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RÉSUMÉ. - La lumière représente un facteur écologique externe fort complexe in-
cluant en fait divers aspects: le spectre de couleurs (qualité de la lumière), l'intensi-
té (quantité) et la photopériode (périodicité). L'environnement aquatique est très 
particulier à ce sujet et les fluctuations de ces facteurs y sont extrêmement varia-
bles. En outre, la réceptivité à la lumière chez les Poissons varie considérablement 
d'une espèce à l'autre et, au sein de la même espèce, également au cours de la sai-
son et en fonction du stade de développement. La revue proposée ici relate des don-
nées et discute sur l'aspect périodique de l'exposition à la lumière et les 
conséquences sur le développement et la croissance des Poissons. Non seulement la 
croissance, mais aussi tous les processus biochimiques, les fonctions physiologi-
ques et les comportements sont rythmiques dans la nature et synchronisés par l'al-
ternance jour/nuit. Les données de la littérature démontrent que le développement 
et la croissance des Poissons suivent des modalités saisonnières, liées aux fluctua-
tions de la photophase. Généralement, les larves ont besoin d'un minimum d'inten-
sité lumineuse pour pouvoir se développer et grandir, ceci en relation avec leur 
aptitude à détecter leurs proies et à s'alimenter correctement. Les longues photopé-
riodes favorisent un développement harmonieux. Le rôle synergique longueur du 
jour/disponibilité en nourriture est l'un des points-clés. Chez les juvéniles et ani-
maux plus âgés (Poissons marins et Salmonidés), la réaction à un allongement de la 
photophase est quasi-unanime, elle stimule la croissance. Seuls certains Poissons 
plats semblent moins réactifs, peut-être en relation avec leur comportement ben-
thique. Le Saumon atlantique est tout particulièrement sensible, en eau douce et en 
eau de mer, et durant la smoltification. La question que nous posons est « Comment 
les effets de la photopériode sont-ils médiés » ? Les travaux menés en physiologie 
et endocrinologie suggèrent une influence de l'épiphyse. La glande pinéale chez les 
Poissons est directement photosensible. Chacune de ses cellules photoréceptrices 
de type cônes contient une horloge circadienne synchronisée par le rythme jour/nuit 
déclenchant la production de messages rythmiques. En fait, la pinéale ressemble à 
une rétine très simple sans réseau inter-neuronal organisé. Mais les photorécepteurs 
de l'épiphyse et de la rétine produisent le messager donneur de temps universel, la 
mélatonine. Celle-ci est synthétisée et utilisée « sur place » dans la rétine alors 
qu'elle est libérée dans la circulation par la pinéale. Notre revue synthétise égale-
ment les informations disponibles sur le rôle de la mélatonine et de sa réceptivité 
chez les Poissons. Des données très récentes permettent d'imaginer une influence, 
soit directe via l'hypophyse, soit indirecte via l'hypothalamus, sur la synthèse et la 
libération d'hormone de croissance. La mélatonine peut aussi jouer un rôle sur le 
métabolisme thyroïdien et sur la prise alimentaire, deux aspects conditionnant la 
croissance. Les travaux futurs, combinant approches physiologiques « classiques » 
in vitro et in vivo et d'autres, pharmacologiques et moléculaires, permettront très 
probablement de mieux aborder ces questions du rôle de la photopériode sur la 
croissance. Tous ces travaux peuvent amener des applications fort prometteuses 
vers l'aquaculture. 
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ABSTRACT. - Light is a complex external and ecological factor whose compo-
nents include color spectrum (quality), intensity (quantity) and photoperiod (perio-
dicity). An aquatic environment has peculiar and extremely variable characteristics. 
Moreover, "receptivity" of fish to light changes profoundly from one species to 
another and, within the same species, from one developmental stage to another. The 
présent review focuses on the periodic aspect of light supply and its conséquences 
on fish growth. Not only growth, but virtually ail biochemical processes, physiolo-
gical functions and behaviors are rhythmic in nature and synchronized by the 24 h 
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light/dark (L:D) cycle. Available data indicate that fish growth follows a seasonal 
pattern which varies as a function of variations in daylength. Generally, larvae need 
a minimal threshold intensity to be able to develop normally and grow. This is pro-
bably related to the aptitude to localize, catch and ingest prey, and long daylength 
improves larval rearing quality. The synergistic effect of "food availability and 
daylength" appears to be determining at this stage. Older fish (marine and salmonid 
species), also react to photoperiod treatments and long daylength stimulâtes 
growth. The most studied species is the Atlantic salmon, which is very sensitive to 
changes in photoperiod, in fresh and seawater, and particularly during the parr-
smolt transformation. Flatfish appear as a noticeable exception because growth was 
not affected by photoperiod in several cases in the species investigated. The ques-
tion raises to know how are the effects of photoperiod mediated? Early physiologi-
cal studies suggested a rôle for the pineal gland. The fish pineal organ is a light 
sensor. Each of its cone-type photoreceptor cells contains a circadian clock, syn-
chronized by the 24 h light: dark cycle which, in turn, produces rhythmic messages. 
Actually, the pineal gland resembles a very simple retina with only very few inter-
neurons. Pineal and retinal photoreceptors produce the "time-keeping molécule" 
melatonin. Retinal melatonin is used and metabolized in situ, whereas pineal mela-
tonin has neurohormonal properties. The présent paper reviews the information re-
garding the fish melatonin generating System and melatonin receptors. We also 
discuss récent évidence indicating the hormone might affect fish growth hormone 
sécrétion either directly (on the pituitary) or indirectly (hypothalamus). Melatonin 
may also influence thyroid hormone metabolism as well as food ingestion, two 
other factors that affect growth. Future studies combining "classical" physiological 
approaches (in vitro and in vivo) together with pharmacological and molecular ap-
proaches should provide insights into the mechanisms underlying the control of fish 
growth by photoperiod. This studies have great potential interest for aquaculture 
because they should provide indication on the best photoperiod conditions for opti-
mizing fish "natural" growth ail year long. 

1. INTRODUCTION 

From unicellular to vertebrates, environmental 
factors influence the activity of cells, organisms or 
populations. In fish, behavioral processes such as 
locomotor activity, skin pigmentation, thermo-
régulation, shoaling behavior, etc., are under the 
influence of environmental factors. The same holds 
true for major physiological functions such as 
growth and reproduction. 

Growth implies an increase in size or number of 
cells over time, with the important connotation of a 
positive energy balance (Mommsen 1998). Deve-
lopment and growth of teleost fish follows a pat-
tern spécifie to each species. It differs from growth 
of birds and mammals in that it is a continuous pro-
cess so that the older the fish the bigger (Boeuf et 
al. 1999). In fish the energy otherwise used to 
overcome the effects of gravity (reduced in an 
aquatic environment) and the energy cost of 
thermorégulation (required for endotherms) are 
available for growth. At hatching, fish are the 
smallest known vertebrates; therefore they will ex-
périence quite différent metabolic scaling effects 
compared to other vertebrates. Another aspect con-
tributing to the indeterminate growth pattern is the 
absence of calcified components with a définitive 
stop in growth layer incréments (bone, otolith). 
The continuous growth of fish is mostly a consé-
quence of cellular hyperplasia. Growth rates are 

lower in adults for many reasons including the po-
tential limitations of the intestinal system that 
scales differently than muscle to animal mass and 
diffusion rates in the white muscle itself 
(Mommsen & Moon 2001). 

Growth is rather flexible because it dépends on a 
number of factors. As ectotherms, fish are highly 
dépendent on température, but many other factors 
are also known to play a major rôle on the capacity 
to develop and grow. Thèse include salinity, pH, 
oxygen availability, and eventual présence of "nat-
ural toxicants" (Boeuf & Le Bail 1999), as well as 
food availability and developmental stage (Sump-
ter 1992). Finally another, but nonetheless impor-
tant, factor controlling growth is light. The main 
natural source of light is the sun, but other seconda-
ry sources are also available originating from the 
moon, stars, and luminescent organisms. When 
talking about light, one must consider several as-
pects including quality (wavelength), quantity (in-
tensity-irradiance) and duration (periodicity) 
(Boeuf & Le Bail 1999). This review focuses on 
the latter aspect, Le., in the effects of the alternat-
ing phases of light (L) and dark (D) during the 24 h 
cycle. 

Most of the fundamental rhythms in nature (di-
urnal or seasonal) are related to the periodicity of 
light (Edmunds 1988). They results from the rota-
tions of the earth on its axis and around the sun. 
Many animais, including fish, exhibit a 24-hour cy-
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cle in their activities (diel rhythm) which may be a 
matter of simple photokinesis (Clarke 1965). Fish 
are more active either during day or at night. For 
example, light-to-dark transitions are very impor-
tant to synchronizing locomotor activity rhythms in 
the Atlantic salmon Salmo salar (Richardson & 
McCleave 1974), and fish feed actively during the 
day but not at night (Thorpe et al. 1988). Hence 
daylength may indirectly modify growth by in-
creasing food intake or muscle mass by exercise. 
Most often, daily rhythms are driven by endoge-
nous biological clocks, synchronized by the 24 h L: 
D cycle, and which would free-run under constant 
conditions (with a period approximating 24 h). 
Similarly, circannual rhythms are endogenous 
rhythms which fluctuate on an annual basis. Orga-
nisms with circadian clocks are able to predict and 
anticipate daily changes, so that the right event will 
occur at the right time. How do fish integrate the 
photoperiod information? Where are the biological 
clocks located? Does the photoperiod System 
modulâtes animal growth and how? Thèse questions 
are also addressed in the présent review. More pre-
cisely, we will focus attention on the melatonin 
generating System and its targets, because this 
molécule is now considered as the "hormonal mes-
senger of photoperiod" in ail vertebrates so far 
investigated (Zachmann et al. 1992a). 

2. PHOTOPERIOD AND GROWTH 

2.1. Larvae 

Many studies have been carried out on cultured 
marine fish larvae, supplying light either continu-
ously or over very long periods, compared to the 
natural conditions (rabbitfish (Duray & Kohno 
1988); halibut (Hallarâker et al. 1995a), sole 
(Fuchs 1978); sea bass (Barahona-Fernandes 1979, 
Ronzani Cerqueira et al. 1991), green back floun-
der (Hart et al. 1996), gilthead sea bream (Tandler 
& Helps 1985, Ounais-Guschemann 1989), turbot 
(Person-Le Ruyet et al. 1991). Solberg & Tilseth 
(1987) demonstrated that yolk absorption was inde-
pendent of the light régime in the cod Gadus 
morhua, except for larvae reared in the dark. In the 
sea bream Archosargus rhomboidalis (Sparidae), 
high levels of prey promoted good larvae growth 
under natural lighting conditions, but at low levels 
of prey growth increased with longer photoperiod 
(Dowd & Houde 1980). A "daylength-prey abun-
dance" association is usable for the optimization of 
production cycles. For example, it was possible to 
produce juvénile halibuts from larvae, using a 6-
month delayed photoperiod and ensure year-round 
production of juvéniles (Naess et al. 1996). Hence, 
the "synergistic effect of food availability and 
light" is the most important factor acting on larval 

growth; it allows the optimal exploitation of the 
trophic level. However, a high growth rate may not 
be good for a normal development as suggested 
from studies in the sea bass (Ronzani Cerqueira et 
al. 1991). 

2.2. Juvéniles 

A few studies have concluded to a lack of effect 
of photoperiod on flatfish growth. For example, ju-
vénile yellow tail flounder Pleuronectes 
ferrugineus had similar growth and survival rates 
under 24L:0D, 18L:6D and 12L:12D conditions 
(Purchase et al. 2000). Also, growth rate of hali-
buts reared from 5 to 20 g was not affected by light 
régimes changing from 7 to 12 h L and from 12 to 
18 h L (Hallarâker et al. 1995b). However, with 
halibuts of 30 g maintained for 5 months under dif-
férent photoperiod conditions, a high spécifie 
growth and survival rate was observed under a 
24L:0D cycle, whereas a 8L:16D cycle gave the 
poorest results; intermediate values were obtained 
under natural conditions (Simensen et al. 2000). 
Moreover, fish first maintained under short 
daylength exhibited an increased growth rate 21 
days after being transferred to continuous light 
(Simensen et al. 2000). Turbots, reared for at least 
3 months (at 10 and 16°C) under continuous light 
had slightly higher growth rates than those main-
tained under natural or constant 16L:8D condi-
tions; however, no différence was seen after 6 
-months (Imsland et al. 1995). In another séries of 
experiments it was shown that feeding was not af-
fected in turbots maintained for 60 days under six 
différent photoperiods (constant 8L:16D, 16L:8D, 
12LT2D, 24L:0D; increasing 12-16L and decreas-
ing 12-8L) (Pichavant et al. 1998). However, 
Imsland et al. (1997) observed a better long-term 
growth (18 months) in turbots exposed to extended 
daylength during the first winter. 

Positive effects of photoperiod on growth have 
been recorded in other species. A constant 16L:8D 
cycle enhanced growth in Sebastes diploproa com-
pared to a 12L:12D cycle, and this can probably be 
related to a greater scope for growth due to their 
lower standard metabolic rate (Boehlert 1981). In 
the gilthead seabream and sea bass, long 
photoperiod delayed spawning and increased So-
malie growth (Silva-Garcia 1996, Kissil et al. 
2001, Rodriguez et al. 2001). The différences ap-
peared after a long exposure time in the seabream 
(45-145 days depending on the light régime) 
(Silva-Garcia 1996), and were maintained up to 11 
months (Kissil et al. 2001). Daily feed consump-
tion was affected by the onset of spawning, and the 
efficiency of feed utilization and energy rétention 
was also positively correlated with the long 
photoperiod (Kissil et al. 2001). A similar situation 
had been described in the green sunfish, Lepomis 
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cyanellus maintained for 6 weeks at four 
photoperiods (constant 8L:16D, 16L:8D, increas-
ing 8-16L and decreasing 16-8L). In this species, 
food intake is directly correlated to the amount of 
light to which the fish were exposed (Gross et al. 
1965). Fish growth and food conversion efficiency 
were closely correlated and were generally highest 
in the increasing photoperiod, even when tempéra-
ture was the same in spring and autumn. 

In salmonids, for which there is not a true larval 
stage, Brânnàs (1987) failed to demonstrate an in-
fluence of photoperiod during the yolk sac phase or 
on behavior at émergence in the Atlantic salmon. 
In the same species, Berg et al. (1992) obtained a 
good relationship between the duration of lighting 
and growth after first feeding: growth decreased on 
reduced daylength. This species is particularly ré-
ceptive to extended daylength and grows very well, 
even under continuous light, eating continuously 
during the photophase. In an experiment lasting 
192 days after the first feeding, where both tempe-
rature and photoperiod were changed, Thorpe et al 
(1989) found that in late summer the greater the 
growth opportunity (°C X daylength hours), the 
greater the proportion of young salmon maintain-
ing good growth and within the upper mode of the 
population (see also below). 

In rainbow trout Oncorhynchus mykiss, main-
tained under a natural photoperiodic cycle a re-
duced rate of decreased daylength favored growth 
and food conversion efficiency (Màkinen & 
Ruohonen 1992). A longer light phase favors food 
intake and also possibly food conversion (Mason et 
al. 1992). Better growth and food conversion effi-
ciency rate have been observed under continuous 
illumination during the first year (Maisse & Le 
Bail unpubl results). In Arctic charr, Mortensen & 
Damsgârd (1993) found that a long photoperiod in-
creased the compensatory growth observed after a 
previous "warm" (11 °C) température and short 
days pre-treatment. Hence, it appears that growth 
of non-migrating salmonid species is sensitive to 
increasing daylength under artificial conditions. 
However, thèse results do not take into account any 
of the other endogenous growth cycles which have 
been described in thèse species (Jobling 1987, 
Saether et al. 1996, Noël & Le Bail 1997), and 
which could also be influenced by light. 

A considérable amount of literature is dedicated 
to the effects of photoperiod on Atlantic salmon ju-
véniles. Not ail of thèse studies can be referred 
here, but the effects of photoperiod are so clear for 
this species that they merit spécial attention. The 
major difficulty in extrapolating results is the exis-
tence of the major developmental transformation 
from parr to smolt (see reviews in Fontaine 1975, 
Hoar 1988, Boeuf 1993). Photoperiod exerts an im-
portant rôle in salmon smoltification (Hoar 1988, 
Boeuf 1993, Saunders et al. 1994, Solbakken et al. 
1994, Sigholt et al. 1995), and growth cannot be 

dissociated from smoltification. At the end of the 
freshwater résidence phase and just before migra-
tion, fish are euryhaline, and they grow very fast. 
During the first year, before completion of parr-
smolt transformation, light stimulâtes growth. 
Lundqvist (1980) showed that a longer photoperiod 
(20L: 4D opposed to natural light or 6L:18D stimu-
lated Baltic salmon growth during autumn. How-
ever, the "size-structure" of the expérimental popu-
lation was not considered in this study. The 
Atlantic salmon has a spécifie developmental stra-
tegy with two modes, weight and size, appearing in 
the population during the first year, 7 to 9 months 
before the completion of smolting. Thorpe (1987) 
proposed that photoperiod synchronises an endoge-
nous rhythm, genetically determined, and régulâtes 
the time of the "switch" of the differentiation is 
made into two growth modes. Decreasing 
daylength may cause the appearance of bimodality: 
transfers of fish from continuous light to natural 
photoperiod (range 12-15 hours) are followed by a 
ségrégation in growth rates into lower and upper 
modes fish (Skilbrei 1991, Skilbrei et al. 1997). 
Under continuous light, bimodality is low or absent 
and the individual décision to enter the upper mode 
with fast growth is strongly dépendent on the fish 
size at the time of winter light stimulus. Seven 
weeks of short-day treatment reduced growth in 
comparison with the continuous light exposed 
salmon (Sigholt et al. 1998). It is essential for com-
pletion of smolting to expose fish to an increasing 
photoperiod after short-day conditions (Kristinsson 
et al. 1985, Gaignon & Quemener 1992, Bjôrnsson 
et al. 1995). In some cases, one was able to dissoci-
ate a pure growth effect of light from those linked 
to smolting: long term (a few months) constant 
long daylength stimulâtes growth, but is increasing 
daylength necessary for parr-smolt transformation? 
(Saunders et al 1985, Duston & Saunders 1992). 

Feeding activity is fundamental, as salmon do 
not eat at ail or at least very little during night time 
(Thorpe et al. 1988), even if they can do during 
very short photoperiods. Maybe, they can be look-
ing for food at the bottom of the tank (olfactory 
sensé?) during the night (Jorgensen & Jobling 
1992). Villarreal et al. (1988) suggested that the 
delays observed in growth, after daylength réduc-
tion, reflected a synchronizing effect of 
photoperiod on an endogenous rhythm of appetite 
and growth. At présent, it seems that growth, 
linked to daylength, is related to food intake. 

Ail thèse data lead to the possibility of produ-
cing 0+-age smolts, and at présent, an important 
part of smolt production makes use of light manip-
ulations. One can produce 7-8 month old smolts, 
with a good growth, and ability to adapt to seawa-
ter (Saunders & Duston 1992, Thrush et al. 1994, 
Duncan & Bromage 1998). In the Ifremer labora-
tory of Brest, 0+-age smolts of différent sizes have 
been produced using three photoperiod régimes 
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(16L:8D; 12L:12D and 8L:16D) for 5 months (fol-
lowing three months at 12L:12D; in Boeuf & Le 
Bail, 1999). Fish were reared in indoor 1 m2 Swed-
ish type tanks in constant light (L:L) and tempéra-
ture conditions at densities of 15 kg.m 2. They were 
fed dry commercial pellet (Aqualim) daily by an 
automatic feeder. Growth appeared related to both 
température and lighting conditions. 

After seawater transfer, Atlantic salmon growth 
may also be influenced by daylength. Presently, 
many farmers in Norway and Scotland use continu-
ous lighting during the autumn or winter (October-
April in the North hémisphère) to improve growth: 
growth in fish subjected to natural daylight is de-
pressed during the autumn and winter, while, con-
versely, no such growth dépression in winter is 
observed under a continuous light régime 
(Forsberg 1995). Several authors, using photo-
period treatments, have experimentally demon-
strated a substantial improvement of postsmolt 
growth in sea water (Saunders & Harmon 1988, 
Krâkenes et al. 1991, Hansen et al. 1992). How-
ever, in thèse experiments, such treatments not 
only stimulated growth, but also triggered earlier 
sexual maturation. It is known that somatic growth 
is accelerated during the first steps of the 
gametogenesis, an effect mediated by steroids (Le 
Bail 1988). Hence, it is possible that under thèse 
conditions, a great part of the light-promoted stim-
ulation of growth is related to reproduction. How-
ever, in a récent study (Oppedal et al. 1997), it has 
been demonstrated that, if light intensity was 
sufficient, abrupt changes from natural short 
photoperiod to continuous additional light (Janu-
ary-June) promoted growth without triggering mat-
uration. 

Other studies have been carried out in Pacific 
salmon species, mainly coho Oncorhynchus kisutch 
and chinook O. tshawytscha. In 1978, Clarke et al. 
showed that the sensitivity of young fry to 
photoperiod varied seasonally. In 1986, Clarke & 
Shelbourn concluded that bimodal growth in juvé-
nile salmon was a function of a photoperiod phase 
at the time of first feeding and it was possible to 
produce underyearling coho smolts. Extended 
daylength also stimulâtes growth for Pacific spe-
cies (Thorarensen & Clarke 1989), as it does for 
Atlantic salmon. In fact, it is not the accumulation 
of light exposure that initiâtes smolting, but rather 
the time during the day when light is experienced. 
Moreover, responsiveness to inductive photo-
periods dépends on the initial photoperiod treat-
ment (Thorarensen & Clarke 1989). Thorarensen et 
al. (1989) exposed young coho salmon to différent 
levels of night illumination ranging from 0.0001 to 
0.05 lux, after a first period at short-day (10L: 
14D, during 12 weeks) and a second period under 
inductive lighting (9L: 9D: IL: 5D or 24L: 0D): 
they observed slower growth rates for the fish ex-
posed to nocturnal illumination. It seems that a pe-

riod of total darkness is needed to obtain maximum 
growth. 

In conclusion, increasing daylength exerts a 
greater influence on salmon smoltification than 
constant daylength. It seems important for freshwa-
ter fish to expérience a few weeks of short-day 
conditions prior to transfer in increasing daylength 
conditions. Even if in nature this smolting phenome-
non cannot be dissociated from somatic growth, 
the preceding data show that a long daylength 
(changing or constant) stimulâtes growth specifi-
cally. The observed great dependence of Atlantic 
salmon on photoperiod might be due to the strains 
used and high latitude conditions. It would prove 
interesting to compare the photoperiod responsive-
ness of northern and Southern strain. 

3. THE ENDOLYMPH/OTOLITH SYSTEM 

It is of relevant interest to discuss the possible 
rôle of the inner ear of teleost because fish otolith 
exhibits daily and annual rhythmic dépositions in 
relation to photoperiod and light sensitivity. Fur-
thermore, otolith incréments have been used for a 
long time as indicators of life history, aging and so-
matic growth. They are composed of calcium car-
bonate crystals in the aragonite form, enmeshed in 
an inorganic matrix composed largely of a keratin-
like protein (Wright et al. 1992). Accretion occurs 
through the alternate déposition of a mineral/ma-
trix-rich layer with a minerai déficient layer. This 
is done on a daily basis in many species, so that a 
recognizable daily incrément is produced (Pannella 
1980). 

A few scientists have questioned the rôle of 
photoperiod on otolith growth. In Atlantic salmon, 
déposition is regulated by an endogenous circadian 
rhythm synchronized to the 24 h L:D cycles 
(Wright et al. 1991). Otolith calcification déclines 
at night and résumes lower levels at dawn: a diel 
fluctuation in net calcium accretion, linked to 
plasma calcium concentration, appears (Wright et 
al. 1992). A similar phenomenon is recorded in 
rainbow trout (Mugiya 1987), Arctic charr (Adams 
et al. 1992) and pike Esox lucius (Wang & 
Eckmann 1992). In embryonic and larval rainbow 
trout, photoperiod is a potent synchronizer of the 
daily rhythm of déposition, whatever the 
photoperiod conditions (6L:6D; 12LT2D; 24L:24D; 
24L:0D and 0L:24D; Mugiya 1987). It is not so 
easy to correlate somatic growth and otolith 
growth, probably because numerous factors are in-
volved in the control of each of them. Actually, in-
crémental increases in otolith width appear to be 
linked to photoperiod, whereas increases in the 
number of rings appear to be related to feeding ac-
tivity (Neilson & Geen 1982). Other external fac-
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tors, such as température, may also modify the ra-
tio between somatic and otolith growth, as shown 
in young turbot (Kossmann, Leroux & Boeuf un-
published observations). 

Very little information is available concerning 
the physiology of the endolymph-otolith complex. 
The saccule has specialized small and big cells 
which display ail the characteristics of gill 
ionocytes (Mayer-Gostan et al. 1997). The pré-
sence of a pH gradient in the inner ear of teleost is 
a unique common pattern among vertebrates. This 
is probably related to bio-calcification of otoliths. 
pH variations could be the major factor affecting 
the rate of the daily calcium déposition (Payan et 
al. 1997). The lack of spatial uniformity in both the 
otolith and the saccular endolymph must be taken 
into account when studying otolith and fish growth 
(Payan et al. 1999). It is not known whether the 
fine control of photoperiod on otolith growth in-
volves a nervous and/or an endocrine signal. Inte-
restingly, somatic and scale growths were totally 
inhibited in hypophysectomized goldfish Carassius 
auratus while otolith growth was only slightly re-
duced (Mugiya 1990); injections of pituitary ex-
tracts (GH) restored the normal conditions. On the 
other hand, starvation resulted in both somatic and 
otolith growth dépression in rainbow trout (Mugiya 
& Oka 1991). 

4. HORMONAL CONTROL OF GROWTH 

4.1. Somatotropin 

Somatotropin (or growth hormone) originates 
from the anterior pituitary gland and plays a major 
rôle in fish growth and adaptation (Le Bail et al. 
1993, Sakamoto et al. 1993). As early as 1976, 
Komourdjian et al. suggested that somatotropin 
could play a rôle as a part of a "light-pituitary axis" 
in the growth of Atlantic salmon during 
smoltification. In fact, during this process, plasma 
GH levels increase "naturally" after the spring 
equinox, when photoperiod rapidly increases 
(Boeuf et al. 1989, Prunet et al. 1989). Generally, 
increased daylength accelerated the parr-smolt 
transformation and associated growth, and in-
creased blood GH levels (Bjôrnsson et al. 1989, 
1995, Stefansson et al. 1991, McCormick et al. 
1995). Exposure to continuous light in autumn and 
winter causes a "free-running" of an endogenous 
rhythm governing smolting and a subséquent 
phase-delay of the smoltification-related increase 
in circulating GH levels (Bjôrnsson et al. 1995, 
1998, Bjôrnsson 1997). Similar results of somato-
tropin increase during smoltification completion 
have been obtained for masu salmon Oncorhynchus 
masou (Okumoto et al. 1989). However, outside of 

the smolting completion period, increasing light 
does not necessarily increase GH levels, even if so-
matic growth is increased, as shown in three Pa-
cific salmon species (Clarke et al. 1989). It is inte-
resting to note that in the seabream, the seasonal 
increase of plasma growth hormone seems more re-
lated to daylength than température (Perez-Sanchez 
et al. 1994). 

In mammals, circulating somatotropin is higher 
at night than during the day (Harvey & Daughaday 
1995). In fish, the daily rhythms in GH content are 
related to feeding activity (Reddy & Leatherland 
1994, Holloway et al. 1994) as well as to the L:D 
cycles (Bâtes et al. 1989, Boujard & Leatherland 
1992). In a study of cannulated rainbow trout, 
Gomez et al. (1996) noted peaks in GH values, but 
they were irregular and asynchronous in individual 
fish; there was no clear-cut rhythm, but a trend to 
higher values at night. However, none of thèse 
studies provide a link between the daily rhythm 
and somatic growth capabilities. 

It should also be mentioned that generally 
plasma GH levels were inversely correlated to 
growth performance in fish (Le Bail et al. 1993). 
GH receptivity studies should be useful to better 
understand how daylength may influence growth. 
Adelman (1977) did not observe growth différ-
ences between carp Cyprinus carpio reared at 9L: 
15D and 16L:8D, after treatment with mammalian 
GH. IGFs are probably very important in the média-
tion of light influences on growth. Studies of IGFs 
and insulin have only been possible in fish for the 
last few years and further experiments will be 
needed to evaluate a possible direct action of GH 
and the rôle of IGFs in thèse pathways. Recently, 
Elies et al. (1996) cloned and sequenced an IGF1 
receptor in two teleost species, turbot and trout. In-
sulin and IGF1 receptors have been cloned and se-
quenced and mRNA expression studied in the tur-
bot (Elies et al. 1999) and GH receptor has been 
molecularly characterized (Calduch-Giner et al. 
2000). 

4.2. Thyroid hormones (TH) 

The thyroid gland of fish produces high amounts 
of thyroxine (T4) which is then transformed into 
tri-iodothyronine (T3) in peripheral tissues. The 
same receptor binds the T3 and T4 molécules, but 
with much higher affinity for the former than for 
the latter (Eales 1985). T3 and T4 levels vary on a 
seasonal basis in fish sampled in their natural habi-
tat (Osborn & Simpson 1978, Eales & Fletcher 
1982); two optima were reached in winter and in 
summer. 

Daily variations in T4, and less pronounced or 
even undetectable variations in T3 are usually des-
cribed in laboratory fish (Cook & Eales 1987, 
Gomez et al. 1997, Noeske & Spieler 1983). In 



PHOTOPERIOD AND GROWTH IN FISH 253 

rainbow trout, the T4 rhythm resulted from an inter-
action between feeding and photoperiod régimes 
(Boujard & Leatherland 1992). It is noteworthy 
than in trout and other salmonids, growth rate is 
significantly correlated to the daily average T3 
value although a marked diurnal rhythm is ob-
served only with T4 (Eales & Shostak 1985, Boeuf 
& Gaignon 1989, McCormick & Saunders 1990, 
Gomez et al. 1997). Hence, T3 levels appear to pro-
vide a good estimation of growth responsiveness to 
light. However, it cannot explain ail of the effects 
of light on fish growth. Indeed, Okumoto et al. 
(1989) found that plasma TH were not affected by 
changing daylength in masu salmon, although 
growth was stimulated. In the killifish, Fundulus 
heteroclitus Brown & Stetson (1985) showed that 
long days (14L:10D) increased, and short days 
(8L:16D) diminished, the négative feedback sensi-
tivity of the hypothalamus-pituitary axis to TH. 
They proposed that such a photoperiodically-in-
duced change could aid in the year-round mainte-
nance of thyroxine levels necessary for seasonal 
adaptation and survival. 

The rôles of TH during parr-smolt transforma-
tion have been reviewed by Boeuf (1993). In the 
Atlantic salmon, increasing daylength stimulated 
growth and plasma thyroxin levels, without affec-
ting T3 (Me Cormick et al. 1987). Under continu-
ous light, T4 levels remained low, but only true 
smolts grew "normally" after transfer to seawater. 
It is hypothesized that under normal photoperiod, 
the high T4 levels could act as a growth stimulator 
at the end of the fresh water stage, in spite of the 
fact that T4 has lower affinity than T3 for the nu-
clear receptor. However, it should also be noted 
that T4 plays many other rôles during this period. 
For example, Iwata et al. (1989) discovered that 
coho and chum salmon Oncorhynchus keta, treated 
with thyroxine changed their phototaxis. Finally, 
the changes in visual pigments composition ob-
served in the retina during smoltification might re-
flect modifications in the thyroid function. Indeed, 
the visual response of the retina to TH is altered af-
ter treatment with TH blockers (Alexander et al. 
1998). 

A few studies have noted a relationship between 
growth, TH levels and the phases of the moon 
(Grau et al. 1981, Farbridge & Leatherland 1987a 
b, Nishioka et al. 1989, Hopkins 1992). However, 
the effects of the moon would possibly be mediated 
by the lunar attraction rather than by the direct in-
cident light (Noël & Le Bail 1997). 

4.3. Other hormones 

Other hormones such as insulin and steroids also 
have an effect on fish growth; however, informa-
tion lacks in terms of their relation to the influ-
ences of light. Regarding sex steroids, the available 

information is only related to reproduction and go-
nadal development. However, puberty is strongly 
dépendent on photoperiod during this phase: the 
puberty dependent-androgen sécrétion increase has 
an influence on somatic growth (Le Bail et al. 
1988, Le Gac et al. 1993). Somatostatin (SRIF) is 
also known for strongly inhibiting GH sécrétion in 
ail vertebrates, including fish. McCormick et al. 
(1995) found higher levels of plasma somatostatin-
25 in salmon reared under a 9L:15D cycle, but no 
variation after exposure to longer daylength. 
Plasma levels of both somatostatins 25 and 14 are 
higher in stunting coho than in smolts (Sheridan et 
al. 1998). One study, published in 1996 by Zhu & 
Thomas, demonstrated an influence of différent 
backgrounds and altered illumination on red drum 
Sciaenops ocellatus plasma and pituitary 
somatolactin (SL, which is a member of the 
prolactin/GH family of proteins): they found that 
both plasma and pituitary SL levels were higher in 
fish exposed for one week to black background and 
that circulating SL was maximal one day after 
transfer to a black background tank without illumi-
nation. SL may be involved in the adaptation to 
colored surroundings. However, at présent, little is 
known about a possible involvement of SL in 
growth régulation. 

5. THE MELATONIN GENERATING 
SYSTEM AND MELATONIN RECEPTORS 
IN FISH 

To synchronize rhythmic functions and beha-
viors to the daily and annual cycles, an organism 
needs photoreceptive organs which will transduce 
the photoperiod information and produce output 
messages to convey this information to target cen-
ters. Fish possess two such photoreceptive organs, 
the retina of the latéral eyes and the pineal gland. 
Melatonin is one of the différent messages they 
elaborate in response to the alternation of light and 
dark (Falcôn 1999). As reviewed below, melatonin 
is considered a "time-keeping" molécule. We will 
focus attention on the pineal gland because retinal 
melatonin is unlikely to be involved in the synchro-
nization of rhythmic events outside the retina. In-
deed, retinal melatonin is produced, used and me-
tabolized in situ where it has autocrine or paracrine 
effects: it modulâtes the sensitivity to light, the re-
lease of neurotransmitters; also it coordinates 
retino-motor movements (of cônes, rods and retinal 
pigment epithelium), and outer segment disk shed-
ding (Wiechmann & Smith 2001). Conversely pi-
neal melatonin is released into the blood and 
cerebro-spinal fluid, and acts through spécifie re-
ceptors on target sites. It is not unreasonable to be-
lieve that many of the effects of photoperiod on 
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physiological and behavioral processes, including 
growth, are mediated through melatonin. 

5.1. The fish pineal gland resembles a 
simplified retina 

The pineal is an evagination from the roof of the 
diencephalon located just below the skull and con-
nected to the diencephalon by the pineal stalk 
(Collin 1971, McNulty 1984). In most cases, a lu-
men filled with cerebrospinal fluid is opened to the 
3rd ventricle (Omura & Oguri 1969, McNulty 1984, 
Falcon et al. 1992). Three main cell types make up 
the pineal parenchyma: photoreceptor cells, neu-
rons and glial (interstitial) cells. Glial cells occupy 
the full height of the pineal parenchyma and isolate 
the other cell types from the blood vessels sur-
rounding the organ. The pineal photoreceptor cells 
resemble to the retinal cônes of vertebrates. At one 
end of the cell, the photoreceptive pôle (outer seg-
ment) protrudes in the pineal lumen. At the other 
end, one or several pedicles establish synaptic con-
tacts with dendrites of the 2nd order neurons 
(Ekstrôm & Meissl 1997, Falcon 1999). This orga-
nization much resembles the organization of the 
retina, however with a much lesser degree of com-
plexity. For example, although few inter-neurons 
have been described, no rod photoreceptors, bipo-
lar, amacrine and horizontal cells per se are seen in 
the pineal gland. 

The 2nd order neurons send their axons to the 
brain via the pineal tract which runs dorsally to the 
pineal stalk. It is noteworthy that the central pro-
jections from the pineal organ and retina of fish 
partly overlap (e.g., pretectum, dorsal thalamus and 
preoptic area) (Ekstrôm 1984, Ekstrôm & Meissl 
1997). 

5.2. The fish pineal gland élaborâtes rhythmic 
messages regulated by light 

The fish pineal gland élaborâtes at least two im-
portant messages, in a rhythmic manner, a nervous 
and a neurohormonal message. 

5.2.1. The nervous message, an excitatory 
neurotransmitter 

In response to light, a pineal photoreceptor be-
haves like a retinal photoreceptor, and the mecha-
nisms of phototransduction are similar in both cell 
types, actually the two cell types are anatomically 
and functionally analogous (refs in Falcon 1999). 
The pineal photoreceptor is depolarized in the dark 
and hyperpolarized during day (Meissl & Ekstrôm 
1988a b, Ekstrôm & Meissl 1997). A major diffé-
rence between the retinal and pineal photoreceptor 
is that under prolonged illumination the latter 

maintains an intensity related membrane potential 
so that it acts as an indicator of graduai light inten-
sity changes (Ekstrôm & Meissl 1997). It cannot 
discriminate between rapid light changes as the reti-
nal photoreceptor does. This is consistent with the 
idea that the pineal gland functions as a luminance 
detector (Meissl & Dodt 1981). Information is 
transmitted to the second order neurons via an ex-
citatory neurotransmitter, the release of which is 
inhibited upon photoreceptor hyperpolarization 
(Ekstrôm & Meissl 1997). As a resuit, the spike 
discharges by the axons of the pineal tract are in-
hibited by light and increased in the dark. Inhibi-
tion is directly related to the intensity of the stimu-
lus. The organ can integrate variations in intensity 
up to a 9 log units range in the pike (Falcon 1999). 
It is noteworthy that, when studied in parallel, the 
pineal and the retina of the same species exhibit 
similar spectral sensitivity curves (Falcon & Meissl 
1981). The two organ express similar but différent 
photopigment molécules, most probably as a resuit 
of gene duplication (Mano et al. 1999). In the pi-
neal gland, spectral sensitivity curves may be re-
corded at the level of the photoreceptor cells or 
second order neurons; they are identical in both 
cases. The responses are usually sensitive in the 
green range or less often in the green and red range 
of wavelengths (Meissl & Dodt 1981, Ekstrôm & 
Meissl 1997, Falcon 1999). In pike, dark adapta-
tion curves show a shift of sensitivity indicating 
there is a photopic and a scotopic range of sensiti-
vity (Falcon & Meissl 1981). This provides the ani-
mal with a greater adaptive advantage compare to 
those with either one of the sensitivity types. 

5.2.2. The neurohormonal message, melatonin 

Melatonin is synthesized from tryptophane 
which is taken up from the circulation. 
Tryptophane is converted to 5-hydroxytrypto-
phane, by means of the tryptophane hydroxylase 
(TPOH), and 5-hydroxytryptophane is decarbo-
xylated by the aromatic amino-acid decarboxylase 
to produce serotonin. Melatonin is synthesized 
from serotonin by the action of two enzymes: the 
first one, the arylalkylamine /V-acetyltransferase 
(A AN AT), converts serotonin to /V-acetylserotonin; 
the second one, the hydroxyindole-O-
methyltransferase (HIOMT), methylates N-
acetylserotonin to produce melatonin (Klein et al. 
1981, 1997). A combination of methods (histo-
chemistry and immunocytochemistry, radio-auto-
graphy, etc.) allowed to demonstrate that this path-
way is active in the photoreceptor cells (refs in 
Falcon 1999). Melatonin may be either released or 
deacetylated in situ to produce 5-methoxy-
tryptamine and 5-methoxytryptophol (Falcon et al. 
1985, Yanez & Meissl 1996). Because of its highly 
lipophylic character, the molécule crosses easily 
the cell membrane. Other serotonin derivatives, 
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such as 5-methotrytryptophol, are produced from 
serotonin by the photoreceptor cells. However, un-
like melatonin, their physiological rôle has yet to 
be assessed. 

The production and release of melatonin by the 
pineal gland is rhythmic and synchronized to the 
24 h L:D cycle. In fish as in ail vertebrates classes 
so far investigated, production is higher during 
night-time than during daytime (Bolliet et al. 1995, 
1996a, Falcon et al. 1987, 1989, Porter et al. 
2001). AANAT is the key enzyme which expres-
sion and activity are regulated by the L:D cycle. 
AANAT activity increases after lights off and de-
creases late at night and early in the morning, as 
melatonin sécrétion does (Falcon et al. 1987, 1989, 
Morton & Forbes, 1988, Zachmann et al. 1992b). 
The increase in AANAT activity results, in pike 
and zebrafish Danio rerio, from an increase in 
AANAT gene expression which starts in the after-
noon and decreases after midnight (Bégay et al. 
1998, Coon et al. 1999, Klein et al. 1997). The de-
crease in AANAT activity results from both a de-
crease in AANAT expression and the light-depend-
ent activation of enzyme proteolysis, as shown in 
seabream and pike (Falcon et al. 2001). In trout, 
AANAT gene expression is constitutive; variations 
in AANAT activity lie only upon AANAT protein 
proteolysis which is high during day and low at 
night (Bégay et al. 1998, Falcon et al. 2001). Un-
expected illumination at night decreases AANAT 
activity as well as melatonin release, in vitro or in 
vivo (Falcon et al. 1989, Max & Menaker 1992, 
Bolliet et al. 1995). In the trout, the spectral sensi-
tivity curves indicate a rhodopsin-like sensitivity 
(Max & Menaker 1992), as is the case for the re-
lease of the excitatory neurotransmitter in this spe-
cies (Ekstrôm & Meissl 1997). 

Like the nervous message, the melatonin mes-
sage also provides information on daylength, and 
this is achieved through its release in the blood 
(and may be in the cerebrospinal fluid). Variations 
in blood melatonin content are higher during night 
than during day Le., they mirror the variations in 
pineal melatonin production (Gern et al. 1978a, 
Falcon et al. 1987, Kezuka et al. 1988 1992, 
Zachmann et al. 1992b c, Iigo & Aida 1995, 
Randall et al. 1995, Pavlidis et al. 1999, Rebollar 
et al. 1999). As a conséquence of the seasonal 
changes in daylength, the duration and amplitude 
of the plasma melatonin rhythm varies along with 
seasons in temperate régions (Kezuka et al. 1988, 
Randall et al. 1995), thus providing an accurate in-
formation on calendar time. Usually, the melatonin 
signal is of short duration and high amplitude in 
summer, and of long duration and short amplitude 
in winter (Kezuka et al. 1988). It has been sug-
gested that duration is controlled by photoperiod, 
whereas amplitude is controlled by température 
(Garcia-Allegue et al. 2001, Samejima et al. 2000). 

Results from in vitro studies support thèse conclu-
sions. 

Melatonin is also produced by the retina (see in-
troduction). However, retinal melatonin does not 
contribute to the circulating levels for the follow-
ing reasons: (1) only the pineal and plasma 
melatonin rhythms are in phase (Falcon & Collin 
1991, Falcon et al. 1987, Zachmann et al. 1992b), 
and in many species (sea bass, pike, brook trout 
and rainbow trout) ocular melatonin levels are 
higher during day than during night, Le., in a 180° 
anti-phase with the blood rhythm (Falcon & Collin 
1991, Zachmann et al. 1992b, Zaunreiter et al. 
1998a b, Garcia-Allegue et al. 2001); (2) cultured 
sea bream, pike and white sucker retinas do not re-
lease melatonin into the culture médium (Molina-
Borja et al. 1996, and unpublished observations); 
(3) pinealectomy, but not eyectomy, suppresses 
plasma melatonin in the goldfish and salmon 
(Kezuka et al. 1992, Iigo et al. 1997, Mayer 2000). 
The trout is the only fish species known where 
pinealectomy diminishes the nocturnal plasma 
melatonin surge without completely suppressing 
the L:D variations (Gern et al. 1978b). 

5.3. The melatonin rhythm is driven by 
circadian clocks located within the pineal 
photoreceptors 

Experiments conducted in vivo and in vitro pro-
vided indication, in most but not ail (see below) of 
the species investigated, that the rhythm in 
melatonin sécrétion was not a simple passive res-
ponse to the alternation of light and darkness. For 
example, whether light at night causes a rapid dé-
cline in AANAT activity and melatonin sécrétion, 
night during day does not necessarily induces an 
increase in pike (Falcon et al. 1987). Under experi-
mentally manipulated photoperiods the melatonin 
rhythm follows the imposed L:D cycles, but this is 
achieved progressively (Bolliet et al. 1995, 
Molina-Borja et al. 1996). Moreover, the melatonin 
rhythms have been shown to persist in the pineal 
gland and blood of animais maintained under con-
stant darkness (D:D), whereas a low-amplitude 
rhythm may be detected under L:L (Falcon et al. 
1987, 1989, Bolliet et al. 1995, Porter et al. 2000). 
In culture, entire organs, pièces of glands, or disso-
ciated cells maintain a rhythmic release of 
melatonin under D:D (Falcon et al. 1989, Ligo et 
al. 1991, Bolliet et al. 1994, 1996a b, Cahill et al. 
1996, Okimoto & Stetson 1999a b). Altogether this 
indicates that multiple circadian oscillators drive 
the melatonin rhythm. Bolliet et al. 1996b provided 
définitive proof that thèse oscillators are located 
within the photoreceptor cells. The authors were 
able to monitor melatonin sécrétion from indivi-
dual photoreceptors (using the reverse hemolytic 
plaque assay) or cultures made exclusively of 
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photoreceptors (using radioimunoassay); under 
L:D or D:D, both the amount of melatonin released 
and the number of melatonin producing 
photoreceptors, were higher during night (or sub-
jective night) than during day (or subjective day). 

Taken together, thèse findings indicate that sin-
gle photoreceptor cells contain a circadian clock, a 
photoreceptive capacity and the ability to secrète 
melatonin. The L:D cycle synchronizes the clocks 
which in turn drive the melatonin rhythm. This is 
achieved through control of AANAT gene expres-
sion which is maintained rhythmic under L:L or 
D:D (Bégay et al. 1998, Coon et al. 1999). 

Interestingly enough is the observation that the 
pineal gland of salmonids exhibits no rhythm under 
constant conditions (Gern & Greenhouse 1988, 
Iigo et al. 1997, Thibault et al. 1993). Under thèse 
conditions, AANAT activity and melatonin levels 
remain high in the dark and low in the light, inde-
pendent on the duration of the light and dark 
phases (above refs). There is, to date, no explana-
tion for thèse species-dependent variations. 

5.4. Température modulâtes melatonin sécrétion 
by the fish pineal gland 

In cultured pineal glands of pike, température 
cycles superimposed to photoperiod cycles en-
hance the amplitude of the rhythm when the 
cryophase coincides with the scotophase, and re-
duces the amplitude when the cryophase coincides 
with the photophase (Falcon et al. 1994). The op-
posite holds true in the white sucker (Zachmann et 
al. 1991, 1992c). Température cycles are able to 
synchronize the clocks that drive the rhythm in 
melatonin sécrétion. In D:D, melatonin peaks with 
the cold phase in the white sucker, and with the 
warm phase in the pike. However, température cy-
cles are unable to entrain the circadian clocks, and 
température puises cannot shift the phase of the 
clocks as light does (Falcon et al. 1994). Moreover, 
température does not affect the period of the free 
running rhythm under D:D in the sailfin molly and 
pike (température-compensation), but the oscilla-
tions are no more seen below a threshold level 
(Bolliet et al. 1994, Okimoto & Stetson 1999a b), 
consistent with the observation that blood 
melatonin rhythm is of higher amplitude at 12 °C 
than at 4 °C in juvénile salmon (Porter et al. 2001). 

In brief, photo- and thermo-period interact in 
fish to détermine the amplitude and duration of the 
melatonin rhythm. The effects of température cy-
cles are complex, and vary from a species to an-
other. Différences resuit probably from variations 
in the metabolisms proper to each species. In cul-
tured pineal glands, cyclic AMP accumulation 
AANAT activity peak at 12-15 °C in trout, and 18-
25 °C in the pike (Thibault et al. 1993). AANAT 
activity from recombinant proteins as well as from 

gland homogenates exhibit the same maximum, in-
dicating that this is a property of the AANAT 
protein. Under a 12°C/20°C température cycle 
melatonin would peak with cold température in the 
trout, and warm température in the pike. 

5.5. Melatonin receptor s in fish 

Melatonin acts through spécifie membrane 
bound receptors which belong to the seven trans-
membrane domain G-protein coupled receptors 
(Reppert et al. 1995). The receptors are usually 
coupled negatively to the cAMP pathway, but ef-
fects on other second messengers have also been 
reported (Vanecek 1998). Three receptor subtypes 
have been identified to date in vertebrates: MT1 
(Mella), MT2 (Mellb) and Mellc (Dubocovich et 
al. 2000, Reppert et al. 1995, Shiu & Pang 1998). 
In fish, the full length cloning of a melatonin re-
ceptor has been obtained only in pike (Gaildrat et 
al. 2001); partial cloning has been achieved in zé-
bra fish (the three subtypes), trout (Mella, Mellb), 
and pike (Mella) (Gaildrat & Falcon 2000, 
Mazurais et al. 1999, Reppert et al. 1995). 

Distribution of melatonin receptors has been in-
vestigated using in situ hybridization in trout 
(Mazurais et al. 1999), RT-PCR in pike (Gaildrat 
& Falcon 1999, Gaildrat et al. 2001), and binding 
of 2-[125I]-iodomelatonin (125I-Mel) on tissue sec-
tions and membrane préparations from goldfish, 
pike, skate, seabream, salmon and trout (Martinoli 
et al. 1991, Ekstrôm & Vanecek 1992, Davis et al. 
1994, Iigo et al. 1994, Pang et al. 1994a, Falcon et 
al. 1996, Gaildrat et al. 1998, Mazurais et al. 
1999). In the brain, the receptors exhibit a wide-
spread distribution which differs, in terms of inten-
sity, between the Mella and Mellb receptors. The 
highest expression is consistently found in the op-
tic tectum of ail fish studied including deep sea 
gadiform fish (above refs and Priede et al, 2000). 
Other areas include the olfactive bulbs, 
telencephalon, preoptic area, thalamus, pretectal 
area, and cerebellum. Actually, brain melatonin re-
ceptors are seen in areas involved in sensory (vi-
sual, olfactive, auditive) intégration. Melatonin re-
ceptors are also expressed in the retina (Gaildrat & 
Falcon 1999, 2000, Gaildrat et al. 2001, Iigo et al. 
1997). This is consistent with the observation that 
retinal melatonin has auto/paracrine effects (see 
above). Studies in the Xenopus have indicated the 
receptors are expressed in photoreceptor and gan-
glion cells, as well as some unidentified cells of the 
inner nuclear layer (Wiechmann & Smith 2001). In 
peripheral tissues, melatonin receptors have been 
evidenced in fish heart (Pang et al. 1994b). 

Of great interest is the observation that 
melatonin receptors are also found in the pituitary 
gland of pike (Mellb>Mella) and trout (Gaildrat & 
Falcon 1999, 2000). The number of sites is less 
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than in the brain, but the affinity for melatonin is 
the same. As evidenced by in vitro autoradiography 
on tissue sections, the binding of 125I-Mel is 
located in the antero-ventral part of the organ, an 
area known to contain gonadotropines (GtHs), 
prolactin (PRL) and growth hormone (GH) produc-
ing cells. Furthermore, melatonin modulâtes cAMP 
levels by cultured pike and trout pituitary organs 
indicating thèse receptors are functional (above 
refs). 

The binding of 125I-Mel to brain sections or 
membrane préparations exhibits daily changes in 
pike, seabream and goldfish (Gaildrat et al. 1999, 
Falcon et al. 1996, Iigo et al. 1994), but not in 
salmonids (Ekstrôm & Vanacek 1992, Pang et al. 
1994a). However, further studies are necessary in 
salmonids because (1) there were only two sam-
pling times a day, and (2) experiments on whole 
brain homogenates may obscure variations in res-
tricted areas. It is noteworthy that in the pike, the 
rhythm in the number of binding sites (high during 
daytime and low during night-time) is 12 h out of 
phase when compared with the rhythm in plasma 
melatonin content (Gaildrat et al. 1999). This 
might reflect a down-regulation of melatonin re-
ceptors at night, induced by melatonin itself, as 
suggested from preliminary unpublished experi-
ments. Interestingly, the variations reported above 
are maintained in pike under constant conditions. 
The chronograms obtained under L:L or D:D dis-
played a slight phase advance when compared to 
the chronograms obtained under L:D. Altogether, 
thèse results support the idea that in fish, 
photoperiod médiates part of its effects through 
both the rhythmic production of melatonin by the 
pineal and the rhythmic expression of the 
melatonin binding sites in the brain. 

6. HOW DOES THE PINEAL GLAND 
MEDIATE THE EFFECTS OF 
PHOTOPERIOD ON FISH GROWTH? 

As the transducer of the photoperiod informa-
tion in the organisms, there is indication that the 
pineal gland, through its output melatonin, might 
médiate the effects of photoperiod on fish growth. 
However, investigations on this matter are more 
than scarce, probably because physiological studies 
dealing with the effects of pinealectomy on physio-
logical functions often ended with contradictory re-
sults. This is reviewed and discussed in the excel-
lent review of Ekstrôm & Meissl (1997). An early 
physiological study in the goldfish had shown 
photoperiod-dependent effects of pinealectomy on 
growth (De Vlaming 1980). Removal of the pineal 
gland resulted in a reduced growth rate under short, 
but not long, photoperiod; and melatonin adminis-
tration reversed the effect under short photoperiod 

only. A similar experiment was conducted 20 years 
later in the Atlantic salmon parr (Mayer 2000). In 
this case, pinealectomy resulted in lower spécifie 
growth rates during the period of lengthening 
photoperiod until summer solstice; but thereafter, 
Le., during the decreasing photoperiod, pinealecto-
mized fish exhibited higher growth rates. This indi-
cates that the mechanisms by which the pineal 
gland may modulate growth are complex. Such a 
complexity is emphasized by the observation that 
pinealectomy also affected, in a photo-dependent 
manner, body lipid content in the golden shiner 
Notemigonus crysoleucas and longnose killifish 
Fundulus similis (De Vlaming 1975, De Vlaming 
et al. 1974). However, melatonin injections exerted 
almost identical effects than pinealectomy, when 
one would expect opposite effects. 

Although the effects of the pineal gland and 
melatonin are not yet elucidated, there is évidence 
suggesting that it participâtes in the control of fish 
growth. There are several direct and indirect ways 
through which melatonin could act. Thèse include 
a control at the level of the hypothalamus-pituitary 
axis and/or of peripheral tissues involved in energy 
supply and food intake. Also, melatonin may be 
acting either on growth itself or on food intake and 
food conversion. 

6.1. Melatonin and food intake 

A récent study by Pinillos et al. (2001) has 
shown that melatonin administration inhibited food 
intake in the goldfish. Interestingly, the effects 
were observed after peritoneal injection, not after 
intra-cerebral injection, precluding a centrally-me-
diated action. Melatonin effects were antagonized 
by luzindole, a spécifie melatonin receptor antago-
nist in homeotherms. This is consistent with the 
idea that melatonin and melatonin receptors are 
found in the gastro-intestinal tract of birds and 
mammals (refs in Pinillos et al. 2001). However, 
although melatonin was found in the gastro-intesti-
nal tissues of sturgeon, trout and carp (Bubenik & 
Pang 1997), melatonin binding sites could not be 
clearly identified in the gut of seabream and pike 
(Falcon et al. 1996 & unpubl results) and the MT1 
and MT2 melatonin receptor subtypes could not be 
evidenced in the pike intestine using a PCR ap-
proach (Gaildrat & Falcon 1999, 2000, Gaildrat et 
al. 2001). The possibility remains that a melatonin 
metabolite was acting instead of melatonin. Indeed, 
in the goldfish serotonin (a melatonin precursor) 
had similar anorectic effects as melatonin (Pinillos 
et al. 2001) which can be de-acetylated in the liver 
and pineal to give, among other products, 5-
methoxytryptamine a compound closely related to 
serotonin (Falcon et al. 1985, Yanez & Meissl 
1996). 
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It is well known that the fish pineal organ médi-
ates locomotor activity rhythms (refs in Zachmann 
et al. 1992a, Ekstrôm & Meissl 1997), sleep like 
states (Zhdanova et al,2001) and thermal préfé-
rence (refs in Underwood 1989, Zachmann et al. 
1992a, Ekstrôm & Meissl 1997). Ail three beha-
viors may affect food intake. It was recently shown 
that trout and catfish display a rhythm in demand-
feeding when maintained under normal L:D cycles 
(Bolliet et al. 2001). Under L:L, food availability 
by itself was able to synchronized rapidly the de-
mand-feeding rhythm to the period of food avail-
ability. However, the L:D cycle was a master syn-
chronizer of the demand-feeding rhythm compared 
to food availability in trout. Finally, as reviewed 
elsewhere (Spieler 2001), fish grow differently de-
pending on the circadian time feeding. This may 
have potential implications for aquaculture, but ob-
viously our knowledge on the relationships be-
tween behavioral rhythms and food intake and di-
gestion is still at its beginnings. 

6.2. Melatonin and the control of hormones 
involved in fish growth 

The évidence that melatonin receptors are pré-
sent in the antero-ventral part of the pike and trout 
pituitary glands, and that melatonin modulâtes 
cAMP levels in cultured organs indicates that some 
hormonal output(s) is (are) under melatoninergic 
control. Preliminary investigations in trout indicate 
that GH is one possible candidate. Indeed, the re-
lease of GH by dissociated and cultured trout pitu-
itary cells was increased in the présence of diffé-
rent melatonin concentrations. As observed for 
cAMP, the adenyl cyclase stimulator forskoline in-
duced increases in GH release; under thèse phar-
macological conditions melatonin effects are rather 
inhibitory. Thèse results, although preliminary, are 
a good indication that melatonin may affect fish 
growth by a direct action on the GH producing 
cells of the pituitary. There is to date not enough 
data to explain why melatonin exerted two opposite 
effects. The présence of two melatonin receptor 
subtypes within the somatotrophs might be one 
requisite (Gaildrat & Falcon 1999, 2000). 

The control of GH sécrétion by the fish 
somatotrophs is a process that involves both 
stimulatory (e.g., dopamine, thyrotropin releasing 
hormone [TRH], GH-releasing factor) and inhibi-
tory (e.g., norepinephrine, serotonin, somatostatin 
[SRIF], GH) agents (Peng & Peter 1997, Agustsson 
& Bjôrnsson 2000, Agustsson et al. 2000). It is not 
unreasonable to believe that melatonin may affect 
GH sécrétion indirectly through controlling up-
stream regulatory factors. Dopamine and serotonin 
are two good candidates. Indeed, récent studies 
demonstrated that melatonin injections reduced do-
pamine content in trout hypothalamus and pituitary 

(Hernandez-Rauda et al. 2000). Previous investiga-
tions had shown that melatonin was able to modu-
late serotonin metabolism in the fish hypothalamus 
(refs in Zachmann et al. 1992, Ekstrôm & Meissl 
1997). Future studies should aim to investigate 
whether thèse hypothalamic effects of melatonin 
are directed on dopaminergic and serotoninergic 
neurons that innervate the GH secreting cells. 

Another possible way through which melatonin 
could influence fish growth is the pituitary/thyroid 
axis. In mammals, a type II iodothyronine 
deiodinase expression and activity has been evi-
denced in the pineal gland (Smith et al. 2001 and 
refs). In frogs and tadpoles melatonin is a potent 
inhibitor of T4 sécrétion by the thyroid (Wright et 
al. 2000). In fish, little information is available re-
garding the interactions between melatonin and the 
thyroid. In catfish, pinealectomy reduces 131I up-
take by the thyroid, it increases plasma levels of T3 
and decreases those of T4, but increases both T3 
and T4 levels in the thyroid gland (refs in Ekstrôm 
& Meissl 1997). The effects dépend on the repro-
ductive status. 

6.3. What rôle for the nervous message? 

When considering the effects of the pineal gland 
of fish, one must consider not only melatonin, but 
also the nervous message which is conveyed 
through the pinealofugal innervation to the brain 
centers. Unfortunately, virtually nothing is known 
on the rôle the nervous innervation plays. The only 
available information was obtained from neural 
tract tracing methods which made possible to deli-
neate the brain areas innervated by the pinealofugal 
ganglion cells (for refs see Ekstrôm & Meissl 
1997). The most striking observation lies in the 
fact that many of thèse areas are also innervate by 
retinofugal projections. The pre-optic nuclei of the 
hypothalamus seem to occupy a key position for 
what concerns pituitary function (Holmqvist et al. 
1994). Indeed, it receives projections from both the 
retina and pineal gland, it expresses melatonin re-
ceptors, and contains dopaminergic neurons that 
innervate the pituitary gland. This emphasizes that 
the hypothalamic optic nucleus constitutes a photo-
neuroendocrine control center, activated by light, 
which probably plays an important rôle during 
growth and parr-smolt transformation by modula-
ting the release of pituitary hormones. The latéral 
habenular nuclei are other putative dopaminergic 
nuclei that also receive innervation from the pineal 
gland and retina. The pretectal area, like the optic 
nuclei, also receive inputs from both the retina and 
pineal gland and posses melatonin receptors. Other 
areas of interest include the dorsal and ventral 
thalamus and the periventricular hypothalamus. 
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7. CONCLUSIONS 

Many living species dépend on the diurnal and 
annual lighting cycles for normal development, 
growth and reproduction. Daylength appears to be 
an important "zeitgeber" in fish. Many studies have 
demonstrated the positive influence of long 
daylength on growth and a few species, such as the 
Atlantic salmon, are extremely sensitive to it. To-
day, ail this knowledge is used in salmoniculture, 
photoperiod manipulations being easily applied 
and not overly expensive. Long photoperiods or 
continuous daylight appear as a palliative for the 
compensation of low winter températures in high-
est latitude countries. This approach, however, may 
not be applicable to ail species. Some fish do not 
respond and others need a (very) long time before 
expressing better growth. Research will have to be 
pursued in this area in the future to obtain more de-
termining responses. Physiological mechanisms are 
not yet elucidated. How does photoperiod directly 
affect fish growth through a putative rôle of 
melatonin? During the last two décades, there has 
been a lack of interest, due to the difficulty to ob-
tain clear-cut effects of pinealectomy or/and 
melatonin administration. Among différent rea-
sons, the expérimental paradigms did not consi-
dered the respective rôles of both the pineal and 
retina, the multiplicity of the messengers elabo-
rated and released by thèse two organs and the fish 
seasonal physiological status. An issue to the eluci-
dation of light receptivity and subséquent physio-
logical responsiveness will corne from studies 
combining "classical" physiological approaches (in 
vitro and in vivo) together with pharmacological 
and molecular approaches. 

List of abbreviations: AANAT: arylalkylamine 
(serotonin) N-acetyltransferase; cyclic AMP: 
adenosine cyclic 3': 5'-monophosphate; 125I-Mel: 
2-[125I]-iodomelatonin; HIOMT: hydroxyindole-O-
methyltransferase; L:D: light/dark; L:L: constant 
light; RT-PCR: reverse transcription-polymerase 
chain reaction; SL: somatolactine; SRIF: 
somatostatin; T3: tri-iodothyronine; T4; thyroxine; 
TRH: thyroid hormones; TRH: thyrotropin relea-
sing hormone. 
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