
Selection-Expansion:
A Unifying Framework for Motion-Planning and Diversity Search Algorithms

Alexandre Chenu1,
Nicolas Perrin-Gilbert1, Stéphane Doncieux1, Olivier Sigaud1

1Sorbonne Université, CNRS, Institut des Systèmes Intelligents et de Robotique, ISIR F-75005 Paris, France
chenu@isir.upmc.fr

Abstract

Reinforcement learning agents need a reward signal to learn
successful policies. When this signal is sparse or the corre-
sponding gradient is deceptive, such agents need a dedicated
mechanism to efficiently explore their search space without
relying on the reward. Looking for a large diversity of behav-
iors or using Motion Planning (MP) algorithms are two op-
tions in this context. In this paper, we build on the common
roots between these two options to investigate the properties
of two diversity search algorithms, the Novelty Search and
the Goal Exploration Process algorithms. These algorithms
look for diversity in an outcome space or behavioral space
which is generally hand-designed to represent what matters
for a given task. The relation to MP algorithms reveals that the
smoothness, or lack of smoothness of the mapping between
the policy parameter space and the outcome space plays a key
role in the search efficiency. In particular, we show empiri-
cally that, if the mapping is smooth enough, i.e. if two close
policies in the parameter space lead to similar outcomes, then
diversity algorithms tend to inherit exploration properties of
MP algorithms. By contrast, if it is not, diversity algorithms
lose these properties and their performance strongly depends
on specific heuristics, notably filtering mechanisms that dis-
card some of the explored policies.

1 Introduction
Deep Reinforcement learning (RL) and Deep Neuro-
Evolution (NE) methods have recently undergone outstand-
ing progress, obtaining more and more impressive perfor-
mance in games and robotics applications (Gu et al. 2016;
Heess et al. 2017; Such et al. 2017; Silver et al. 2016, 2017;
Andrychowicz et al. 2018; Vinyals et al. 2019; Akkaya et al.
2019). However, despite these successes, some fundamental
difficulties remain in hard exploration problems. First, when
the reward signal is sparse or when the corresponding gradi-
ent is deceptive, RL agents cannot rely on the reward signal
to steer their learning process, resulting in complete failure
or poor performance (Matheron, Perrin, and Sigaud 2019).
Besides, RL agents struggle when only complex trajectories
can reach the target region, as for example in a complicated
maze, and when such target-reaching agents correspond to
a very small domain of the policy parameter space (Ecof-
fet et al. 2019; Matheron, Perrin, and Sigaud 2020). In such
contexts, combining Deep RL with algorithms explicitly de-
signed to look for diversity in a relevant search space has

several attractive properties. More precisely, it has been hy-
pothesized in (Doncieux, Laflaquière, and Coninx 2019) that
defining an outcome space1 as the space that matters to de-
termine whether a policy is successful and looking for di-
versity in that space might be the best option to tackle the
sparse reward exploration problem.

We can distinguish two classes of algorithms to imple-
ment this diversity search approach: Goal Exploration Pro-
cess (GEP) (Forestier and Oudeyer 2016; Forestier 2019;
Benureau and Oudeyer 2016) and Novelty Search (NS)
(Lehman and Stanley 2011). The former has been combined
with RL in (Colas, Sigaud, and Oudeyer 2018) whereas the
latter is used in the same way in (Cideron et al. 2020).

This paper investigates the properties of these two classes
of algorithms. In a first part, based on a very general
selection-expansion framework, we reveal a similarity be-
tween these algorithms and Motion Planning (MP) algo-
rithms like Expansive Spaces Trees (EST) (Hsu, Latombe,
and Motwani 1997) and Rapidly-exploring Random Trees
(RRT) (Lavalle 1998). In a second part, we empirically com-
pare both algorithms in two environments where a smooth-
ness assumption on which MP algorithms implicitly rely
either holds or not. We show that diversity algorithms are
highly dependent on the design of the outcome space where
the search for diversity is performed, and that the smooth-
ness of the mapping between the policy parameter space and
the outcome space plays a key role in their search dynamics.
In particular, we show that if the mapping is smooth enough,
GEP and NS inherit the exploration properties of their MP
counterparts and GEP outperforms NS. By contrast, if it is
not, which is the usual case, NS and GEP perform differently
and their performance strongly depends on specific heuris-
tics, notably filtering mechanisms that discard some of the
explored policies.

2 Methods
In this section we highlight that NS and GEP share prop-
erties with two well-known MP algorithms, EST and RRT.
To establish the similarity between both families of algo-
rithms, we start from a more general framework that we call
selection-expansion algorithms.

1Also called behavioral space in the literature

1

2.1 Selection-expansion algorithms
Imagine an agent searching in some space and looking for
an area it knows nothing about. What should it do? The
most classical approach is to keep a memory of what has
already been explored, and to progress locally, i.e. by recon-
sidering previous trajectories or behaviors, and by expand-
ing or slightly modifying them to find new areas of the space
to explore. This is the basis of virtually all sampling-based
motion planning algorithms, and the core mechanism of Go-
Explore (Ecoffet et al. 2019). We call this kind of algorithms
selection-expansion algorithms because they share the com-
mon structure of maintaining an archive of previous samples
and iterating over a sequence of two operators:

• the selection operator that chooses in the archive a sam-
ple from which to expand;

• the expansion operator that adds one or several new sam-
ples built from the selected sample.

Usually, selection and expansion operators are designed to
efficiently expand the frontier of explored areas towards un-
explored regions of the space. To do so, there are two popu-
lar selection strategies. One can either:
Strategy 1 rank all elements in the archive in terms of dis-
tance to their neighbors, and preferentially select those far
away from their neighbors, which suggests that they lie in a
region with a low density of exploration; or

Strategy 2 randomly draw a sample anywhere in the search
space and select the closest sample in the archive. This way,
samples which are close to large unexplored regions have a
higher chance of being selected.

In the next section, we describe applications of the above
selection-expansion algorithms in two domains, namely Mo-
tion Planning and Diversity Search algorithms. This reveals
a striking similarity between both families of algorithms.

2.2 Application to Motion Planning

Figure 1: Expansion operators in motion planning with un-
known dynamical systems. When the dynamical system is
unknown, random controls are propagated through the sys-
tem, yielding random nodes contained in a local ball.

In Motion Planning (MP), the goal is to find a trajectory
for a system navigating from a starting configuration to a
goal configuration or region. More formally, MP problems
can be defined as follows:

Definition 1 A motion-planning problem is defined by a
(Cfree, s0, Ctarget) triplet, where Cfree is the space of free

configurations, s0 is a starting configuration and Ctarget is
the space of target configurations. The goal is to find a valid
trajectory τ = (si)i=0,...,n between s0 and Ctarget.

Some MP algorithms use selection-expansion algorithms
to build an exploring tree eventually containing a path from
the starting configuration to the goal. Nodes of the graph are
configurations, and edges represent the fact that the system
can navigate between two nodes. Thus, in the MP context,
the need for a local expansion operator comes from the fact
that the system must navigate locally from its current con-
figuration to the next.

When the model of the system is known, finding controls
to navigate between two nodes can be easy, and two suc-
cessive nodes can potentially be far away from each other.
We do not consider this case here. Instead, we focus on the
case where the model of the system is unknown, and assume
that the effects of the dynamics are not easily predictable
or controllable. In that case, one must call upon random ac-
tions for a few time steps and rely on the fact that, if many
random actions are tried, interesting motions may occur, as
shown in Figure 1. Thus, the expansion operator of such
“model-free” MP algorithms typically performs a random
action from the selected configuration to reach a new con-
figuration then added to the exploration tree.

For the selection operator, there exist MP algorithms cor-
responding to both strategies described above.

Expansive Spaces Trees Expansive Spaces Trees (EST)
corresponds to a family of algorithms where the selection
operator uses Strategy 1. These algorithms select the most
isolated nodes based on an estimate of the local density of
nodes. Various approximations of the local density can be
used. For instance, a node can be selected based on its num-
ber of neighbors within a certain range D. The nodes are
selected with a probability distribution based on the weight
of nodes so that the nodes with fewer neighbors tend to be
selected with higher frequency than others.

Other estimates of the local density of nodes can also be
used. In this paper, we consider the mean distance to the K-
nearest nodes as an estimation of the local density. Given
a set of N nodes S = {si}[1,N] ∈ CNfree and a set of K
nearest-neighbors {µ1, ..., µk} ⊂ S associated to node sn,
the latter has a weight :

wn =
1

k

k∑
i=1

dist(sn, µi). (1)

The probability pn for sn to be selected is proportional to
its weight:

pn =
wn∑N
i=0 wi

. (2)

Besides, in the general case without specific knowledge
on the system, a random control input is used during one or
few steps to expand sn to a new state snew. If no collision
occurs, snew is added to the tree.

2

(a) EST Search tree. (b) RRT Search tree. (c) Expansion scores.

Figure 2: Empirical comparison of EST and RRT. The SimpleMaze environment is divided into a 4 × 4 grid to compute
expansion scores of the MP algorithms. Search trees are shown after 1000 iterations. The means and standard deviations of the
expansion scores are computed over 30 runs.

Rapidly-exploring Random Trees Like EST, Rapidly-
exploring Random Trees (RRT) is a sampling-based path-
planning algorithm. But, in contrast to EST, RRT performs
selection according to Strategy 2. That is, it draws a ran-
dom goal configuration ssamp and selects the closest node
in the set of already visited nodes. Note that sampling a ran-
dom configuration requires to determine the boundaries of
the space where to sample from, a stronger prerequisite than
in EST.

Figure 3: Voronoi diagram for 30 configurations in a simple
2D maze. With RRT, if these configurations are the current
set of nodes, the probability to select a node is proportional
to the volume of the corresponding Voronoi cell.

Given a set of nodes {si}i∈[1,N] ∈ CNfree, one can define
the Voronoi diagram of these points as a set of Voronoi cells
with one Voronoi cell per point, where the Voronoi cell of
each point si is the subspace of all points that are closer to
si than to any other point of the set. An example of Voronoi
diagram is depicted in Figure 3. When selecting randomly,
the probability pk for an already visited node sk to be se-
lected is proportional to the volume of its Voronoi cell:

pk =
volume(V oronoi cell sk)∑N
i=0 volume(V oronoi cell si)

. (3)

After selection, without knowledge on the system, expan-
sion is also performed by applying a random control.

Comparative search properties of EST and RRT We
empirically compare the exploration properties of the selec-

tion operators of EST and RRT in the “SimpleMaze” en-
vironment which is further described in Section 3.1. The
pseudo-codes of both algorithms are given in Appendix C.1.

To assess expansion, we divide the maze into a 4 × 4 ex-
pansion grid shown in Figure 2. The expansion score is the
number of zones containing at least one node over the total
number of zones, i.e 16.

Both algorithms start with a single initial node in the mid-
dle of the left side (coordinates (−1, 0), see Figure 3). Fig-
ures 2a and 2b display exploration trees for both EST and
RRT after 1000 iterations.

The evolution of expansion presented in Figure 2c shows
that RRT explores the maze faster than EST.

2.3 Application to diversity search algorithms
We now turn to the policy search context. In policy search,
we consider a parametric policy πθ where θ is a vector of
parameters in a policy parameter space Θ.

Diversity algorithms, also called divergent search (DS) al-
gorithms, are policy search algorithms dedicated to covering
a space of solutions as widely as possible. In particular, they
can be used to find a target area in the absence of a reward
signal. A common feature of these algorithms is that they
define an outcome space O as a generally low-dimensional
space that can characterize important properties of policy
runs. The target area in such policy search problems is gen-
erally defined in O. Thus it is natural to consider that DS
algorithms are performing search in that space and to define
the selection operator in that space.

But a key issue in the policy search context is that one
cannot directly sample in O, as the mapping from outcomes
to policy parameters reaching these outcomes is generally
unknown. As a consequence, search in these DS algorithms
considers the mapping between Θ and O, which we call the
f : Θ→ O mapping hereafter, see Figure 6.

The necessity to consider these two spaces results in key
differences between MP and DS algorithms. In particular,
while MP algorithms need to use a local expansion operator
because they build a path to control a system from one con-
figuration to another, DS algorithms rely on local expansions
for different reasons.

3

(a) Goal-Exploration Process (b) Novelty Search

Figure 4: Selection in GEP and NS. In GEP, an outcome is randomly sampled and the policy yielding the closest outcome is
selected. In NS, the novelty is computed w.r.t to the archive. The policies yielding the most novel outcomes are selected.

Importantly, as it is not possible to sample directly in O,
the expansion operator must sample in Θ. Since selection
operates in O and expansion in Θ but from the selected
sample, one must determine the θ ∈ Θ corresponding to
the selected o ∈ O. This problem is easily solved by stor-
ing in the archive a pair consisting of a θ and the resulting
outcome o for each sample. For a selected o, a common ap-
proach for expansion is to simply apply a random mutation
to the corresponding θ. For the selection operator, the NS
and GEP algorithms respectively implement the two strate-
gies described in Section 2.1. Their pseudo-codes are given
in Appendix C.2.

Selection in NS Novelty Search considers two sets of
points in O: the population and the archive. Only the poli-
cies contained in the population may be selected. We explain
later how these sets of points are constructed.

Selection in NS can be performed using various selection
operators. The uniform selection operator, the score propor-
tionate selection operator, and the tournament-based opera-
tors are the most common ones (Cully and Demiris 2018).
In this paper we focus on the score proportionate selection
operator biased toward more novel policies.

The idea behind score proportionate selection is to con-
struct a probability distribution according to the novelty
scores of the policies contained in the population. The nov-
elty score N of a point o ∈ O is defined as the average
distance to the k-nearest neighbors (µ1, . . . , µk) ∈ Ok in
the archive, k being a hyper-parameter:

N =
1

k

k∑
i=1

dist(o, µi). (4)

Given a population {(θi, oi)}i∈{1,...,N} containing N
policies, the probability pk for policy θk to be selected is
proportional to its novelty score:

pk =
Nk∑N
i=0Ni

. (5)

This is an instance of Strategy 1 described in Section 2.1
where the distance to neighbors is computed through the
novelty score.

Selection in GEP The selection operator in GEP works
as follows. First, the agent draws a random target outcome

ogoal. The agent would like to find a set of policy parame-
ters θgoal producing ogoal. For that, it looks in the archive
for the closest outcome osel to ogoal, and it selects the pol-
icy parameters θsel which generated osel. This is clearly an
instance of Strategy 2.

Since the GEP selection operator draws a random out-
come and selects a policy corresponding to the closest out-
come in the archive {(θi, oi)}i∈{1,...,N}, the probability pk
for policy θk contained in the archive to be selected is pro-
portional to the volume of the Voronoi cell of its outcome
ok, as explained for RRT in Section 2.2:

pk =
volume(V oronoi cell ok)∑N
i=0 volume(V oronoi cell oi)

. (6)

One can immediately see that the selection operator is ex-
actly the same as in RRT, but acting in a different space.

Filtering in NS In addition to their selection operators, NS
also differs from GEP by using two filtering mechanisms.

Filtering the population
The notion of population differs in GEP and NS. In GEP,

the population gathers all policies since the first generation
(see Figure 5a). At each iteration, all expanded policies are
added to the population. In NS, the population is composed
of a fixed size set of policies updated at each generation. As
in GEP, it is initialized with random policies. However, after
expanding the policies contained in the population, only the
most novel policies contained in the set { new population
+ new offspring } are selected to construct the new popula-
tion. This approach encourages the policies to move in the
outcome space from one generation to another and thus pro-
motes exploration (Doncieux et al. 2020).

Filtering the archive
Beyond the population, NS uses another set called the

archive to keep track of the policies evolved in past gen-
erations. The archive is initialized with the random policies
used to initialize the population. At each generation, after
expanding the population, about 10% policies are randomly
sampled among the offspring and added to the archive, to
keep the archive small. Indeed, the archive being used to
compute the novelty score, keeping it small limits the cost
of finding the k-nearest neighbors.

The archive in NS is only used to compute the novelty
score of policies contained in the {population + offspring}

4

(a) Goal-Exploration Process.

(b) Novelty Search.

Figure 5: Expansions in GEP and NS. In GEP, all expanded
policies are added to the population. In NS, two filtering
mechanisms are applied to the population and the archive.

set. Policies from the archive are not added to the new popu-
lation. If a policy contained in the { population + offspring }
set is not selected for expansion, it is discarded and lost for
future generations.

2.4 Similarities between MP and DS algorithms
It should now be obvious that, if we consider their most lo-
cal expansion operators, NS shares similarities with EST and
GEP with RRT. Indeed, the selection and expansion opera-
tors of the DS algorithms are closely related to the same
operators of their MP counterpart.

Selection From the side of NS and EST, their selection
operators measure how isolated a sample is by attributing
a weight to each sample proportional to the inverse of the
density of the archive in its neighborhood. The variants of
EST and NS considered in this paper use the same weight
computation based on the mean distance of samples to their
k-nearest neighbor in the exploration tree (see (1)) or the
archive (see (4)). Therefore, nodes in EST and policies in
NS share the same selection probability (see (2) and (5)) in
different spaces.

Similarly, GEP and RRT also use a similar selection op-
erator based on the volume of the Voronoi cells of the
nodes/outcomes (see (3) and (6)) in their respective space.

Expansion The expansion operator used in MP highly de-
pends on how much we know how to steer a system into a
desired direction. But, in the unknown system case, a stan-
dard strategy consists in applying a single random control.

This strategy relies on a strong assumption about the dynam-
ical system. In order to ensure that the algorithm is guaran-
teed to find a path between the starting configuration and
the goal configuration given an infinite amount of selection-
expansion iterations (i.e the algorithm is probabilistic com-
plete (LaValle 2006)), the system is assumed to be Lipschitz-
continuous (Kleinbort et al. 2018). This assumption means
that with enough expansions from the same node, a node
should finally expand in the right direction.

In DS algorithms, the standard expansion operator ap-
plies a random perturbation to the selected policy parame-
ters, which has similarities with the use of random actions
for local expansions in the MP context.

However, reasons for using a local expansion operator are
different in the MP and DS contexts. In the MP context, one
needs to locally control the system along a path from the
current configuration to the target configuration. In GEP, a
local random perturbation is applied to the selected policy
hoping that, the corresponding outcome being close to the
sampled goal, the perturbed policy will produce an outcome
that is also close (and possibly closer) to this goal. One can
see that the application of this selection-expansion strategy
relies on the assumption of a smoothness property in the f :
Θ → O mapping, i.e. that similar parameters yield similar
outcomes. In the case of NS, the reason for using a local
expansion operator is less straightforward. It relies on the
assumption that, if a policy resulted in an outcome in a low
density region, a perturbed version of the policy should also
result in an outcome exploring this low density region, and
thus be potentially helpful in the search of new outcomes.
Again, this is equivalent to assuming a smoothness property
in the f mapping.

2.5 Expansions in DS are often non-local
Even though DS have good reasons to use local expansions
just like MP, expansions in DS are often non-local. Indeed,
there are different sources of non-locality that can be identi-
fied by dissecting the f : Θ → O mapping and considering
a policy space Π and a trajectory space T (see Figure 6 for
the details of the sub-mappings).

The first source of non-locality originates from the mΘ

mapping relating Θ to policies, in particular when they are
modeled as non-linear neural networks. Even though Multi-
Layers Perceptrons (MLPs) are continuous functions, if the
magnitude of the perturbation is too large, the expanded ver-
sion of a policy may yield a very different policy. Figure 7a
illustrates the consequences of a random mutation.

The second source of non-locality lies in the nature of
outcomes, which, as mentioned in section 2.3, depend on
policy runs, and therefore on trajectories. After selecting
a pair (θsel, osel) ∈ Θ × O, the expansion operator in
DS perturbs θsel to obtain a new policy with parameters
θnew = θsel + δθ with δθ sampled from a spherical Gaus-
sian distribution (Such et al. 2017) or a more complex dis-
tribution (Deb and Deb 2014). The new policy πθnew yields
trajectories defined by the equation

s(T) = s0 +

∫ T

0

Dsys+env(s(t), πθnew
(s(t))dt (7)

5

Figure 6: Description of the different spaces and mappings composing the Θ→ O mapping in diversity search algorithms. Two
intermediate spaces are considered: a policy space Π and a trajectory space T . Three sub-mappings mΘ,mΠ and mobs are also
considered such that f = mΘ ◦mΠ ◦mobs.

(a) (b)

Figure 7: (a) Lack of smoothness caused by the non-linearity
of the neural network policy. The difference between two
policies πθ and πθ+ε is visualized as a vector field (in red).
πθ yields the red trajectory, and πθ+ε yields the blue tra-
jectory. Although the parameters are close in Θ, output dif-
ferences are accumulated and lead to very different trajec-
tories. (b) Lack of smoothness caused by the environment.
The non-linearity or discontinuity of the environment (here
at the extremity of the first wall) can cause similar actions
to have dramatically different effects. This can lead to huge
outcome differences for similar policy parameters.

which integrates the dynamical system ṡ =
Dsys+env(s, πθnew

(s)) over the time interval [0, T],
where Dsys+env models the dynamics of the system in
interaction with its environment and s0 is the starting state
of the rollout. Even if the magnitude of the mutation is kept
low enough for the expanded policies to be very close to the
selected one, the numerous time steps of control may result
in a large deviation between the trajectories obtained by
the two policies via Equation (7) as differences accumulate
over time steps. These errors may be aggravated by dis-
continuous dynamical systems or environments Dsys+env
and result in a non-smooth mapping mΠ from policies
to trajectories, and therefore from policies to outcomes.
For instance, in maze environments, two close policies
may yield very different trajectories if one trajectory gets
blocked by a wall, as illustrated in Figure 7b.

Preliminary conclusion: performance assumptions The
similarities outlined above suggest that, if the expansion op-
erators have similar properties, NS and GEP should share
exploration abilities that are similar to those of EST and RRT
respectively. However, for common f : Θ → O mappings,
small perturbations in Θ may result in large changes in O,
and this lack of smoothness can result in a two situations.

• If the lack of smoothness of the f : Θ → O mapping
is too serious, one could hypothesize that the use of local
expansions in DS should bring no advantage compared to
a random sampling of policy parameters.

• Or, the f : Θ → O mapping could be smooth enough to
let NS and GEP both outperform random sampling, but
not smooth enough to inherit the search properties of EST
and RRT.

Below, we investigate these two possibilities experimentally.

3 Experimental study
In this section, we experimentally study NS, GEP and a ran-
dom search baseline using two environments with different
smoothness properties to assess whether NS and GEP inherit
from the properties of EST and RRT. The pseudo-codes of
both MP and both DA algorithms are given in Appendix C.

3.1 Experimental setup
The experimental comparison is based on two environments:
a ballistic task using a 4-DOF simulated robot arm and a
maze environment called SimpleMaze, see Figure 8. In both
environments, the state space is continuous and time is dis-
crete.

3D ballistic throw The planar robot arm ballistic throw
environment simulates the trajectory of a projectile thrown
by a 3D 4-joint robot arm inspired from (Cully 2019). The
velocities (θ̇i)i∈[0,3] ∈ [−1rad.s−1, 1rad.s−1] of the joints
of the robot arm are controlled by an MLP. The throw is
divided into acceleration-release phases. The acceleration
phase is a single time step of control of the robot joints. After
the acceleration phase, the end effector of the robot releases

6

(a) 3D ballistic throw. (b) SimpleMaze.

Figure 8: Studied environments. (a) In 3D ballistic throw,
an agent controls the angular speed (θ̇i)i∈[0,3] of a 4-joint
3D robot arm in order to throw a projectile. The outcome
o of the policy is the final position of the projectile. (b) In
SimpleMaze, the agents start from a fixed position (−1, 0)
and must reach the upper right corner.

the projectile which then follows a ballistic trajectory. The
outcome is the (x, y) coordinates of impact.

The expansion operator of DS algorithms truly achieves
local expansions in this environment. First, by decreasing
the magnitude of the polynomial mutations with η = 2000
(Deb and Deb 2014), we make sure that any mutated pol-
icy is similar to the one from which it originated. Second,
by reducing the acceleration phase to a single time step, we
avoid the accumulation of differences between trajectories
of the dynamical system controlled by the mutated policy
and by its parent. This ensures the smoothness of the mΘ

mapping. Moreover, without obstacles, there is no discon-
tinuity in the trajectory of the projectile, and the function
Dsys+env (Equation (7)) remains smooth under all circum-
stances. Under these constraints, the f : Θ→ O mapping is
such that small perturbations in Θ yield small changes inO.

SimpleMaze We chose a Maze environment as it facili-
tates visualization of the exploration properties of the algo-
rithms. A rollout lasts 50 time steps. The outcome corre-
sponds to the final position of the agent at the end of the
rollout. The agent starts from (−1, 0) and receives at each
time step the position of (x, y) ∈ [−1, 1] × [−1, 1] at the
current time step as input and outputs the next displacement
(dx, dy) ∈ [−0.1, 0.1]× [−0.1, 0.1]. The agent does not per-
ceive the walls. The magnitude of the polynomial mutations
(η = 15), the duration of a rollout as well as the discontinu-
ities caused by the walls result in non-local expansions (as
shown in Figure 7), with similar policy parameters leading
possibly to very different outcomes.

Metrics, hyper-parameters and technical details In or-
der to assess the expansion of a DS algorithm, we use the
previously defined domain expansion metric. We splitO into
a Gexpansion × Gexpansion expansion grid. The expansion
score corresponds to the number of expansion cells filled
with at least one policy over the total number of expansion
cells. Implementations details are presented in Appendix A
and hyper-parameters are summarized in Appendix B.

3.2 Results
Results on 3D ballistic throw In this section, we verify
that in this environment GEP and NS inherit the search prop-
erties of RRT and EST, and that, as expected, GEP explores
O faster than NS.

Figure 9b presents the expansion score obtained by GEP
and NS after 1000 generations. It confirms that GEP expands
faster across O and converges quickly towards a maximum2

that NS struggles to reach. These results are analogous to the
performance of RRT and EST described above. The similar-
ities between the selection operator of both DS algorithms
and their MP counterpart enables similar exploration perfor-
mance in the ballistic task, an environment that preserves the
locality of expansions.

Coverage visualization Figure 9a presents the concave
hull obtained by the exploration trees of GEP and NS af-
ter 500 generations in one run. We observe that NS spends
numerous generations paving the center of the reachable out-
come space (|Y | < 5) whereas GEP expands in all directions
and quickly finds the limits of the reachable search space.

Results in SimpleMaze We previously argued that, if the
expansion operator is local, NS and GEP have search prop-
erties that are similar to their MP counterparts. We also ex-
plained that the f : Θ → O mapping is not smooth in Sim-
pleMaze, which results in non-local expansions. In this sec-
tion we assess the consequences of non-local expansions by
comparing the exploration performance of NS and GEP. We
show that this non-locality results in loosing the properties
inherited from RRT and EST.

Figure 9c presents the expansion and density scores ob-
tained by NS, GEP and RS in Simple Maze. It shows that
both NS and GEP outperform RS. Therefore, the f : Θ 7→ O
mapping is smooth enough for NS and GEP to benefit from
their selection operator.

However, the performances of NS and GEP in Simple-
Maze differ from their performances in the ballistic throw.
NS and GEP perform similarly during the first 500 gener-
ations. Then, the expansion of NS accelerates and outper-
forms the expansion of GEP by achieving a full exploration
of the maze after about 2500 generations while GEP gener-
ally fails to reach the end of the maze and only reaches an
expansion score of 0.9 after the same number of generations.

The difference in expansion rates after 500 generations
arises from a progressive degradation of the locality of the
expansion operator. As explained in Section 2.5, because of
the non-locality caused by the discontinuous environment
due to walls and the non-linear neural network policy, ex-
panding a policy which yields an outcome in the second cor-
ridor or beyond often results in a policy blocked by the first
wall. Figure 10 illustrates this degradation by underlining
the increasing distance between the outcome of a selected
policy and the outcome of its expanded versions as the se-
lected policy progresses through the maze. We see that the

2The non-rectangular shape of O in the 3D ballistic throw en-
vironment makes some cells of the expansion grid unreachable,
which explains why GEP eventually covers only about ∼ 60% of
O.

7

(a) Concave hull 3D ballistic throw. (b) Expansion 3D ballistic throw. (c) Expansion SimpleMaze.

Figure 9: (a) Visualisation of the concave hull of the exploration trees of NS (blue) and GEP (pink) in 3D ballistic throw. (b)
Expansion scores of GEP and NS in 3D ballistic throw. As the expansion operator is local, GEP inherits exploration properties
from RRT and expands faster than NS. (c) Expansion scores of GEP, NS and a random search (RS) baseline in SimpleMaze.
The non-local expansions result in NS exploring slightly faster than GEP. Both NS and GEP outperform RS.

Figure 10: Mean distance between the outcome of a selected
policy and the outcomes of its expanded versions depend-
ing on its position in the SimpleMaze. We observe that this
distance increases as we progress through the maze i.e the
expansion operator gets increasingly more non-local. The
mean distances are computed for 100 expansions per se-
lected policies and 200 selected policies per cell. Results are
averaged over 10 runs of NS and 10 runs of GEP.

further we progress through the maze, the more distant the
outcome of an expanded policy get from the outcome of a
selected policy. In other words, the better the policy, the less
local the expansion operator becomes.

However, these better policies constitute promising step-
ping stones for further exploration (Woolley and Stanley
2012). Therefore, it is important to select those most ad-
vanced policies to, eventually, discover policies yielding
outcomes further in the maze. That is exactly what the filter-
ing mechanisms of NS do. Figure 11 presents the outcomes
of the selected policies by NS and GEP through one run. In
Figure 11a, the smooth change of colors shows that the se-
lected policies by NS at a given generation correspond to the
most advanced policies in the maze.

On the contrary, GEP does not integrate any filter-
ing mechanisms. Therefore, GEP keeps sampling policies
blocked in the already well-explored areas of the maze (see
Figure 11b). Thus, GEP requires more generations to deal
with the degraded expansion operator which results in a
slower increase of the expansion score.

These results show that, in an environment where the

(a) NS (b) GEP

Figure 11: History of the selected policies in SimpleMaze
(2000 generations run).

f : Θ → O mapping lacks smoothness, the properties in-
herited from RRT and EST are lost, which means that the
selection-expansion mechanisms do not behave as originally
intended. Even though both NS and GEP outperform ran-
dom sampling of policies, additional heuristics such as fil-
tering mechanisms must be exploited to overcome difficult
expansions with degraded expansion operators.

Discussion & Conclusion
In this article, we presented a comparison between two
divergent search algorithms: GEP and NS. We started by
presenting a unifying framework called selection-expansion
which draws a parallel between both algorithms and two
Motion Planning algorithms, EST and RRT.

An experimental study showed that in an environment like
the 3D ballistic throw where the f : Θ → O mapping is
smooth enough, GEP and NS inherit the exploration prop-
erties from their Motion Planning counterpart. In that case,
GEP explores faster the environment than NS.

By contrast, maze results show that, even though GEP and
NS share common selection-expansion properties with RRT
and EST, they do not share the same exploration abilities if
the expansion operator is not local. In such situations, the ex-
perimental study showed that NS outperforms GEP by using
efficient filtering mechanisms.

8

This work opens up the question of restoring locality in
complex environments where the expansion operator is non-
local. In (Lehman et al. 2018), the authors partially restore
locality using safe mutations. However, safe mutations only
tackle one source of non-localities coming from the non-
linear nature of neural network policies. Discontinuities and
non-linearities of the dynamical system like the walls in
SimpleMaze are still an important source of non-locality in
the expansion operators. Based on this observation, the main
research direction for future work should be to search for a
generic way to restore a form of locality in environments
where the expansion operator is not local.

Furthermore, the results in SimpleMaze highlight the ben-
efits of the filtering mechanism of NS when the algorithm is
stuck in an exploration bottleneck. It could be interesting to
search for a variant of GEP equipped with compatible filter-
ing mechanisms.

Acknowledgements
This work was partially supported by the French Na-
tional Research Agency (ANR), Project ANR-18-CE33-
0005 HUSKI.

References
Akkaya, I.; Andrychowicz, M.; Chociej, M.; Litwin, M.;
McGrew, B.; Petron, A.; Paino, A.; Plappert, M.; Powell, G.;
Ribas, R.; et al. 2019. Solving Rubik’s Cube with a Robot
Hand. arXiv preprint arXiv:1910.07113 .

Andrychowicz, M.; Baker, B.; Chociej, M.; Jozefowicz, R.;
McGrew, B.; Pachocki, J.; Petron, A.; Plappert, M.; Powell,
G.; Ray, A.; et al. 2018. Learning dexterous in-hand manip-
ulation. arXiv preprint arXiv:1808.00177 .

Bentley, J. L. 1975. Multidimensional Binary Search Trees
Used for Associative Searching. Commun. ACM 18(9):
509–517. ISSN 0001-0782.

Benureau, F.; and Oudeyer, P.-Y. 2016. Behavioral Diver-
sity Generation in Autonomous Exploration through Reuse
of Past Experience. Frontiers in Robotics and AI 3: 1–2.
ISSN 2296-9144.

Cideron, G.; Pierrot, T.; Perrin, N.; Beguir, K.; and Sigaud,
O. 2020. QD-RL: Efficient Mixing of Quality and Diversity
in Reinforcement Learning.

Colas, C.; Sigaud, O.; and Oudeyer, P. 2018. GEP-PG: De-
coupling Exploration and Exploitation in Deep Reinforce-
ment Learning Algorithms. CoRR abs/1802.05054.

Cully, A. 2019. Autonomous skill discovery with
Quality-Diversity and Unsupervised Descriptors. CoRR
abs/1905.11874.

Cully, A.; and Demiris, Y. 2018. Quality and Diversity Op-
timization: A Unifying Modular Framework. IEEE Trans-
actions on Evolutionary Computation 22(2): 245–259.

Deb, K.; and Deb, D. 2014. Analysing mutation schemes for
real-parameter genetic algorithms. International Journal of
Artificial Intelligence and Soft Computing 4: 1–28.

Doncieux, S.; Laflaquière, A.; and Coninx, A. 2019. Novelty
search: a theoretical perspective. In Proceedings of the Ge-
netic and Evolutionary Computation Conference, 99–106.
Prague Czech Republic: ACM. ISBN 978-1-4503-6111-8.

Doncieux, S.; Paolo, G.; Laflaquière, A.; and Coninx,
A. 2020. Novelty Search Makes Evolvability Inevitable.
In Proceedings of the 2020 Genetic and Evolutionary
Computation Conference, GECCO ’20, 85–93. New York,
NY, USA: Association for Computing Machinery. ISBN
9781450371285.

Ecoffet, A.; Huizinga, J.; Lehman, J.; Stanley, K. O.; and
Clune, J. 2019. Go-Explore: a New Approach for Hard-
Exploration Problems.

Forestier, S. 2019. Intrinsically Motivated Goal Exploration
in Child Development and Artificial Intelligence: Learning
and Development of Speech and Tool Use. Ph.D. thesis, U.
Bordeaux.

Forestier, S.; and Oudeyer, P.-Y. 2016. Modular active
curiosity-driven discovery of tool use. In 2016 IEEE/RSJ
International Conference on Intelligent Robots and Systems
(IROS), 3965–3972. Daejeon, South Korea: IEEE. ISBN
978-1-5090-3762-9.

Gu, S.; Holly, E.; Lillicrap, T.; and Levine, S. 2016. Deep
Reinforcement Learning for Robotic Manipulation with
Asynchronous Off-Policy Updates. ArXiv: 1610.00633.

Heess, N.; TB, D.; Sriram, S.; Lemmon, J.; Merel, J.;
Wayne, G.; Tassa, Y.; Erez, T.; Wang, Z.; Eslami, S. M. A.;
Riedmiller, M. A.; and Silver, D. 2017. Emergence of
Locomotion Behaviours in Rich Environments. CoRR
abs/1707.02286.

Hsu, D.; Latombe, J. .; and Motwani, R. 1997. Path planning
in expansive configuration spaces. In Proceedings of Inter-
national Conference on Robotics and Automation, volume 3,
2719–2726 vol.3.

Kleinbort, M.; Solovey, K.; Littlefield, Z.; Bekris, K. E.; and
Halperin, D. 2018. Probabilistic completeness of RRT for
geometric and kinodynamic planning with forward propa-
gation. arXiv:1809.07051 [cs] ArXiv: 1809.07051.

Lavalle, S. M. 1998. Rapidly-Exploring Random Trees: A
New Tool for Path Planning. Technical Report 98-11, Com-
puter Science Department, Iowa State University.

LaValle, S. M. 2006. Planning Algorithms. Cambridge:
Cambridge University Press. ISBN 978-0-511-54687-7 978-
0-521-86205-9.

Lehman, J.; Chen, J.; Clune, J.; and Stanley, K. O. 2018.
Safe Mutations for Deep and Recurrent Neural Networks
through Output Gradients. arXiv:1712.06563 [cs] ArXiv:
1712.06563.

Lehman, J.; and Stanley, K. O. 2011. Abandoning Objec-
tives: Evolution Through the Search for Novelty Alone. Evo-
lutionary Computation 19(2): 189–223. ISSN 1063-6560,
1530-9304.

Matheron, G.; Perrin, N.; and Sigaud, O. 2019. The
problem with DDPG: understanding failures in determin-

9

istic environments with sparse rewards. arXiv preprint
arXiv:1911.11679 .
Matheron, G.; Perrin, N.; and Sigaud, O. 2020. PBCS : Effi-
cient Exploration and Exploitation Using a Synergy between
Reinforcement Learning and Motion Planning.
Silver, D.; Huang, A.; Maddison, C. J.; Guez, A.; Sifre, L.;
Van Den Driessche, G.; Schrittwieser, J.; Antonoglou, I.;
Panneershelvam, V.; Lanctot, M.; et al. 2016. Mastering the
game of Go with deep neural networks and tree search. Na-
ture 529(7587): 484–489.
Silver, D.; Schrittwieser, J.; Simonyan, K.; Antonoglou, I.;
Huang, A.; Guez, A.; Hubert, T.; Baker, L.; Lai, M.; Bolton,
A.; et al. 2017. Mastering the game of Go without human
knowledge. Nature 550(7676): 354–359.
Such, F. P.; Madhavan, V.; Conti, E.; Lehman, J.; Stan-
ley, K. O.; and Clune, J. 2017. Deep Neuroevolution: Ge-
netic Algorithms Are a Competitive Alternative for Training
Deep Neural Networks for Reinforcement Learning. CoRR
abs/1712.06567: 1–2.
Vinyals, O.; Babuschkin, I.; Czarnecki, W. M.; Mathieu, M.;
Dudzik, A.; Chung, J.; Choi, D. H.; Powell, R.; Ewalds,
T.; Georgiev, P.; et al. 2019. Grandmaster level in Star-
Craft II using multi-agent reinforcement learning. Nature
575(7782): 350–354.
Woolley, B. G.; and Stanley, K. O. 2012. Exploring Promis-
ing Stepping Stones by Combining Novelty Search with In-
teractive Evolution. CoRR abs/1207.6682.

10

A Implementation details
In both GEP and NS, a KD-tree (Bentley 1975) is used to
accelerate the nearest-neighbor computations. New policies
are added at each generation. NS keeps the cost of recon-
structing the KD-tree low via the filtering mechanism of its
archive. However, in the vanilla version of GEP, every ex-
panded policies are added to the tree. As a result, the size of
the tree surges and reconstructing the kd-tree becomes com-
putationally very expensive. To avoid reconstructing the tree
at each iteration, a second small KD-tree keeps track of the
most recent policies and is reconstructed at every genera-
tion. The main KD-tree is updated only every Nupdate after
transferring the content of the small KD-tree.

B Hyper-parameters

Symbols
Nsel/exp Number of selection/expansion,
Rneigh Radius of the neighborhood considered

for weight computation (EST),
s0 Position of the starting point,
Nsamples Number of samples per expansion (EST),
Ntimestep Length of the trajectory,
Nselection Number of selected policies,
Nlayers Number of layers of the MLP,
Nneurons Number of neurons per layer,
Ninputs Number of inputs of the policy,
Noutputs Number of outputs of the policy,
Noffspring Number of offspring per selected policy
Ngeneration Number of generation
pexpansion Probability for a selected policy to be ex-

panded,
pmutation Probability for a weight in a selected pol-

icy to be mutated,
η Parameter for the polynomial mutation
k Number of nearest neighbors considered

for novelty computation (NS),
Gexpansion Grid size (expansion),
Gdensity Grid size (density),
Nfilter archive Number of policies added to the archive

per generation (GEP),

Table 1: List of symbols.

Hyper-parameters
Parameter RRT EST
Nsel/exp 1000 1000
Rneigh None 0.2
s0 (-1,0) (-1,0)
Nsamples None 10
grid size (expansion) 4×4 4×4

Table 2: Hyper-parameters used in the Motion Planning al-
gorithms in the Simple Maze.

Hyper-parameters
Parameter Ballistic Simple Maze
Ntimestep 1 50
Nselection 1 100
Nlayers 2 2
Nneurons 50 50
Ninputs 5 2
Noutputs 5 2
Noffspring 2 2
Ngeneration 500 1000
pexpansion 1. 1.
pmutation 0.1 0.1
η (polynomial muta-
tions)

2000 15

k 15 15
Gexpansion 10 4
Nfilter archive (NS) 10 6
policy type MLP MLP

Table 3: Hyper-parameters used in the Diversity algorithms
in the different experiments.

11

C Algorithms
C.1 Motion Planning algorithms

Algorithm 1 Rapidly-Exploring Random Trees

1: Initialize exploration tree:
2: T ← s0

3: while iteration < Nsel/exp do
4: ssamp ← random config() . selection operator
5: ssel ← nearest neighbor(T, ssamp)
6: urand ← random control() . random action
7: snew ← expand(ssel, urand) . expansion operator
8: T ← T.update((ssel, snew, urand)) . update search tree

Algorithm 2 Expansive Spaces Trees (NS variant)

1: Initialize exploration tree:
2: T ← s0

3: while iteration < Nsel/exp do
4: N ← compute weight(T) . compute weights (novelty-like)
5: ssel ← select(T,N) . selection operator (weight proportionate)
6: urand ← random control() . random action
7: snew ← expand(ssel, urand) . expansion operator
8: T ← T.update((ssel, snew, urand)) . update search tree

C.2 Diversity algorithms

Algorithm 3 Vanilla Goal Exploration Process (Selection-Expansion variant)

1: Initialize population:
2: P ← init population()
3: while generation < Ngeneration do
4: for i = 1 : Nselection do
5: ogoal ← random outcome() . selection operator
6: (θsel, osel)← nearest neighbor(P, ogoal)
7: θnew ← expand(θsel) . expansion operator
8: onew ← evaluate(θnew) . compute outcome
9: P ← P + [(θnew, onew)]

12

Algorithm 4 Novelty Search (Selection-Expansion variant)

1: Initialize population, expanded policies & archive:
2: P ← init population()
3: M ← []
4: A← []
5: while generation < Ngeneration do
6: N ← novelty({P +M}, A+ P) . compute novelty scores
7: P ′ ← []
8: for i = 1 : Nselection do . population filtering
9: P ′ ← P ′ + [select({P +M}, N)] . selection operator (novelty proportionate)

10: P ← P ′

11: M ← []
12: for (θi, oi) in P do
13: θnew ← expand({θi}) . expansion operator
14: onew ← evaluate(θnew) . compute outcome
15: M ←M + [(θnew, onew)]

16: A← A+ sample(M,Nfilter archive) . archive filtering

13

