôrtner 2000). 

Squid also appear to sustain continued growth 
by a combination of both an increase in muscle 
fibre size (hypertrophy) along with continuai re-
cruitment of new muscle fibres (hyperplasia) 
(Moltschaniwskyj 1994, Preuss et al. 1997, Pecl & 
Moltschaniwskyj 1999). While teleost fish have 
both mechanisms hyperplasia eventually ceases 
with âge. 

Cephalopods rapidly digest (Boucher-Rodoni et 
al. 1987) and efficiently use protein, however, they 
appear to not handle lipids well and it has been re-
cently suggested that the digestive gland is used for 
dumping excess lipid that cannot be metabolised or 
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stored (Semmens 1998). Furthermore, the combi-
nation of jet pressure locomotion that passes water 
directly over the gills in association with cutaneous 
respiration (which might be extremely high in 
squid; Pôrtner 1994, Pôrtner & Zielinski 1998) pro-
vides a mechanism for efficient oxygen consump-
tion (O'Dor & Hoar 2000). O'Dor & Hoar (2000) 
have even suggested that the thin mitochondria-
rich fin musculature may be independent of the cir-
culatory System. Thus squids appear to use oxygen 
efficiently despite the limitations of their 
hemocyanin based respiratory transport system 
(Hochachka 1994, Pôrtner & Zielinski 1998). 

We now have dues as to why squids have such 
short life spans. They may in fact be under bio-
chemical constraints. Zielinski & Pôrtner (2000) 
have recently shown that cephalopods have a low 
enzymatic antioxidative status despite their high 
metabolic rate. Their low level of enzymatic anti-
oxidant défense correlates with an increased level 
of oxidative damage, reflected by very high levels 
of malondialdehyde (MDA) and lipofuscin which 
indicates oxidative stress is higher in older spéci-
mens. Zielinski & Pôrtner (2000) have pointed out 
that this low antioxidative status is in line with 
short cephalopod life expectancies. They further 
pose the question 'why isn't antioxidative défense 
brought to a higher level to prolong cephalopod 
life?' Their explanation is that antioxidative pro-
tection is set to a level just high enough to allow 
for a 'sufficient life span'. 

Antioxidative défense appears to be an exciting 
area of future research across a number of squid 
species with varying life spans and perhaps even 
within species that show considérable différences 
in life historiés with season or location (eg., Jack-
son & Moltschaniwskyj 2001 a,b). The tradeoff be-
tween high oxygen concentrations in tissues to sus-
tain high activity and the need for antioxidant 
protection could be a factor in cephalopod associa-
tions with the oxygen minimum layer (e.g., 
Stenoteuthis oualaniensis in the Arabian Sea, Nesis 
1993 and Gonatus onyx in the deepsea off Califor-
nia, Hunt & Seibel 2000). It could also be a factor 
in the ontogenetic descent commonly seen as 
cephalopods âge and mature (e.g Moroteuthis 
ingens Jackson 1993, 1997,2001, Jackson et al. 
2000b, Gonatus fabricii Bj0rke et al. 1997, 
Arkhipkin & Bj0rke 1999, 2000, Gonatus onyx 
Seibel et al. 2000, Berryteuthis magister Arkhipkin 
et al. 1996, Galiteuthis glacialis Nesis et al. 1998). 

Four important features therefore stand out with 
regard to mechanisms responsible for squid growth 
and life span. Thèse are: (1) protein based rapid 
metabolism and digestion (2) continuai recruitment 
of new muscle fibres (hyperplasia) (3) efficient uti-
lisation of oxygen and (4) low levels of 
antioxidative défense. Thèse unique features of 

squid growth set them apart from their main teleost 
competitors. 

Where to from here? 

As world finfish stocks continue to be depleted 
there is likely to be increasing attention given to 
cephalopod resources. We thus have a pressing 
need to understand the dynamics and physiology of 
squid growth and to develop the essential éléments 
needed for successful squid fishery management 
(O'Dor 1998, Lipinski 1998, Lipinski et al 1998b). 

A critical unknown is whether the traditional 
ecosystems based on large, slow-growing, late-ma-
turing fishes will ever recover. Worldwide, govern-
ments are establishing marine protected areas 
(MPAs) to assist recovery and maintenance of 
fished populations. Even if extensive MPAs are es-
tablished, it is possible that a new dynamic balance 
of faster growing squids and fishes has already 
been established. MPAs will provide a safe haven 
for large, old fishes, but the overall stability of eco-
systems managed with this new tool will dépend on 
the interaction of relative production: biomass ra-
tios in protected areas and areas that are still under 
heavy fishing pressure. 

Ultrasonic telemetry is a new and exciting 
means to study activity and metabolism of both 
squid (O'Dor et al. 2001a) and fish (O'Dor et al. 
2001a, Webber et al. 2000) in real time and to dé-
termine essential éléments of energetics and 
ecophysiology in situ. Just as Lipinski et al (1998a) 
has been able to take statolith validation out of the 
laboratory and into the field environment, remote 
telemetry allows the researcher to study squid ac-
tivity and metabolism in the field in a way that is 
otherwise impossible. Using ultrasonic tags it is 
possible to telemeter information back on a whole 
suite of biological parameters of individuals in the 
field (eg., O'Dor et al. 1994, Dewar et al. 1999, 
Webber et al. 1998). 

Figure 1 shows an example of parallel studies of 
squid and fish using radio-acoustic positioning te-
lemetry (RAPT) in an MPA at Lizard Island, Aus-
tralia (O'Dor et al. 2001a). Such studies may not 
give the complète picture but will certainly repre-
sent an important component. While the data pre-
sented in Fig. 1 simply shows distribution and 
movement data, two of the species (one squid and 
one fish) show movement across the MPA bound-
ary. Such technology provides necessary data for 
studying the dynamics and interactions of fish and 
squid in both fished and non-fished areas. Future 
larger scale studies could utilise the deployment of 
fixed hydrophone monitors (e.g., Voegeli et al. 
2001) for tracking movement of individuals over 
very large distances (10's -1000's of kilometers). 
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Fig. 1. - RAPT Systems deployed in Watson's Bay, Lizard Island, Australia. The map gives both kilomètre grid and la-
titude and longitude références, and the heavy dashed line encloses a no-take MPA zone. The large four-buoy diamond 
was linked to the base-station (BS) at the Lizard Island Lodge, and produced the illustrated 3h track of the tropical 
squid Sepioteuthis lessoniana crossing the boundry. The smaller triangle recorded territories over 24 h for a stripey 
Lutjanus carponotatus (smaller home range, purple dots) and a coral trout Plectropomus leopardus (divided home 
range, green dots), also showing trans-border movement. The red line is a track of a diver who undertook an underwater 
survey (From O'Dor et al. 2001a). 

Currently, much of our understanding regarding 
squid growth and ecophysiology is imprécise. Even 
though we know their life historiés are short and 
growth is plastic, we really lack many of the spé-
cifies. Continuing work on basic biology and the 
development of life tables would allow the investi-
gation of age-specific mortality (Wood & O'Dor 

2000). We still face difficultés with modelling 
squid growth due to the extrême plasticity in size-
at-age and the rapid response in growth rate due to 
changes in ambient température. Récent work with 
separating squid samples into seasonal cohorts and 
using the Schnute model for analysing size-at-age 
data may be a useful technique for dealing with the 
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difficult data sets (Brodziak & Macy 1996, Jackson 
& Moltschaniwskyj 2001c). Despite assertions in 
the past that we can understand squid growth by 
pretending they are teleost fish (Pauly 1998) ongo-
ing research is revealing that many of the attributes 
of squid growth are novel, and finfish based tech-
niques for understanding their growth are inadé-
quate (O'Dor & Hoar 2000, Jackson et al. 2000a). 
There is a major point of ecological departure be-
tween squid and fish in the spatial and temporal 
scales in their life historiés (Lipinski 1998). The 
unique features of squid metabolism and physiol-
ogy probably ail contribute to their continuous 
form of growth as opposed to asymptotic growth in 
most teleosts. Research into squid life historiés in 
association with the application of new technolo-
gies will continue to fill the gaps in our under-
standing of the dynamics of squid growth and 
physiology and help us with future ecosystem and 
fisheries management. 
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