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Non-local variant of the Optimised Schwarz Method

for arbitrary non-overlapping subdomain partitions

X.Claeys∗

Abstract

We consider a scalar wave propagation in harmonic regime modelled by Helmholtz
equation with heterogeneous coe�cients. Using the Multi-Trace Formalism (MTF), we
propose a new variant of the Optimized Schwarz Method (OSM) that remains valid in
the presence of cross-points in the subdomain partition. This leads to the derivation
of a strongly coercive formulation of our Helmholtz problem posed on the union of all
interfaces. The corresponding operator takes the form "identity + non-expansive".

1 Introduction

The e�ective solution to large scale wave propagation problems relates to a wide range of
applications and yet remains a challenge, in particular when simulating highly oscillatory
phenomena. With the growing importance of parallel computing, an intense research e�ort
has been dedicated, in recent years, to the development of domain decomposition strategies
that can be e�ciently applied to wave propagation problems.

There is now a vast literature and a rich arsenal of well established domain decomposition
techniques to deal with symmetric positive problems see e.g. [54, 48, 31]. By essence though,
wave propagation does not fall into this symmetric positive framework and domain decompo-
sition is much less developed for waves, from the point of view of both theory and e�ective
numerical computation.
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Figure 1: Examples of subdomain partitions in 2D (a & b) and 3D (c) with 4 subdomains (3
bounded + exterior). There is no cross point in (a), and cross points are red dots in (b) and
red dashed lines in (c).
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In the case of harmonic regime propagation, the Optimized Schwarz Method (OSM) appears to
be one of the most e�ective available approaches for domain decomposition in a wave context.
A general overview of this method and its numerous variants is given in [36]. In OSM,
the coupling of subdomains is maintained through transmission conditions at interfaces, and
these transmission conditions are formulated in terms of ingoing and outgoing trace operators
involving impedance coe�cients. The e�ciency of OSM crucially depends on the choice of
these impedances.

The Optimized Schwarz Method, originally proposed by Lions [44], was adapted by De-
sprés for wave propagation in [26, 27, 28, 29] considering general non-overlapping partition
of the computational domain and constant scalar impedance coe�cients. Although, in such
a general geometrical setting, OSM with scalar impedance was proved to converge, no as-
sessment was provided as regards the rate of convergence. In practice, the convergence could
be slow. This was improved by Collino and Joly in [21, 42, 20] where the authors proposed
operator valued self-adjoint positive impedance coe�cients and could establish geometric con-
vergence of the method assuming that the subdomain partition does not involve any cross
point i.e. point of adjacency of three interfaces (or one interface meeting the boundary of the
compuational domain), see Fig.1 above. In another series of contributions Antoine, Geuzaine
and their collaborators [3, 33, 32, 1, 55] considered the case of impedance coe�cients ap-
proaching appropriate Dirichlet-to-Neumann maps and obtained fastly converging numerical
methods. Here also, the numerical methods were observed to be of good quality only when
the subdomain partition does not contain any cross point.

To deal with cross points, the literature dedicated to substructuring DDM already o�ers
techniques such as dual-primal FETI (see e.g. [48, Chap.5]) which are purely discrete methods
where so-called primal dofs located at cross points are kept unchanged, while the other dofs
are teared apart in substructures. Each iteration of the DDM solver then requires inversion
of the matrix coupling all primal dofs. Dual-primal FETI was adapted to wave propagation
by Boubendir [7, 8] by further augmenting local matrices to enforce the matching conditions
in a way similar to the approach of Després. Energy estimates were established and led to a
convergence result of DDM solvers although Section 4 in [8] pointed that the convergence rate
could not be proved mesh-uniform.

Although Boubendir's work already provides an e�ective treatment, cross-points remained
a thorny issue (see [34] for a thorough explanation) which recently attracted a renewed at-
tention [4, 5, 35, 30]. Very similar di�culties arise in a di�erent context: the derivation of
Boundary Integral Equations (BIE) adapted to multi-domain scattering. The Multi-Trace
Formalism (MTF) was introduced in [14, 11, 15, 12] as a complete framework for dealing with
multi-domain BIE. From the perspective of functional analysis, MTF o�ers a clean treatment
of cross-points. It would thus appear natural to try using the techniques developed in the
Multi-Trace framework for dealing properly with cross points in Optimized Schwarz domain
decomposition. This is precisely the aim of the present contribution.

In the present article, we rigorously establish equivalence bewteen a classical scattering prob-
lem in heterogeneous medium and a novel formulation (33) posed on the skeleton of a subdo-
main partition. This formulation is proved strongly coercive. We interpret Richardson's linear
solver applied to this novel skeleton formulation as a new variant of the Optimized Schwarz
Method. This new variant can be applied with any non-overlapping partition of the propagtion
medium into Lipschitz subdomains, no matter the presence of cross-points. The key ingredient
in this formulation is a non-local exchange operator used to enforce transmission conditions.
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Such exchange operator has always existed in previous versions of OSM, but it was so far
systematically assumed to be a local operator consisting in swapping the traces from both
sides of each interface of the subdomain partition. The exchange operator we consider here is
more elaborate, which is the main novelty of our approach. The regularity assumptions that
we formulate are rather loose regarding both material coe�cients (piecewise Lipschitz) and
geometry of subdomains (Lipschitz), which is another novelty made possible by our special
exchange operator.

The formulation described in the present contribution cannot be considered as an extension
of other pre-existing OSM strategies including [7, 8, 21, 42, 20]. The di�erence lies in our new
exchange operator that is non-local and does not coincide with the standard local operator that
swaps traces from each side of each interface. Because of this non-locality, even subdomains
that are not adjacent will be coupled, contrary to other OSM strategies.

It should be mentionned that the present contribution is purely analytical and that, in its
present form, this new variant of OSM does not seem appropriate for actual numerical com-
putations. This is why we do not report on numerical results. A discrete counterpart of the
present strategy is presented in [19] where concrete numerical results are available. We still
believe that the formulation we present here is an interesting theoretical object. In particular,
it yields a strongly coercive formulation of Helmholtz problem which is not trivial: the deriva-
tion of coercive formulations for Helmoltz equation has been, in itself, the subject of recent
attention [46].

In the case of piecewise constant material coe�cients, Formulation (33) can also be used as
a multi-domain coupling scheme for the solution to scattering problems by means of boundary
integral formulation. In the particular case of piecewise constant coe�cients, the new formu-
lation presented here can be considered as an alternative to other multi-domain BIE such as
Multi-Trace [15], Boundary Element Tearing and Interconnecting [40], or Rumsey's reaction
principle [56]. However we emphasize that the present contribution is not speci�cally oriented
toward the derivation of a coupled boundary integral equation system, and a salient feature
of the subsequent analysis lies in its ability to deal with heterogeneous propagation media.

2 Geometry and problem under study

In the present article, we are interested in a classical wave propagation problem in harmonic
regime set in an heterogeneous medium in Rd for d = 1, 2 or 3. We consider two essentially
bounded measurable functions µ : Rd → R+ and κ : Rd → C+, and we assume that there
exist constants κ0, ρ0 > 0 such that

i) supx∈Rd(|µ(x)|+ |µ−1(x)|+ |κ(x)|) < +∞
ii) <e{κ(x)} ≥ 0, =m{κ(x)} ≥ 0, κ(x) 6= 0 ∀x ∈ Rd

iii) κ(x) = κ0 and µ(x) = 1 for |x| > ρ0

(1)

These assumptions are rather general yet reasonable enough to make the scattering problem
we wish to examine properly well posed. We insist that we do not assume κ, µ to be piecewise
constant. For some f ∈ L2(Rd) with bounded support, we wish to solve the following wave
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propagation problem in heterogeneous medium
u ∈ H1

loc(Rd) such that

− div(µ∇u)− κ2u = f in Rd,

lim
ρ→∞

∫
∂Bρ

|∂ρu− ıκ0u|2dσρ = 0.

(2)

where Bρ refers to the ball of radius ρ centered at 0, σρ is the associated surface measure, and
∂ρ is the partial derivative with respect to |x|. The third condition in (2) is usually referred to
as Sommerfeld radiation condition. Well-posedness of the problem above is a classical result
of scattering theory, see e.g. [43, Chap.3] or [22, Chap.7].

We wish to solve this problem by means of non-overlapping Domain Decomposition (DDM),
which leads us to introduce a subdomain partitionning Rd = ∪J

j=0Ωj with Ωj ∩ Ωk = ∅ if
j 6= k, each Ωj is a Lipschitz domain, and Ωj is bounded for j 6= 0. The "skeleton" will refer
to the union of all interfaces between subdomains

Γ = ∂Ω0 ∪ · · · ∪ ∂ΩJ.

We emphasize that such geometrical con�guration allows the presence of junction points i.e.
points where three subdomains or more abut. Examples of such non-overlapping multi-domain
con�gurations are given in Fig.1.

For the sake of simplicity, we make further regularity assumptions on material coe�cients
in each subdomain, assuming that µ is Lipschitz regular in each subdomain,

∇µj ∈ L∞(Ωj) ∀j = 0 . . . J,

where µj := µ|Ωj .
(3)

Assumptions (1)-(3) allow the coe�cients µ, κ to jump across the interfaces ∂Ωj ∩ ∂Ωk, but
discards jumps of µ inside each subdomain. In particular, this setting includes the case where
µ, κ are piecewise constant with respect to the subdomain partition.

Problem (2) can be decomposed according to the subdomain partition introduced above,
leading to wave equations in each subdomain coupled by transmission conditions imposed
through each interface

u ∈ H1
loc(Ωj) such that

− div(µ∇u)− κ2u = f in Ωj ,

lim
ρ→∞

∫
∂Bρ

|∂ρu− ıκ0u|2dσρ = 0,

(4)

u|
int
∂Ωj
− u|int

∂Ωk
= 0 ∀j, k = 0 . . . n

µj∂nju|int
∂Ωj

+ µk∂nku|
int
∂Ωk

= 0 on ∂Ωj ∩ ∂Ωk.
(5)

where nj refers to the normal vector �eld on ∂Ωj directed toward the exterior of Ωj , and
∂njv := nj · ∇v. The boundary traces coming into play in the transmission conditions above
are taken from the interior of the subdomains, which is the meaning of the "int" superscript.
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The present contribution will consist in deriving a strongly coercive reformulation of Problem
(4)-(5) of the form "identity+contraction". This reformulation will be posed in a space of
trace on the skeleton Γ.

From here until the end of Section 5, we are going to develop a functional toolkit for
traces on the skeleton of our subdomain partition. Besides topological considerations (spaces,
norms,. . . ), this framework involves two important ingredients: a global DtN map T (see
�3.4) and a non-local exchange operator Π (see Corollary 5.1). This framework is based on
the Yukawa equation i.e. a PDE associated to the operator −∆ + γ−2 for some parameter
γ > 0. We emphasize that the analysis presented in Section 3-5 is independent of the scattering
problem (2) and that the parameter γ is not a priori connected to material coe�cients µ, κ.

We will come back to our wave propagation problem in Section 6-7 where, relying on this
functional toolkit, we shall derive a reformulation of (2) and establish its well-posedness and
strong coercivity.

3 Trace spaces and operators

The treatment of interfaces between subdomains is a crucial aspect of any domain decom-
position strategy, both for constructing or analysing it. As a consequence we pay a special
attention to trace spaces.

3.1 Volume based spaces

First of all we need to �x a few notations related to classical volume based function spaces.
For any Lipschitz domain Ω ⊂ Rd, the space L2(Ω) will refer to square integrable func-
tions equipped with the norm ‖ϕ‖2L2(Ω) :=

∫
Ω |ϕ|

2dx. The Sobolev space H1(Ω) := {ϕ ∈
L2(Ω), ∇ϕ ∈ L2(Ω)d } will be equipped with the norm

‖v‖2H1(Ω) := ‖∇v‖2L2(Ω) + γ−2‖v‖2L2(Ω) (6)

In this de�nition γ > 0 refers to a parameter that will be �xed all through this article.
Occasionally we shall consider H(div,Ω) := {ψ ∈ L2(Ω)d, div(ψ) ∈ L2(Ω)} and H1(∆,Ω) :=
{ϕ ∈ H1(Ω), ∆ϕ ∈ L2(Ω)} equipped with the norm given by ‖ϕ‖2H1(∆,Ω) := ‖ϕ‖2H1(Ω) +

‖∆ϕ‖2L2(Ω). Finally if H(Ω) refers to any of the spaces introduced above, then Hloc(Ω) shall

refer to all functions v : Ω → C such that vϕ ∈ H(Ω) for all ϕ ∈ C∞comp(Rd) := {ψ ∈
C∞(Rd), supp(ψ) bounded}.

3.2 Traces on the boundary of a single subdomain

Let us consider a Lipschitz open set Ω ⊂ Rd such that either Ω or Rd \Ω is bounded. We shall
refer to the space of Dirichlet traces H1/2(∂Ω) := {v|∂Ω, v ∈ H1(Ω)} equipped with the norm,
see [45, Thm.3.40],

‖v‖H1/2(∂Ω) := min{‖ϕ‖H1(Ω), ϕ|∂Ω = v}. (7)

The space of Neumann traces H−1/2(∂Ω) will be de�ned as the dual to H1/2(∂Ω) equipped with
the corresponding canonical dual norm ‖p‖H−1/2(∂Ω) := supv∈H1/2(∂Ω) |〈p, v〉∂Ω|/‖v‖H1/2(∂Ω).
Here v 7→ 〈p, v〉∂Ω := p(v) simply refers to the action of p on v, so that (p, v) 7→ 〈p, v〉∂Ω is a
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bilinear (not sesquilinear) form. As regards duality pairing, we shall also equivalently write
〈v, p〉∂Ω := 〈p, v〉∂Ω and ∫

∂Ω
pvdσ = 〈p, v〉∂Ω.

We will also equip the space of pairs of Dirichlet/Neumann traces with its own duality pairing.
Although many choices are possible, we use a skew-symmetric pairing that appears naturally
in energy conservation calculus, de�ned by

[(u, p), (v, q)]∂Ω := 〈u, q〉∂Ω − 〈v, p〉∂Ω

for (u, p) and (v, q) in H+ 1
2 (∂Ω)×H−

1
2 (∂Ω).

(8)

Note that this pairing does not involve any complex conjugation. Let nΩ refer to the normal
vector �eld on ∂Ω directed toward the exterior of Ω. As detailed in e.g. [53, Thm.2.21 &
Lem.4.4] or [45, Thm.3.38 & Lem.4.3], each Lipschitz open set Ω ⊂ Rd with bounded boundary
gives rise to continuous operators τΩ

d
: H1

loc(Ω) → H1/2(∂Ω), τΩ
n

: H1
loc(∆,Ω) → H−1/2(∂Ω)

and τΩ : H1
loc(∆,Ω)→ H1/2(∂Ω)×H−1/2(∂Ω) uniquely de�ned by

τΩ
d

(ϕ) := ϕ|∂Ω and τΩ
n

(ϕ) := nΩ · ∇ϕ|∂Ω,

τΩ(ϕ) := (τΩ
d

(ϕ), τΩ
n

(ϕ)) ∀ϕ ∈ C∞(Ω).
(9)

Remark 3.1. In the case where Ω is one of the subdomains Ωj , j = 0 . . . J, assume that

some function v ∈ H1
loc(Ωj) satis�es div(µ∇v) ∈ L2

loc(Ωj). Then according to (1) and (3), we
have ∆v + µ−1

j ∇µj · ∇v ∈ L2
loc(Ωj) and thus ∆v ∈ L2

loc(Ωj). In particular if u ∈ H1
loc(Ωj)

satis�es div(µ∇u) + κ2u = f in Ωj with f as above, then u ∈ H1
loc(∆,Ωj) and its Dirichlet

and Neumann traces in (9) are properly de�ned.

Remark 3.2. In the case where Ω is the exterior subdomain Ω0, according to previous para-

graphs, the normal vector n0 is directed toward the exterior of Ω0 and the traces in (9) are
taken from the interior of Ω0.

3.3 Scalar products and Dirichlet-to-Neumann maps

For any v ∈ H1/2(∂Ω) let φd(v) ∈ H1(Ω) refer to the unique element that achieves the
minimum in (7) i.e. such that ‖v‖H1/2(∂Ω) = ‖φd(v)‖H1(Ω). Writing Euler's identity for this

minimisation problem, we see that
∫

Ω∇φd(v) · ∇ϕ + γ−2φd(v)ϕdx = 0 ∀ϕ ∈ H1
0(Ω), which

re-writes −∆φd(v)+γ−2φd(v) = 0 in Ω. Then we introduce a so-called Dirichlet-to-Neumann
(DtN) map TΩ := τΩ

n
· φd : H1/2(∂Ω) → H−1/2(∂Ω), see e.g. [53, �6.6.3], [45, Chap.4] or [48,

�1.2.2.4]. To be more explicit TΩ is de�ned by

TΩ(v) := nΩ · ∇φd(v)|∂Ω

where φd(v) ∈ H1(Ω) satis�es

∆φd(v)− γ−2φd(v) = 0 in Ω

φd(v)|∂Ω = v on ∂Ω.

(10)

This DtN map actually induces the scalar product associated to the norm (7). First of all
observe that φd(u) = φd(u) obviously, which implies TΩ(v) = TΩ(v). Next, according to
the PDE satis�ed by φd in (10), applying Green's formula we obtain

∫
Ω∇φd(u) · ∇φd(v) +
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γ−2φd(u)φd(v)dx =
∫
∂Ω φd(v)nΩ ·∇φd(u)dσ = 〈TΩ(u), v〉∂Ω. From this calculation it is clear

that 〈TΩ(u), v〉∂Ω = 〈TΩ(v), u〉∂Ω in other words TΩ is a self-adjoint operator. This property
plays an important role in the de�nition of the scalar product we wish to adopt for the trace
space H1/2(∂Ω). Since by the de�ntion of φd we have ‖u‖H1/2(∂Ω) = ‖φd(u)‖H1(Ω), we can
take the following as scalar product on the Dirichlet trace spaces

(u, v)H1/2(∂Ω) := 〈TΩ(u), v〉∂Ω for u, v ∈ H1/2(∂Ω). (11)

According to Riesz representation theorem, for any p ∈ H−1/2(∂Ω) there exists a unique
ϕp ∈ H1/2(∂Ω) such that 〈p, v〉∂Ω = (ϕp, v)H1/2(∂Ω) = 〈TΩ(ϕp), v〉 for all v ∈ H1/2(∂Ω). Hence

ϕp = (TΩ)−1(p) and ‖p‖2
H−1/2(∂Ω)

= ‖ϕp‖2H1/2(∂Ω)
= 〈TΩ(ϕp), ϕp〉∂Ω = 〈p,T−1

Ω (p)〉∂Ω. As a

consequence the norm on Neumann data is induced by the following scalar product

(p, q)H−1/2(∂Ω) := 〈p,T−1
Ω (q)〉∂Ω for p, q ∈ H−1/2(∂Ω). (12)

3.4 Traces in a multi-domain setting

We will also need to consider cartesian products of Dirichlet or Neumann trace spaces based
on the boundary of each subdomain of the partition, which we call multi-trace spaces de�ned
as follows

Hd(Γ) := H+ 1
2 (∂Ω0)× · · · ×H+ 1

2 (∂ΩJ),

Hn(Γ) := H−
1
2 (∂Ω0)× · · · ×H−

1
2 (∂ΩJ),

H(Γ)d := Πj=0...JH+ 1
2 (∂Ωj)×H−

1
2 (∂Ωj).

(13)

equipped with ‖p‖2Hn(Γ) := ‖p0‖2
H−1/2(∂Ω0)

+ · · ·+ ‖pJ‖2
H−1/2(∂ΩJ)

for p = (pj)J
j=0 ∈ Hn(Γ), and

analogous de�nitions for ‖ ‖Hd(Γ) and ‖ ‖H(Γ). The multi-trace space H(Γ) coincides with
Hd(Γ) × Hn(Γ) through a re-ordering of traces which is why, when considering an element
u = (ujd, u

j
n)J
j=0 ∈ H(Γ), we will sometimes commit a slight abuse of notation writing "u =

(ud, un)" to refer to the Dirichlet components ud = (ujd)J
j=0 ∈ Hd(Γ) on the one hand, and the

Neumann components un = (ujn)J
j=0 ∈ Hn(Γ) on the other hand. There is a natural duality

between Dirichlet and Neumann multi-trace spaces through the bilinear pairing

〈〈u, p〉〉 :=
∑J

j=0〈uj , pj〉∂Ωj

∀u = (u0, . . . , uJ) ∈ Hd(Γ),
∀p = (p0, . . . , pJ) ∈ Hn(Γ).

(14)

The bilinear pairing de�ned above does not involve any complex conjugation operation. We
shall indi�erently write 〈〈p, u〉〉 := 〈〈u, p〉〉 for u ∈ Hd(Γ), p ∈ Hn(Γ).

For the sake of conciseness, we shall denote Tj instead of TΩj . The operator T := diagj=0...J(Tj) :
Hd(Γ)→ Hn(Γ) induces a scalar product underlying the norm of Hn(Γ) through

(p, q)Hn(Γ) = 〈〈T−1(p), q〉〉 =
∑J

j=0〈T
−1
j (pj), qj〉∂Ωj

(p, q)Hd(Γ) =
∑J

j=0(pj , qj)H−1/2(∂Ωj)
.

(15)

for any p = (pj)j=0...J and any q = (qj)j=0...J in Hn(Γ). As regards H(Γ), we shall consider a
duality pairing given by the following skew symetric bilinear form

Ju, vK := [u0, v0]∂Ω0 + · · ·+ [uJ, vJ]∂ΩJ

for u = (uj)
J
j=0 and v = (vj)

J
j=0 in H(Γ).

(16)
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As regards trace operators, for the sake of conciseness, we shall denote τ j := τΩj and adopt
similar conventions for τ jd and τ jn. We also introduce global trace operators that map into
multi-trace spaces

τα(u) := (τ0
α(u), . . . , τJ

α(u)) for α = d,n

τ(u)α := (τ0(u), . . . , τJ(u)).
(17)

4 Transmission conditions

Since we are considering a problem involving transmission conditions (5), it is natural to
introduce the subspace of H(Γ) consisting in all tuples of traces agreeing with these conditions:
this is what shall be called single-trace spaces de�ned by

Xd(Γ) := { (vj)
J
j=0 ∈ Hd(Γ) | ∃ϕ ∈ H1(Rd), vj = ϕ|∂Ωj ∀j }

Xn(Γ) := { (qj)
J
j=0 ∈ Hn(Γ) | ∃ψ ∈ H(div,Rd), qj = nj ·ψ|∂Ωj ∀j }

X(Γ)d := { u = (ud, un) ∈ H(Γ) | ud ∈ Xd(Γ), un ∈ Xn(Γ) }
(18)

By construction, for a function u ∈ L2
loc(Rd) such that u|Ωj ∈ H1

loc(∆,Ωj) for all j = 0 . . . J,
the transmission conditions (5) are equivalent to the statement �τ(u) ∈ X(Γ)�. The single-
trace space has been extensively studied in the context of multi-trace formulations [14]. The
following caracterisation of this space was proved in [13, Prop.6.3].

Proposition 4.1.

For any u ∈ H(Γ) we have u ∈ X(Γ) ⇐⇒ Ju, vK = 0 ∀v ∈ X(Γ).

Proof:

From (18), it is clear that any u = (ud, un) ∈ H(Γ) actually belongs to X(Γ) if and only if
ud ∈ Xd(Γ) and un ∈ Xn(Γ). As a consequence, to prove the lemma, it su�ces to show that
for any ud ∈ Hd(Γ) and any un ∈ Hn(Γ) we have

i) ud ∈ Xd(Γ) ⇐⇒ 〈〈ud, q〉〉 = 0 ∀q ∈ Xn(Γ)

ii) un ∈ Xn(Γ) ⇐⇒ 〈〈un, v〉〉 = 0 ∀v ∈ Xd(Γ)

We will only present the proof of i) since the proof for ii) is very similar. Take an arbitrary
ud = (ujd)J

j=0 ∈ Hd(Γ). If ud ∈ Xd(Γ), there exists ϕ ∈ H1(Rd) such that ϕ|∂Ωj = ujd ∀j =

0 . . . J. Then for any q = (qj)J
j=0 ∈ Xn(Γ), there exists ψ ∈ H(div,Rd) such that nj ·ψ|∂Ωj =

qj ∀j = 0 . . . J. Applying a Green formula in each Ωj on the one hand, and in Rd on the other
hand, we obtain

〈〈ud, q〉〉 =
∑J

j=0〈u
j
d, q

j〉∂Ωj =
∑J

j=0

∫
∂Ωj

nj ·ψϕdσ
=

∑J
j=0

∫
Ωj
∇ϕ ·ψ + ϕdivψ dx =

∫
Rd ∇ϕ ·ψ + ϕdivψ dx = 0.

(19)

Now assume that ud = (u0
d
, . . . , uJ

d
) ∈ Hd(Γ) satis�es 〈〈ud, q〉〉 = 0∀q ∈ Xn(Γ). For each

j = 0 . . . J, introduce a lifting vj ∈ H1(Ωj) such that vj |∂Ωj = ujd, and set v(x) = 1Ω0(x)v0(x)+

· · · + 1ΩJ
(x)vJ(x). We have clearly v ∈ L2(Rd) and, to prove that ud ∈ Xd(Γ), it su�ces to

show that v ∈ H1(Rd). De�ne p ∈ L2(Rd) by p(x) = 1Ω0(x)∇v0(x) + · · · + 1ΩJ
(x)∇vJ(x).
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Pick an arbitrary ψ ∈ H(div,Rd), and set q = (qj)J
j=0 where q

j := nj ·ψ|∂Ωj . Since q ∈ Xn(Γ),
we have ∫

Rd v div(ψ)dx =
∑J

j=0

∫
Ωj
v div(ψ)dx

= 〈〈ud, q〉〉 −
∑J

j=0

∫
Ωj
ψ · ∇vjdx

= −
∫
Rd ψ · pdx

(20)

Since the above identity holds for any ψ ∈ H(div,Rd), we conclude that v admits a weak
gradient over Rd as a whole with p = ∇v in Rd and, as a consequence v ∈ H1(Rd) and
ud ∈ X(Γ). �

As underlined during its proof, the above caracterisation implies that u ∈ Hd(Γ) belongs
to Xd(Γ) if and only if 〈〈u, p〉〉 = 0∀p ∈ Xn(Γ) and that, similarly, p ∈ Hn(Γ) belongs to
Xn(Γ) if and only if 〈〈u, p〉〉 = 0∀u ∈ Xd(Γ). The next result provides a new variant of the
decomposition established in [14, Prop.6.1].

Proposition 4.2.

We have the direct sum Hn(Γ) = Xn(Γ) ⊕ T(Xd(Γ)) and it is orthogonal with respect to the

scalar product induced by T−1.

Proof:

First, according to Proposition 4.1, we have (p,T(u))Hn(Γ) = 〈〈p, u〉〉 = 0 whenever p ∈
Xn(Γ) and u ∈ Xd(Γ). This proves that Xn(Γ) is orthogonal to T(Xd(Γ)) hence Xn(Γ) ∩
T(Xd(Γ)) = {0}.

Next pick an arbitrary p ∈ Hn(Γ) and, by Riesz representation theorem, de�ne u as the
unique element of Xd(Γ) satisfying 〈〈T(u), v〉〉 = 〈〈p, v〉〉 for all v ∈ Xd(Γ). As a consequence
q = p−T(u) satis�es 〈〈q, v〉〉 = 0∀v ∈ Xd(Γ) and thus belongs to Xn(Γ) according to Proposition
4.1. This shows that Hn(Γ) = Xn(Γ) + T(Xd(Γ)). �

5 Potential theory

The problem (2) primarily considered in the present manuscript does not a priori lend itself
to boundary integral equation techniques simply because (2) is a problem of propagation in
heterogeneous media i.e. the PDEs involve a priori varying coe�cients. However several
aspects of the solution strategy we wish to describe involve nonlocal operators. In particular,
we shall need such theoretical tools for treatment of junctions. As a consequence, we dedicate
the present section to recalling a few facts about boundary integral operators.

5.1 Layer potentials in a single subdomain

We �rst introduce the Green kernel G (x) of the Yukawa's equation i.e. we de�ne G as the
unique function solving −∆G + γ−2G = δ0 in Rd and lim|x|→∞ G (x) = 0, where δ0 is the
Dirac measure centered at x = 0, and γ > 0 is a parameter that we have �xed once and for
all in �3.1. This kernel admits an explicit expression in terms of special functions namely

G (x) := K0(|x|/γ), x ∈ R2 \ {0} for d = 2,

G (x) :=
exp(−|x|/γ)

4π|x|
, x ∈ R3 \ {0} for d = 3.

(21)

9



where K0 refers to the modi�ed Bessel function of the second kind of order 0 also known as
MacDonald function, see [47, �10.25]. With this kernel, and for any Lipschitz domain Ω ⊂ Rd
with bounded boundary, we can de�ne single and double layer potentials as follows: for any
(v, q) ∈ H1/2(∂Ω)×H−1/2(∂Ω) we set

ΨΩ(v, q)(x) := ΨΩ
d

(v)(x) + ΨΩ
n

(q)(x),

where ΨΩ
d

(v)(x) :=
∫
∂ΩnΩ(y) · (∇G )(x− y)v(y)dσ(y),

where ΨΩ
n

(q)(x) :=
∫
∂Ω G (x− y)q(y)dσ(y),

(22)

for all x ∈ Rd \ ∂Ω. For any v ∈ H1/2(∂Ω) × H−1/2(∂Ω), we have (γ−2 − ∆)ΨΩ(v) = 0
both in Ω and Rd \ Ω. Besides ΨΩ(v)|Ω ∈ H1(∆,O) for O = Ω or O = Rd \ Ω. For any
x,y ∈ Rd,x 6= y, de�ne Gx : Rd \ {x} → R+ by Gx(y) := G (x − y). Elementary calculus
shows that ΨΩ(u)(x) = [τΩ(Gx), u]∂Ω for all u ∈ H1/2(∂Ω)× H−1/2(∂Ω) and all x ∈ Rd \ ∂Ω.
The next result, known as representation theorem, shows that layer potential can be used to
reconstruct any solution to the homogeneous Yukawa equation. A proof can be found in [24,
Lem.3.4], [45, Thm.6.10], [52, Thm.3.1.8] or [53, Formula (5.2)].

Proposition 5.1.

For any Lipschitz domain Ω ⊂ Rd with bounded boundary, and any function u ∈ H1(Ω)
satisfying (γ−2 −∆)u = 0 in Ω, we have ΨΩ(τΩ(u)) = 1Ω(x)u(x) ∀x ∈ Rd.

Here 1Ω(x) = 1 if x ∈ Ω and 1Ω(x) = 0 otherwise. In the representation formula above,
the traces of solutions to the homogeneous PDE play a pivotal role. The potential operators
actually provide a Calderón projector that maps onto such a space and can thus be used to
caracterise them. A proof of the next result can be found in [52, Prop.3.6.2] or [53, Lem.6.18].

Proposition 5.2.

The operator τΩ · ΨΩ : H1/2(∂Ω) × H−1/2(∂Ω) → H1/2(∂Ω) × H−1/2(∂Ω) is a continuous

projector whose range is the space Cin(Ω) := {τΩ(u) | u ∈ H1(Ω), (γ−2 −∆)u = 0 in Ω }.

5.2 Layer potentials in a multi-domain setting

We now establish a few results about potential theory that are speci�c to the multi-domain
context. Part of the present section is a variant of results already available in [10, 11]. However
there are novelties. In particular we consider here a strongly coercive equation as opposed to
the heterogeneous inde�nite problem of [10], which leads to stronger results and a completely
new formulation of transmission conditions, see Proposition 5.4.

Considering Ω = Ωj for j = 0 . . . J, the result of the previous paragraph can be used
directly in the multi-domain context. For the sake of conciseness, in the following, we shall

write Ψj
d,Ψ

j
n,Ψ

j instead of Ψ
Ωj
d ,Ψ

Ωj
n ,ΨΩj .

We �rst show that an explicitl formula for the orthogonal projector onto Xn(Γ), can be
obtained. We rely on so-called multi-potential operators Ψd : Hd(Γ) → ΠJ

j=0H1
loc(∆,Ωj) and

Ψn : Hn(Γ)→ ΠJ
j=0H1

loc(∆,Ωj) de�ned as follows: for any u = (ud, un) ∈ H(Γ) we set

Ψ(u)(x) = Ψd(ud)(x) + Ψn(un)(x)

where Ψd(ud)(x) :=
∑J

j=0 Ψj
d(ujd)(x),

where Ψn(un)(x) :=
∑J

j=0 Ψj
n(ujn)(x).

(23)
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for any x ∈ Rd \ Γ. Such operators have been �rst considered in the context of the integral
formulation of the second kind introduced in [10], see also [37, 49, 50, 16, 18, 17, 11]. The multi-
potential operators satisfy many non-trivial properties. To begin with, the next proposition
shows that they are closely related to global Dirichlet-to-Neumann maps.

Lemma 5.1.

For any u = (ud, un) ∈ H(Γ) we have τ ·Ψ(u) = u ⇐⇒ un = T(ud).

Proof:

Pick a u = (ud, un) = (ujd, u
j
n)J
j=0 ∈ H(Γ) with un = T(ud). We have uj := (ujd, u

j
n) =

(ujd,Tj(u
j
d)) ∈ Cin(Ωj) for each j = 0 . . . J. As a consequence, applying Proposition 5.1, we

obtain τkΨj(uj) = δj,ku
j for any j, k = 0 . . . J. Summing the latter identity over j yields

τkΨ(u) = uk for all k = 0 . . . J.
Let us now assume that u = (ud, un) = (ujd, u

j
n)J
j=0 ∈ H(Γ) satis�es τ · Ψ(u) = u. By

construction, the function ψ := Ψ(u) is well de�ned in Rd \ Γ, it satis�es (γ−2 −∆)ψ = 0 in
each Ωj , j = 0 . . . J by de�nition of the potential operators Ψj 's. It also satis�es τ jd(ψ) = ujd
and τ jn(ψ) = ujn for all j = 0 . . . J since τ ·Ψ(u) = u. By de�nition of the DtN maps given in
�3.3 and �3.4, this can be re-written ujn = Tj(u

j
d)∀j = 0 . . . J. Put in vector form, this yields

un = T(ud). �

The proof of the following result closely follows [10, Lem.5.1] and [11, Lem.6.3].

Lemma 5.2.

We have Ψ(u) = 0∀u ∈ X(Γ).

Proof:

Denoting as before Gx(y) := G (x − y), recall that we have ΨΩ(u)(x) = [τΩ(Gx), u]∂Ω

u ∈ H1/2(∂Ω) × H−1/2(∂Ω) and all x ∈ Rd \ ∂Ω. Plugging this expression into the de�nition
of the multi-potential operator yields Ψ(u)(x) = Jτ(Gx), uK ∀u ∈ H(Γ), ∀x ∈ Rd \ Γ. Now
observe that for any x ∈ Rd\Γ we have τ(Gx) ∈ X(Γ) hence applying Proposition 4.1 concludes
the proof. �

A direct consequence of the lemma above is that Ψd(ud) = 0 for all ud ∈ Xd(Γ), and Ψn(un) =
0 for all un ∈ Xn(Γ). We deduce in particular that Xn(Γ) ⊂ Ker(τn · Ψn). The proof of the
next result is similar to that of [11, Lem.6.4].

Lemma 5.3.

We have p− τn ·Ψn(p) ∈ Xn(Γ) for any p ∈ Hn(Γ).

Proof:

Pick an arbitrary p ∈ Hn(Γ) and, applying Proposition 4.2, decompose it as p = vn+T(ud)
where ud ∈ Xd(Γ) and vn ∈ Xn(Γ). According to Lemma 5.2 we have Ψd(ud) = 0 so that,
setting u := (ud,T(ud)), we have p−τn ·Ψn(p) = vn−τn ·Ψn(vn)+T(ud)−τn ·Ψ(u). Applying
Lemma 5.1 yields T(ud)− τn ·Ψ(u) = 0. Besides we have Ψn(vn) = 0 according to Lemma 5.2
since vn ∈ Xn(Γ). To summarise, we have just established p− τn ·Ψn(p) = vn ∈ Xn(Γ), which
concludes the proof. �

Combining the previous two lemmas, we see that (τn · Ψn)(Id − τn · Ψn) = 0. From this we
deduce immediately the following proposition, which is a variant of [11, Cor.6.1].
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Proposition 5.3.

We have Ker(τn · Ψn) = Range(Id − τn · Ψn) = Xn(Γ), and τn · Ψn : Hn(Γ) → Hn(Γ) is a

continuous projector.

The next result is new and gives further details about the image of this projector.

Lemma 5.4.

We have Range(τn ·Ψn) = T(Xd(Γ)) so that τn ·Ψn is an orthogonal projector with respect to

the scalar product induced by T−1 over Hn(Γ).

Proof:

Taking account of both Proposition 4.2 and 5.3, we see that it su�ces to prove τn ·
Ψn(T(u)) = T(u) for all u ∈ Xd(Γ). Hence consider any u = (uj)

J
j=0 ∈ Xd(Γ). Accord-

ing to Lemma 5.2 we have τn · Ψd(u) = 0. As a consequence, applying Proposition 5.1, we
obtain

τk
n
·Ψn(T(u)) = τk

n
· ( Ψd(u) + Ψn(T(u)) )

= τk
n
·
∑J

j=0 Ψj
d(uj) + Ψj

n(Tj(uj))

=
∑J

j=0 τ
k
n
·Ψj

d(uj) + τk
n
·Ψj

n(Tj(uj)) = Tk(uk)

(24)

for any k = 0 . . . J. Since this holds for all k, we obtain that τn · Ψn(T(u)) = T(u), which
concludes the proof. �

From the previous results, we immediately obtain an estimate on the norm of the projection,
which will be key in the analysis of Section 7. Although it shares similarities with [11, Prop.6.1],
the next result is new.

Corollary 5.1.

De�ne Π := Id− 2τn ·Ψn. Then we have Π2 = Id and the operators (Id±Π)/2 are continuous

projectors with Xn(Γ) := Ker(Id − Π) and T(Xd(Γ)) := Ker(Id + Π). Besides the following

continuity estimate holds:

‖Π(p)‖Hn(Γ) = ‖p‖Hn(Γ) ∀p ∈ Hn(Γ).

Remark 5.1. The de�nition of Π stems from an orthogonal projection with respect to the

scalar product induced by the operator T de�ned in �3.4. So the operator Π is tightly related

to T. This is an important fact and we will come back to this later.

In the subsequent analysis, this projector will be the key tool for caracterising elements
of X(Γ) and thus enforcing transmission conditions across interfaces. The next result in-
deed provides a caracterisation of the single trace space that is a core novelty of the present
contribution.

Proposition 5.4.

Consider any ω > 0. With the notations of the previous corollary, for any u = (ud, un) ∈ H(Γ),
we have u ∈ X(Γ) if and only if un − ıωT(ud) = Π(un + ıωT(ud)).

Proof:

According to Corollary 5.1, for u = (ud, un) ∈ H(Γ), we have un ∈ Xn(Γ) ⇐⇒ (Id−Π)un =
0 and ud ∈ Xd(Γ) ⇐⇒ (Id + Π)T(ud) = 0. On the other hand, Range(Id + Π) ∩Range(Id−
Π) = {0} since (Id + Π)/2 is a projector, which leads to u ∈ X(Γ) ⇐⇒ (Id − Π)un =
ıω(Id + Π)T(ud). Rearranging this latter identity yields the conclusion of the proof. �
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6 Reformulation of wave equations

In this section we focus on the wave equations (4) that we will reformulate in terms of traces
only. We adopt the approach developed by Collino, Ghanemi and Joly in [21] and further
studied and extended in [42, 41]. This approach generalises the original work of Després
[29, 28, 27, 26] on Optimised Schwarz Method for Helmholtz equation. In the present section,
we will derive a convenient caracterisation of

C +(Γ) := C +(Ω0)× · · · × C +(ΩJ) where

C +(Ωj) := { (τ j
d
(ϕ), µjτ

j
n
(ϕ)) ∈ H1/2(∂Ωj)×H−1/2(∂Ωj),

C +(Ωj) := { div(µ∇ϕ) + κ2ϕ = 0 in Ωj and

C +(Ωj) := { ϕ κ0 − outgoing if j = 0. }.

(25)

The space C +(Ωj) is closed in H1/2(∂Ωj)×H−1/2(∂Ωj) and we will use these spaces to reformu-
late the wave equation in each subdomain. The following proposition provides an important
decomposition of the multi-trace space. Although it was already established in [14, Prop.6.1]
based on arguments of potential theory that assume piecewise homogeneity of the propagation
medium, below is a new proof that also applies in the case of heterogeneous media.

Proposition 6.1.

We have the direct sum H(Γ) = X(Γ)⊕ C +(Γ).

Proof:

Let us �rst show that X(Γ) ∩ C +(Γ) = {0}. Pick some u ∈ X(Γ) ∩ C +(Γ) decomposed in
Dirichlet/Neumann components u = (ud, un) with ud = (ujd)J

j=0 ∈ Hd(Γ) and un = (ujn)J
j=0 ∈

Hn(Γ). For each j = 0 . . . J, let φj ∈ H1
loc(Ωj) refer to the unique functions satisfying

div(µ∇φj) + κ2φj = 0 in Ωj ,

φ0 is κ0-outgoing,

(τ j
d
(φj), µjτ

j
n
(φ)) = (uj

d
, uj

n
) on ∂Ωj .

(26)

Set φ := 1Ω0φ0 + · · · + 1ΩJ
φJ, so that div(µ∇φ) + κ2φ = 0 in each Ωj and, since u =

(τ jd(φ), µjτ
j
n(φ))j=0...J ∈ X(Γ) the function φ satis�es transmission conditions across Γ, so that

div(µ∇φ) + κ2φ = 0 in Rd and φ is κ0-outgoing. Well-posedness of the Helmholtz equation
with outgoing radiation condition leads to φ = 0, hence u = 0, which proves that

X(Γ) ∩ C +(Γ) = {0}. (27)

Now let us consider the general case of an arbitrary u ∈ H(Γ). Consider any lifting function
ψ′ ∈ L2(Rd) with compact support such that ψ′|Ωj ∈ H1(Ωj) and τ

j
d(ψ′) = ujd for all j = 0 . . . J.

Next de�ne ψ ∈ H1
loc(Rd) as the unique element of H1

loc(Rd) satisfying∑J
j=0

∫
Ωj
µ∇(ψ + ψ′) · ∇ϕ− κ2(ψ + ψ′)ϕ dx

= 〈〈un, τd(ϕ)〉〉 ∀ϕ ∈ H1
comp(Rd)

and limρ→∞
∫
∂Bρ
|∂ρψ − ıκ0ψ|2dσρ = 0

(28)
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where H1
comp(Rd) refers to the elements of H1(Rd) that are boundedly supported. Existence

and uniqueness of such a ψ stems from well posedness of Helmholtz problems in unbounded
heterogeneous media, see e.g. [22, Chap.3]. Applying a Green formula in each Ωj , we obtain

div(µ∇(ψ + ψ′)) + κ2(ψ + ψ′) = 0 in each Ωj , j = 0 . . . J

lim
ρ→∞

∫
∂Bρ

|∂ρψ − ıκ0ψ|2dσρ = 0.

Setting v = (τ jd(ψ+ψ′), µjτ
j
n(ψ+ψ′))j=0,...,J, the equations above imply that v ∈ C +(Γ). De-

composing in Dirichlet/Neumann contributions v = (vd, vn), we have vd − ud = (τ jd(ψ))J
j=0 ∈

Xd(Γ) since ψ ∈ H1
loc(Rd). Moreover, applying Green formulas once more in (28), we see

〈〈vn, τd(ϕ)〉〉 = 〈〈un, τd(ϕ)〉〉 for all ϕ ∈ H1(Rd). Using the weak caracterisation of single trace
spaces given by Proposition 4.1, we conclude that ud−vd ∈ Xd(Γ) and un−vn ∈ Xn(Γ) hence,
setting w := u − v ∈ X(Γ), so that, with the decomposition u = v + w, we have established
H(Γ) = X(Γ) + C +(Γ) which, together with (27), concludes the proof. �

Let us underline that the previous proposition does not require unique solvability of local sub-
problems. It only assumes existence and uniqueness of the global scattering problem. This
decomposition result can be regarded as analogous to Proposition 4.2 although, in the result
above, the direct sum is a priori not orthogonal.

The next property relates to energy conservation considerations and will thus play a key
role in the forthcoming convergence analysis. Although such a result is classical in scattering
theory (see e.g [23, Thm.3.12]), the next lemma is rephrased so as to �t our framework. We
also provide a proof for the sake of completeness.

Lemma 6.1.

We have ı[u, u]∂Ωj ≤ 0, ∀u ∈ C +(Ωj) ∀j = 0 . . . J, and thus ıJu, uK ≤ 0 ∀u ∈ C +(Γ).

Proof:

For any u ∈ H1/2(∂Ωj)×H−1/2(∂Ωj), let ϕ ∈ H1
loc(Ωj) satisfy div(µ∇ϕ)+κ2ϕ = 0 in Ωj and

(τ jd(ϕ), µjτ
j
n(ϕ)) = u on ∂Ωj . For all j = 0 . . . J, we have ı[u, u]∂Ωj = 2=m{

∫
∂Ωj

µjτ
j
n(ϕ)τ jd(ϕ)dσ}.

In the case where j 6= 0, the domain Ωj is bounded so that we can apply a simple Green formula
on the later identity,

ı[u, u]∂Ωj = 2=m{
∫
∂Ωj

µjτ
j
n
(ϕ)τ j

d
(ϕ)dσ} = 2=m{

∫
Ωj

ϕdiv(µ∇ϕ) + µ|∇ϕ|2dx}

= 2=m{
∫

Ωj

µ|∇ϕ|2 − κ2|ϕ|2dx} = −2

∫
Ωj

=m{κ2}|ϕ|2dx ≤ 0.

Note that, in the above inequality, we used that Assumptions (1) imply =m{κ2} ≥ 0. In the
case of Ω0 take any radius ρ0 > 0 large enough to guarantee Rd \Ω0 ⊂ Bρ0 . We can apply the
same calculus as above, considering Bρ ∩ Ω0 instead of Ω0. Taking account of the radiation
condition satis�ed by ϕ(x) for |x| → ∞, and the fact that =m{κ2} is boundedly supported
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(since κ(x) = κ0 for |x| > ρ0), we obtain

ı[u, u]∂Ωj = −2

∫
Ω0

=m{κ2}|ϕ|2dx+ 2=m{
∫
∂Bρ

ϕ∂ρϕdσ}

≤ 2=m{
∫
∂Bρ

ϕ∂ρϕdσ} = − 1

κ0

∫
∂Bρ

2<e{ıκ0ϕ∂ρϕ} dσ

=
1

κ0

∫
∂Bρ

|∂ρϕ− ıκ0ϕ|2dσ −
1

κ0

∫
∂Bρ

|∂ρϕ|2dσ − κ0

∫
∂Bρ

|ϕ|2dσ

≤ 1

κ0

∫
∂Bρ

|∂ρϕ− ıκ0ϕ|2dσ ∀ρ > ρ0

≤ lim inf
ρ→∞

1

κ0

∫
∂Bρ

|∂ρϕ− ıκ0ϕ|2dσ = 0.

�

6.1 Robin trace operators

The caracterisation of X(Γ) provided by Proposition 5.4 involved speci�c combinations of
Neumann and Dirichlet trace operators. Let us bring the attention of the reader to the
following elementary identity: for any v = (vd, vn) ∈ H(Γ), and any ω > 0 we have

‖vn + ıαT(vd)‖2Hn(Γ) = ‖vn‖2Hn(Γ) + ω2‖vd‖2Hd(Γ) + 2α<e{ı〈〈vd, vn〉〉}

= ‖vn‖2Hn(Γ) + ω2‖vd‖2Hd(Γ) − 2α=m{〈〈vd, vn〉〉}

= ‖vn‖2Hn(Γ) + ω2‖vd‖2Hd(Γ) + ıαJv, vK for α = ±ω.
(29)

We shall assume that the scalar coe�cient ω > 0, usually referred to as impedance, is �xed
until the end of this article. From the above identity we deduce an expression for the di�erence
between ingoing and outgoing traces.

Corollary 6.1.

We have ‖vn + ıωT(vd)‖2Hn(Γ) − ‖vn − ıωT(vd)‖2Hn(Γ) = 2ıωJv, vK for all v = (vd, vn) ∈ H(Γ).

So-called ingoing/outgoing Robin trace operators also play an important role in scattering
theory so, in the present paragraph, we study these trace operators in more detail. De�ne
τ j± : H1(∆,Ωj)→ H−1/2(∂Ωj) by

τ j±(φ) := µjτ
j
n
(φ)± ıωTj(τ

j
d
(φ)) for φ ∈ H1(∆,Ωj),

τ± := diagj=0...J(τ j±).
(30)

Remark 6.1. It is crucial for the subsequent analysis that the impedance operator involved in

the de�nition of τ± coincides with the DtN map T de�ned in �3.4 that induces scalar products

on Hd(Γ) and Hn(Γ).

The Robin trace operators can be considered for prescribing boundary data for the solution
of wave equations in each subdomain. Due to the positivity of the DtN maps Tj , the associated
boundary value problems are systematically well posed.
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Lemma 6.2.

For any g ∈ L2(Ωj) with bounded support, and any h ∈ H−1/2(∂Ωj), there exists a unique

φ ∈ H1
loc(Ωj) such that div(µ∇φ) + κ2φ = g in Ωj, and τ j−(φ) = h on ∂Ωj (and φ is κ0-

outgoing if j = 0).

The proof of the previous lemma is a basic exercise on variationnal formulations, so it is left
to the reader. We need to introduce resolvent operators that solve Helmholtz equation in each
subdomain with a prescribed outgoing Robin boundary trace, the operator Sj : H−1/2(∂Ωj)→
H−1/2(∂Ωj) de�ned by

Sj(τ j−(φ)) = τ j+(φ) for all φ ∈ H1
loc(Ωj) satisfying

div(µ∇φ) + κ2φ = 0 in Ωj ,

φ κ0 − outgoing radiating for j = 0.
(31)

The following result, very similar to [28, Lem.4.1], was established in [41, Lem.3,Chap.2]. We
provide the proof for the sake of completeness.

Proposition 6.2.

The operator S = diagj=0...J(Sj) continuously maps Hn(Γ) into Hn(Γ) and is non-expansive:

for all p ∈ Hn(Γ) we have

‖S(p)‖Hn(Γ) ≤ ‖p‖Hn(Γ).

Proof:

Pick an arbitrary p = (pj)J
j=0 ∈ Hn(Γ). Applying Lemma 6.2, there exist functions

φj ∈ H1
loc(Ωj) such that div(µ∇φj) + κ2φj = 0 in Ωj , and τ j−(φj) = pj on ∂Ωj (and φj is

κ0-outgoing if j = 0). Set v = (vd, vn) := (τ jd(φj), µjτ
j
n(φj))j=0,...,J, we have vn− ıωT(vd) = p

and vn + ıωT(vd) = S(p). Since v ∈ C +(Γ) by construction, combining Corollary 6.1 and
Lemma 6.1 concludes the proof. �

The previous result shows that the scattering operator S is a contraction but it is not a priori
an isometry. In the context of Problem (2), this is due to energy loss through radiation of waves
toward in�nity and absorption properties of the propagation medium (positive imaginary part
of κ2).

7 Reformulation of the scattering problem

In the present section we describe a reformulation of the scattering problem (2) as an equiva-
lently well posed problem.

7.1 Derivation of the formulation

To take account of the right hand side f ∈ L2(Rd), we introduce the o�set function φf ∈
L2

loc(Rd) whose restriction to each subdomain φf |Ωj belongs to H1
loc(Ωj) and is the unique

solution to
div(µ∇φf ) + κ2φf = −f in Ωj ,

φf is κ0-outgoing,

τ j−(φf ) = 0 ∀j = 0 . . . J.

(32)
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Well posedness of the problem above is a straightforward consequence of Lemma 6.2. We have
now all the ingredients required for deriving a reformulation of our scattering problem (2).

Lemma 7.1.

Assume that u ∈ H1
loc(Rd) is the unique solution to (2), and denote f := Π(τ+(φf )) with φf

de�ned by (32). Then the tuple of traces p = τ−(u) satis�es

p ∈ Hn(Γ) and

p− (Π · S)p = f.
(33)

Proof:

If u ∈ H1
loc(Rd) refers to the unique solution to (2) then (τ jd(u), µjτ

j
n(u))j=0...J ∈ X(Γ) so,

according to Proposition 5.4, we have τ−(u) = Π(τ+(u)). In addition, the function u − φf
solves an homogenous Helmholtz equation in each subdomain i.e. (div(µ∇ · )+κ2)(u−φf ) = 0

in Ωj for each j = . . . J and u−φf is κ0-outgoing radiating, so (τ jd(u−φf ), µjτ
j
n(u−φf ))j=0...J ∈

C +(Γ). As a consequence we have τ+(u− φf ) = S · τ−(u− φf ) = S · τ−(u). Thus we conclude
that τ−(u) = ΠS(τ−(u)) + Πτ+(φf ). �

The structure of this new formulation is strikingly close to standard Optimised Schwarz Meth-
ods (OSM). This appears clearly when comparing (33) with �2 in [21], see in particular Formula
(45) and (51) of this reference.

Here also (33) appears adapted to domain decomposition. In the operator Id− Π · S, the
factor S is block-diagonal, each block being associated to a di�erent subdomain, so that matrix-
vector product is trivially parallelisable. Of course, each block of S involves a DtN operator.
Once Equation (33) has been solved numerically and that p = (pj)j=0...J has been computed,
the solution to the boundary value problem (2) can be recovered in each Ωj separately by
solving the following local problems

div(µ∇u) + κ2u = −f in Ωj ,

u is κ0-outgoing,

τ j−(u) = pj ∀j = 0 . . . J.

(34)

The main new feature of the formulation we present here is the transmission operator Π.
Contrary to the exchange operator traditionally used in OSM, see e.g. Formula (42) in [21],
our transmission operator Π is not local anymore. But it only involves exponentially decaying
kernels, with a damping factor γ that can be tuned, so that Π can nevertheless be considered
quasi-local. In addition, various techniques (H-matrices [6, 9, 39], Fast Multipole Method
[25, 38]) can be used to sparsify this operator further.

7.2 Well-posedness of the new formulation

Let us examine the properties of the operator Id−Π ·S in detail. First of all Π ·S continuously
maps Hn(Γ) into Hn(Γ). In addition, combining Corollary 5.1 and Proposition 6.2, we obtain
a contractivity result.

Lemma 7.2.

We have ‖Π · S(p)‖Hn(Γ) ≤ ‖p‖Hn(Γ) for all p ∈ Hn(Γ).
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Coming back to Remarks 5.1 and 6.1, we stress that the estimate above is made possible by
the fact the very same operator T comes into play in the de�nition of both Π and S (through
the impedance trace operators τ±).

A direct consequence of this property is that the numerical range of the operator Id−Π ·S
is located in the complex right-half plane C+ := {z ∈ C, <e{z} ≥ 0}. This is de�nitely an
interesting feature from the perspective of linear solvers. Next this operator is also one-to-one.

Proposition 7.1.

ker(Id−Π · S) = {0}.

Proof:

Consider a p = (pj)J
j=0 ∈ Hn(Γ) satisfying p = ΠS(p). Consider the function v ∈ L2

loc(Rd)
such that, its restriction in each subdomain v|Ωj belongs to H1

loc(Ωj) and satis�es div(µ∇v) +

κ2v = 0 in Ωj , v is κ0-outgoing and τ j−(v) = pj . By construction we have τ−(v) = p and

τ+(v) = S(p). Setting v = (vd, vn) := (τ jd(v), µjτ
j
n(v))j=0...J, we have 0 = p − ΠS(p) =

vn − ıωT(vd) − Π(vn + ıωT(vd)). Hence, applying Proposition 5.4, we deduce that v ∈
X(Γ). Since, on the other hand, we have v ∈ C +(Γ) by construction, we conclude that
v ∈ C +(Γ) ∩ X(Γ) = {0} according to Proposition 6.1. Hence p = vn − ıωT(vd) = 0. �

The next theorem is the main novelty of the present contribution. It shows that (33) o�ers
a new strongly coercive formulation of the scattering problem (2). As discussed in [46], this
directly contradicts the widespread belief that harmonic wave propagation systematically leads
to sign inde�nite formulations.

Theorem 7.1.

There exists α > 0 such that <e{((Id−Π · S)p, p)Hn(Γ)} ≥ α‖p‖2Hn(Γ) for all p ∈ Hn(Γ).

Proof:

We need �rst to introduce a few notations that we shall use only for this proof. According to
Proposition 6.1, there exists a bounded projection operator Q : H(Γ)→ H(Γ) with range(Q) =
C +(Γ) and ker(Q) = X(Γ). For convenience, we set

‖Q‖ω := supv∈H(Γ)\{0} ‖Q(v)‖ω/‖v‖ω
where ‖v‖2ω := ‖vn‖2Hn(Γ) + ω2‖vd‖2Hd(Γ)

(35)

Because ω > 0 is a simple �xed positive constant, ‖ ‖ω and ‖ ‖H(Γ) are equivalent norms, and
continuity of the projection Q is exactly equivalent to the boundedness of ‖Q‖ω. We shall also
consider the bounded orthogonal projectors P± : Hn(Γ)→ Hn(Γ) de�ned by

P± = (Id±Π)/2 (36)

Now pick an arbitrary p ∈ Hn(Γ). Set f := (Id− ΠS)p, and de�ne gd := ıω−1T−1(Id + Π)f/4
and gn := (Id − Π)f/4 and g := (gd, gn) ∈ H(Γ). The tuple of traces u = Q(g) ∈ C +(Γ)
satis�es g − u ∈ X(Γ) so, applying Proposition 5.4, we also have un − gn − ıωT(ud − gd) =
Π(un − gn + ıωT(ud − gd)) which rewrites

un − ıωT(ud)−Π(un + ıωT(ud))

= (Id−Π)gn − ıω(Id + Π)T(gd)

= P2
−f + P2

+f = (P− + P+)f = f

(37)
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Due to the continuity of Q, we obviously have ‖u‖ω ≤ ‖Q‖ω · ‖g‖ω, where ‖Q‖ω is de�ned
with (35). On the other hand multiplying (37) on the left by P± we obtain

P+T(ud) = ıω−1P+(f)/2 = T(gd)

P−(un) = P−(f)/2 = gn

⇒ ‖g‖2ω = ω2‖P+T(ud)‖2Hn(Γ) + ‖P−(un)‖2Hn(Γ)

(38)

which shows that ‖u‖ω ≤ ‖Q‖ω(ω2‖P+T(ud)‖2Hn(Γ) + ‖P−(un)‖2Hn(Γ)). Since u ∈ range(Q) =

C +(Γ) we have un + ıωT(ud) = S(un − ıωT(ud)) and, as a consequence, (37) implies (Id −
ΠS)(un − ıωT(ud)) = f hence, according to Proposition 7.1, p = un − ıωT(ud), which leads to
the estimate

‖p‖2Hn(Γ)/2 ≤ ‖u‖
2
ω ≤ ‖Q‖2ω‖g‖2ω. (39)

Since the projectors P± are orthogonal for the scalar product (·, ·)Hn(Γ) we obtain

1

2
(p−ΠS(p), p)Hn(Γ)

=
1

2
(un − ıωT(ud)−Π(un + ıωT(ud)), un − ıωT(ud))Hn(Γ)

= (P−(un)− ıωP+T(ud), un − ıωT(ud))Hn(Γ)

= ‖P−(un)‖2Hn(Γ) + ω2‖P+T(ud)‖2Hn(Γ)

− ıω(P+T(ud), un)Hn(Γ) + ıω(P−(un),T(ud))Hn(Γ)

(40)

Using the identity obtained in (38) to replace ‖P−(un)‖2Hn(Γ) +ω2‖P+T(ud)‖2Hn(Γ) in the iden-

tity above, using that P± = (Id±Π)/2, and observing that (T(v), p)Hn(Γ) = 〈〈v, p〉〉, we obtain

1

2
(p−ΠS(p), p)Hn(Γ)

= ‖g‖2ω − (ıω/2)〈〈ud, un〉〉+ (ıω/2)〈〈un, ud〉〉
− (ıω/2)(ΠT(ud), un)Hn(Γ) − (ıω/2)(Π(un),T(ud))Hn(Γ)

= ‖g‖2ω − (ıω/2)Ju, uK− ıω<e{(ΠT(ud), un)Hn(Γ)}

(41)

Using Lemma 6.1, the real part of the previous identity is bounded from below by <e{(p −
ΠS(p), p)Hn(Γ)} ≥ 2‖g‖2ω. We conclude by using (39). �

Lax-Milgram lemma combined with the previous theorem yields bijectivity of Id − ΠS as an
obvious outcome.

Corollary 7.1.

The operator Id−ΠS : Hn(Γ)→ Hn(Γ) is an isomorphism.

7.3 Solution strategy

Let us brie�y discuss how, in practice, to solve (33) i.e. an equation of the form p−Π·S(p) = f.
First of all, since Π2 = Id, this equation can be transformed into (Π − S)p = Π(f) = τ+(φf )
which is practically more convenient as it avoids handling a product of operators. A general
Krylov solver such as GMRes could be considered for solving this equation. We refer the
reader to [51, chap.6] for more details on this solver.
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Convergence of Richardson's linear solver An alternative more straightforward strat-
egy relies on Richardson's iterative method [51, chap.6], [2, �9.1] that writes

pn+1 = (1− β)p(n) + βΠS · p(n) + βf (42)

where β ∈ (0, 1) is a relaxation parameter. Following Theorem 7 and Remark 9 in [21],
a rough estimate can be derived for the convergence of Richardson's linear solver in this
case. Let p∞ refer to the unique solution to (33) and set e(n) := p∞ − p(n) so that e(n+1) =
((1− β)Id + βΠS)e(n). Recall the convexity identity

‖(1− β)x + βy‖2Hn(Γ) = (1− β)‖x‖2Hn(Γ) + β‖y‖2Hn(Γ)

=− β(1− β)‖x− y‖2Hn(Γ)

(43)

which holds for any x,y ∈ Hn(Γ) and any β ∈ (0, 1). In addition the coercivity estimate of
Theorem 7.1 yields the lower bound ‖(Id − ΠS)p‖Hn(Γ) ≥ α‖p‖Hn(Γ)∀p ∈ Hn(Γ). Combining
this lower bound with Lemma 7.2 and (43) thus yields

‖e(n+1)‖2Hn(Γ) = ‖(1− β)e(n) + βΠS · e(n)‖2Hn(Γ)

= (1− β)‖e(n)‖2Hn(Γ) + β‖ΠS · e(n)‖2Hn(Γ)

=− β(1− β)‖(Id−ΠS)e(n)‖2Hn(Γ)

≤ (1− α2β(1− β))‖e(n)‖2Hn(Γ)

In this estimate, the convergence factor (1−α2β(1−β))1/2 < 1 is thus minimized for β = 1/2
and takes the value (1− (α/2)2)1/2 in this case.
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