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Abstract. Can experimental studies on the behavioural im-
pacts of ocean acidification be trusted? That question was
raised in early 2020 when a high-profile paper failed to cor-
roborate previously observed responses of coral reef fish to
high CO2. New information on the methodologies used in
the “replicated” studies now provides a plausible explana-
tion: the experimental conditions were substantially differ-
ent. High sensitivity to test conditions is characteristic of
ocean acidification research; such response variability shows
that effects are complex, interacting with many other factors.
Open-minded assessment of all research results, both nega-
tive and positive, remains the best way to develop process-
based understanding. As in other fields, replication studies
in ocean acidification are most likely to contribute to scien-
tific advancement when carried out in a spirit of collaboration
rather than confrontation.

1 Introduction

Ocean acidification involves a reduction in seawater pH (in-
creased hydrogen ion concentration), currently caused by in-
creased carbon dioxide (CO2) in the atmosphere. Associ-
ated chemical changes include an increased concentration of
bicarbonate ions and dissolved inorganic carbon and a de-
creased concentration of carbonate ions in the ocean and,
unless compensated for, the body fluids of marine organ-
isms. Although the chemistry of the carbonate system has
been well-understood for decades, research on the biologi-

cal and ecological implications of anthropogenic ocean acid-
ification only began in earnest about 20 years ago (Gattuso
and Hansson, 2011). A wide range of potential consequences
have since been identified, with an early appreciation of the
diverse vulnerability of plant and animal species (Kroeker
et al., 2013; Wittmann and Pörtner, 2013). Effects on the
production of shells and skeletons have been a major re-
search focus; however, reduced calcification is not the only
impact, since there is also strong evidence for low pH affect-
ing many other physiological processes (Pörtner et al., 2014;
Baumann, 2019; Hurd et al., 2020), including vertebrate and
invertebrate behaviour (Clements and Hunt, 2015; Cattano
et al., 2018; Zlatkin and Heuer, 2019). Laboratory experi-
ments have investigated the biological impacts of ocean acid-
ification through a reductionist approach; i.e. conditions are
deliberately simplified. This approach has the advantage of
enabling statistical testing of cause and effect for single fac-
tors, yet necessarily omits many of the complexities of natu-
ral conditions, which may involve temporal as well as biotic
and abiotic environmental factors (Kapsenberg and Cyronak,
2019).

2 The challenge of contradictory results

A two-step experiment has been used by many research
groups to investigate the possible effects of ocean acidifica-
tion on fish behaviour. Initially, individual fish are given a
binary choice of water conditions in a flume tank, with one
choice including an odour (e.g. from predators or a conspe-
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cific alarm cue) known to elicit an avoidance response. Those
observations of discriminatory ability then provide the “con-
trol” strength of preference, for comparison with treatment
results using the same choice under raised CO2 (lowered
pH) conditions throughout the test tank. Several versions of
such experimental conditions and treatments have been de-
veloped, with differences between protocols known to affect
the strength of the response change (Jutfelt et al., 2017).

Based on that binary-choice approach and with the in-
tention of replicating previous work, Clark et al. (2020a)
reported their findings in an unambiguously titled paper:
“Ocean acidification does not impair the behaviour of coral
reef fishes”. To exclude the possibility of inadvertent ob-
server bias, they deployed video recording and automatic
tracking software in their study, making that digital infor-
mation openly available. They also used data simulations to
conclude that previously reported results were “highly im-
probable”, with an estimated likelihood of 0 out of 10 000
– assuming identical experimental conditions and that their
own data were valid. Since Clark et al. (2020a) went to “great
lengths” (in their own words) to replicate earlier work yet
failed to observe the same effects, there was the implication
that other researchers’ work was either flawed or fraudulent,
reflecting earlier concerns expressed by Clark et al. (2016)
and Clark (2017).

In the context of a reported “crisis” in research repro-
ducibility for many disciplines (Baker, 2016; Nature, 2018),
Clark et al. (2020a) attracted media coverage and scientific
responses, including praise for its thoroughness by several
independent commentators (Enserinck, 2020; Science Media
Centre, 2020). However, those initial reactions also identi-
fied three potential weaknesses. First, Clark et al. (2020a)
did find several significant ocean acidification effects, con-
trary to the paper’s title, although less dramatic than those
previously reported. Second, their analysis gave scant atten-
tion to the extensive literature on factors causing variability
in ocean acidification research. The third, more fundamental,
concern related to how closely the original experiments had
been repeated and whether that issue had been thoroughly
checked before the paper was published.

3 Experimental differences

Any deficiencies in the peer review of Clark et al. (2020a)
were addressed 9 months after its publication, with a detailed
(online) critique by Munday et al. (2020a) that challenged
the effectiveness of the claimed replication: “Clark et al. did
not closely repeat previous studies, as they did not replicate
key species, used different life stages and ecological histo-
ries, and changed methods in important ways that reduce the
likelihood of detecting the effects of ocean acidification”.

Experimental differences identified by Munday
et al. (2020a) between the original and repeated results
included the following.

– Clark et al. (2020a) did not use clownfish, one of the
original test species.

– Adult and sub-adult fish were mostly used, rather than
larvae and small juveniles (with older fish known to be
less responsive to risk cues).

– For one species, the juveniles were from an inbred
aquarium population (likely to be pre-adapted to high
CO2 and hence less sensitive).

– Many experiments were carried out during a marine
heatwave (with high temperatures known to reduce or
reverse responses in the studied species).

– Dissolved CO2 levels were unstable, with an average
daily pCO2 range of 581 µatm in 2016 treatments.
Such variability can reduce behavioural impacts (Jar-
rold et al., 2017) and did not match the stable conditions
of directly compared studies.

There were also crucial changes to the design of the testing
apparatus, the dilution and nature of odour cues, and the du-
ration of tests. Such changes weakened the control response,
hence reducing the likelihood of significant CO2 treatment
effects. In total, 16 differences between the original studies
and the re-runs were described by Munday et al. (2020a), any
one of which could potentially invalidate the comparisons.

The counter-argument, made at the time of the original
publication (Enserink, 2020) and subsequently re-iterated by
Clark et al. (2020b), is that minor experimental differences
are inevitable and can be considered as reflecting natural en-
vironmental variability. They should not matter if the original
findings are widely applicable and robust. The question of
what does or does not constitute a valid replication is there-
fore critical, yet inherently problematic. Since it is widely
accepted that a fully exact repeat of a biological study is im-
possible, due to the dynamic nature of both animate and inan-
imate factors (“No man ever steps in the same river twice; it
is not the same man, nor is it the same river”, widely as-
cribed to Heraclitus), it is valid to distinguish “reproducibil-
ity” from “replicability”. Whilst both terms relate to the re-
peatability of outcomes, the test for reproducibility is con-
ventionally limited to conditions where very tight control is
achievable, e.g. in data treatments, or when re-using the orig-
inal experimental set-up. In contrast, greater flexibility is al-
lowed for investigating replicability, reflected in a definition
of replication as “a study for which any outcome would be
considered diagnostic evidence about a claim from prior re-
search” (Nosek and Errington, 2020a). This broad definition
has merit, although consistency is needed across disciplines
(e.g. Stevens, 2017; Junk and Lyons, 2020), to avoid con-
tributing to semantic confusion in a contested topic area.

Three further generic issues are also relevant here. First, it
is important that the design of a replication study adequately
addresses all key components of existing hypotheses, for ex-
ample, the strong life-stage dependence of the response to

Biogeosciences, 18, 1787–1792, 2021 https://doi.org/10.5194/bg-18-1787-2021



P. Williamson et al.: When ocean acidification experiments are not the same 1789

high CO2 conditions. Second, the limitations of statistical
analyses need to be recognized: statistically non-significant
results do not necessarily mean there is no effect (Amrhein
et al., 2019). Third, any single study does not disprove the
consensus, since broadening the concept of replication has
the clear corollary that novel outcomes need to be interpreted
using all available lines of evidence, with awareness of both
similarities and differences in relation to previous work. Ta-
ble 1 of the Supplement to Munday et al. (2020a) identified
110 research papers published between 2009–2019 that in-
vestigated how ocean acidification might, or might not, af-
fect the behaviour and sensory physiology of fish. Out of 44
that involved coral reef fish, 41 of those studies (carried out
by 68 researchers at 35 institutions in 15 countries) reported
significant effects, including several that used video record-
ing, blind-testing, and raw-data publication. The remaining
66 papers (for other tropical, temperate and polar fish; marine
and freshwater) provided additional support: 44 of those re-
ported significant behavioural effects of ocean acidification.
We are aware of five more recent publications on this topic,
in addition to Clark et al. (2020a): Rong et al. (2020), Jarrold
et al. (2020), McIntosh (2020), Roche et al. (2020) and Rad-
ford et al. (2021); four of those reported significant effects.

A closely similar result was found in a meta-analysis of
95 marine and freshwater studies by Clements et al. (2020),
with T.D. Clark included in the authorship team: they found
that 64 of those papers reported either strong or weak be-
havioural effects. Whilst the proportion showing a strong ef-
fect declined over the period 2009–2019, that decrease is un-
surprising, since the early strong-effect studies were all on
the most sensitive (marine) species. Additional independent
evidence is provided by molecular studies, showing direct ef-
fects of high CO2 on neurotransmission in fish (e.g. Schunter
et al., 2019) and other taxa (e.g. Moya et al., 2016; Zlatkin
and Heuer, 2019); further biochemical and pharmacological
examples are given by Munday et al. (2020a). An objective
summary of the global evidence is that ocean acidification
can adversely affect fish behaviour under experimental con-
ditions, whilst also recognizing that the occurrence and scale
of such impacts vary with circumstances, species and the life
stage tested.

4 Taking account of response variability

A recent IPCC assessment (Bindoff et al., 2019) confirmed
the pervasive and complex effects of high CO2 and warming,
not only on marine organisms and ecosystems but also on
ecosystem services and society. Improved knowledge of all
these response levels is crucial for effective mitigation and
adaptation. This increasing appreciation of the interactions
between ocean acidification and other biochemical, physi-
ological, behavioural, ecological and physical processes is
both scientifically exciting and sobering, showing the diffi-
culty in developing comprehensive understanding of this im-

portant component of ocean climate change. The complexity
of these interactions should, however, not be surprising, since
marine species have experienced natural variability in pH and
CO2 levels throughout their evolution and also in their di-
verse habitats (Kapsenberg and Cyronak, 2019). Species will
inherently have differently vulnerabilities and different ways
of responding, and response differences can therefore be ex-
pected to occur in experimental studies.

Recognition of widespread response variability in ocean
acidification experiments is not novel. It was noted for stud-
ies on survival, calcification, growth and reproduction in
early meta-analyses (Kroeker et al., 2013) and subsequently
provided the focus for much national and international re-
search. It is therefore now well-established that closely re-
lated marine species can respond very differently to exper-
imental pH treatments and that the magnitude of single-
species responses can be affected by many factors. These in-
fluences include length of exposure, population-level genetic
differences due to local adaptation, food availability, inter-
actions with other stressors, seasonality, energy partitioning,
life stage and the sex of the organisms used in experiments
(e.g. Thomsen et al., 2012; Suckling et al., 2014; Sunday
et al., 2014; Breitburg et al., 2015; Vargas et al., 2017; Ellis
et al., 2017; Dahlke et al., 2018) as well as physico-chemical
conditions (Riebesell et al., 2011).

Given this known variability, the results from any sin-
gle ocean acidification study cannot provide the final word,
overriding the consensus of other findings. Whilst many im-
portant uncertainties remain (Busch et al., 2016; Baumann,
2019; Hurd et al., 2020), we consider that scientific progress
can be hindered by the sequence of polarizing criticisms
(Clark, 2017; Clark et al., 2020a), rebuttal (Munday et al.,
2020a), reply (Clarke et al., 2020b) and a further point-by-
point response (Munday et al., 2020b). A more constructive
approach would involve experimental co-design in a collab-
orative, comparative framework (Boyd et al., 2018), with ap-
propriate rigour (Cornwall and Hurd, 2016) – which can still
be consistent with scientific scepticism, replication tests and
the reporting of negative results (Browman, 2016). Future
ocean acidification experiments would also benefit from an
update of Riebesell et al. (2011), to provide improved guid-
ance on the key parameters that can affect laboratory results.
Since a very wide range of factors are potentially important,
pragmatism will be needed with regard to associated issues
of resource deployment and measurement accuracy, recog-
nizing that chemists and biologists may have different prior-
ities on such matters.

5 Wider implications

The concept of generalizability (Nosek and Errington,
2020a) seems crucial to the broader debate on replication.
Under what conditions should conclusions derived from one
study be considered applicable (generalizable) to another,
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Figure 1. Visual summary of contrasting situations relating to
(a) very close matching and (b) part-matching of pairs of studies
where Study no. 2 is intended to provide a test of repeatability (and
generalizability) of Study no. 1. Whilst “other studies” are also rel-
evant to situation (a), their importance is increased when interpret-
ing results from situation (b). See text for more detailed explanation
and discussion, including the importance of experimental co-design
between research groups with contradictory hypotheses.

therefore enabling the underlying hypothesis to be tested, and
potentially disproved, by the latter? The scientific benefits of
that framing are greatest when the outcome of a replicability
test is accepted by two research groups that initially favour
different hypotheses – thereby requiring a more nuanced,
non-confrontational framework for experimental planning,
analysis and interpretation (Fanelli, 2018; Nosek and Erring-
ton, 2020a, b).

Figure 1 provides a diagrammatic summary of these is-
sues, with situation (a) showing close congruence between
two experimental studies, carried out by two research groups.
If both groups recognize that there is a very close match when
Study no. 2 is planned (following the arrangements proposed
by Nosek and Errington, 2020b), the replication provides a
valid test of any hypotheses arising from Study no. 1. In con-
trast, situation (b) shows a pair of studies that only partly
overlap; i.e. they differ in many regards, and where prior
agreement between research groups on their congruence may
not have been achieved. If results from both studies in situ-
ation (b) are consistent, the generalizability of Study no. 1
is extended. However, if inconsistent, the generalizability of
Study no. 1 and Study no. 2 will each be constrained to its
specific experimental conditions, with evidence from other
studies providing the context for interpretation of the differ-
ent outcomes. A range of intermediate situations between (a)
and (b) can also occur.

The above proposals for clearer “rules of engagement”
for future replication studies could be greatly encouraged
if research funders not only recognized that major insights
can arise from closely similar or repeated work, but also re-
quired liaison between competing research teams as a con-
dition of award in such circumstances. Our final recommen-
dation is that high-profile publishers should give additional
attention to the quality control of potentially controversial
papers, whilst also providing the opportunity for rapid, and

preferably simultaneous, publication of responses by other
researchers who may consider that their work has been un-
fairly criticized.
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