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Abstract

The present paper is devoted to study the existence of a solution u for a quasili-
near second order differential equation with homogeneous Dirichlet conditions, where the
right-hand side tends to infinity at u = 0. The problem has been considered by several
authors after the 70’s. Mainly, nonnegative right-hand sides are considered and thus only
nonnegative solutions are possible. Here we consider the case where this right-hand side
can change the sign and not restrictions on the growth at u = 0 are assumed. We show
that a nonnegative solution in a sense introduced in the paper still exists. Moreover, this
solution is stable with respect to the right-hand side and is unique if the right-hand side
is nonincreasing in u. We also show that if the right-hand side goes to infinity at zero
faster than 1/|u| then only nonnegative solutions are possible. In another case nonpositive
solution or even solutions changing the sign are possible.

Keywords: Singular equations, monotone operators, existence, uniqueness, positive and non-
positive solutions.

Mathematics Subject Classification: 35J25

1 Introduction

The existence of a nonnegative solution for a singular semilinear second order partial differential
problem with homogeneous Dirichlet conditions such as{

−div(A(x)∇u) = F (x, u) in Ω

u = 0 on ∂Ω,
(1.1)

is a classical problem which has been first considered by several authors. Here Ω is a bounded
open set of RN , A ∈ L∞(Ω)N×N is uniformly elliptic and the right-hand side F : Ω×(0,∞)→ R
satisfies

lim
s→0

F (x, s) = +∞, a.e. x ∈ Ω. (1.2)

In [8], it is shown the existence and uniqueness of a nonnegative solution assuming that the limit
in (1.1) is uniform in Ω and F = F (x, s) decreasing in s. Indeed, in [8] the equation is not written
in a divergence form and the solution is a classical solution, i.e. it is in C2(Ω)∩C0(Ω̄), which is
strictly positive in Ω. The authors also study the behavior of the solution at the boundary and
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give some partial results about the existence of solution when F is not necessarily decreasing
in s. In [7] it is considered the case where A is the identity and F = F (x, s) = 1/sγ + (λs)q

with γ, λ, q > 0. It is shown that for every γ > 0 and every q > 1, there exists λ̃ ∈ (0,∞) such
that a solution exists if λ < λ̃ and there is not solution if λ ≥ λ̃. The existence and uniqueness
of classical solution for every λ ≥ 0 and p < 1 was before proved in [19].

Looking for solutions in a Sobolev space, the problem has been considered in [3], where it
is studied the case F (x, s) = f(x)/sγ, with γ > 0, f ≥ 0 not identically zero, f ∈ Lr(Ω), for
some r ≥ 1. It is proved the existence of a solution in H1

loc(Ω) ∩ W 1,1
0 (Ω), which is strictly

positive in Ω. The authors also study the integrability of u and ∇u depending on γ and m. In
this paper the function u is a solution in the distribution sense, that is, taking test functions in
D(Ω). It is proved in [1] that more general test functions can be considered and that there is
just one solution which can be obtained as the limit of the solutions corresponding to replace
F by Fn(x, s) = fn(x)/(s + 1/n) where fn ≥ 0 increases to f . Moreover it is studied the
homogenization result corresponding to replace A in (1.1) by a sequence of matrix functions
An.

In [13], it is considered the case where F satisfies

0 ≤ F (x, s) ≤ h(x)

(
1

sγ
+ 1

)
, a.e. x ∈ Ω, ∀ s ≥ 0, (1.3)

with 0 < γ ≤ 1 and h in a certain space Lr(Ω), r > 1. In this case, the authors provide a
new definition of nonnegative solution which does not need the use of the strong maximum
principle. It is shown that this solution is stable when we replace the function F by a sequence
Fn converging pointwise to F and satisfying (1.3) with h and γ independent on F . In particular,
this shows that these are the solutions we find by approximating the singular function F by
non-singular functions. It is also proved the uniqueness of solution if F is decreasing in s. The
results are used to carry out the homogenization when the open set Ω is replaced by a sequence
of open sets Ωε satisfying similar conditions to those which appear in [6]. The extension of the
existence, stability and uniqueness results to the “strong singular” case where F satisfies the
weaker assumption

0 ≤ F (x, s) ≤ h(x)

Γ(s)
, a.e. x ∈ Ω, ∀ s ≥ 0, (1.4)

with h as above and Γ a Lipschitz function, strictly increasing, and such that Γ(0) = 0 is carried
out in [14] (see also [16]). The corresponding extension of the homogenization result for varying
domains is considered in [15].

Excepting [8] where F (x, s) decreasing in s implies that F (x, s) can take negative values
for s bigger enough, the rest of the papers we have mentioned above consider a function F :
Ω × [0,∞) → [0,∞) in (1.1). Thus, by the maximum principle, if there exists a solution for
(1.1), it must be nonnegative. However, taking F which can take nonnegative values introduces
several questions such as: Is there still a positive solution? Can we find nonnegative solutions
or even solutions changing the sign? To give an answer to these questions is the first motivation
of the present paper. Indeed, with respect to the existence of nonpositive solutions we must
refer for example to [9], [10], where it is considered the existence of nonnegative solutions for −∆u = λG(x, u)− 1

|u|β
in Ω

u = 0 on ∂Ω,

(1.5)

with λ > 0, G nonsingular and strictly positive (some other conditions are needed) and β ∈
(0, 1). Then, it is proved that a nonnegative solution exists if and only if λ is bigger than a
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certain λ̃ > 0. Replacing u by −u, this provides an example of a singular function

F (x, s) =
1

|s|β
− λG(x, s)

satisfying (1.2) for which problem (1.1) has a negative solution.
In [11], it is also considered the case F (x, s) = g(x, s) + f(x), with |g(x, s)| ≤ λ|s|p−1,

0 < p < 1, f ∈ Lm(Ω), m > N/2. Assuming A symmetric, the solution is defined as a
minimum point for the functional

1

2

∫
Ω

A∇u · ∇u dx−
∫

Ω

G(x, u) dx, G(x, s) =

∫ s

0

F (x, t) dt,

and can change the sign. The definition of solution given by the authors uses test functions
which vanish at u = 0 and thus the equation is satisfied in Ω \ {u = 0}. It is proved the
uniqueness for nonnegative solutions and g(x, .) decreasing.

In the present paper, more generally than (1.1) we deal with the problem{
−div a(x, u,∇u) = F (x, u) in Ω

u = 0 on ∂Ω,
(1.6)

with a : Ω×R×RN → RN a Carathéodory function satisfying usual assumptions in such way
that the operator

v ∈ W 1,p
0 (Ω) 7→ −div a(x, v,∇v) ∈ W−1,p′(Ω), (1.7)

is pseudo-monotone in the sense of Leray-Lions ([17], [18]), for some p > 1 and it is such that
a(x, 0, 0) = 0 (see (2.6), (2.7), (2.8) and (2.9) below for the exact assumptions on a).

In the first part of the paper we are interested in the existence of nonnegative solutions for
(1.6) although F can take nonnegative values. We assume F = F (x, s) a Carathéodory function
from Ω× [0,∞) into R∪ {∞}. It is nonnegative at s = 0 (being able to take an infinite value)
and has a growth at s→ +∞ at most of order p− 1. Namely, there exists ν > 0 not too large
such that for every δ > 0, there exists kδ ∈ Lp

′
(Ω), kδ ≥ 0, such that

F (x, s) ≤ kδ(x) + νsp−1, a.e. x ∈ Ω, ∀ s ≥ δ.

Observe that this assumption is guaranteed if F satisfies (1.4). Since we do not assume F to be
nonnegative, we also introduce a below estimate assuring that F−(x, v) is in W−1,p′(Ω) for every
v ∈ W 1,p

0 (Ω) (see (2.15)). With these general hypotheses we show that a nonnegative solution
still exists. In fact, similarly to [13] and [14] we introduce a suitable definition of solution (it
is in particular a solution in the distribution sense) for which we show existence, stability with
respect to the right-hand side and uniqueness for F (x, s) non increasing in s and a independent
of s. The estimates we use to get the result are inspired in [13] and [14] although we use more
general test functions. In particular, we observe that due to the nonlinearity of the operator
given by (1.7), some duality arguments used in the choice of the test functions in [13] and [14]
cannot be used in the present setting.

In the second part of the paper we consider the question relative to the existence of non-
positive solutions or even solutions changing the sign. Thus, the function F is now assumed to
be defined in Ω× R. In Section 4 we show that if there exists δ, τ > 0 such that

F (x, s) ≥ τ

|s|
, ∀ s ∈ (−δ, 0), (1.8)
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then every solution of (1.6) is necessarily nonnegative. That is, although, now F can take
nonnegative values, the fact that it is very large near s = 0 is enough to preclude the existence
of solutions taking negative values in a portion of Ω. Taking in particular F of the form

F (x, s) =
f(x)

|s|γ
− g(x), (1.9)

with f(x) ≥ ρ a.e. in Ω for some ρ > 0, and γ ≥ 1, we get that all the solutions for (1.6)
are nonnegatives. Now, the question is What happens if γ < 1? As we said above, references
[9], and [10] show that it is possible to get nonpositive solutions. Here we give in Section 5 a
different example in the simple case Ω = (0, l) ⊂ R, a(x, s, ξ) = ξ and F given by (1.9) with
f and g positive constants and γ ∈ (0, 1). By a suitable change of variables, the problem is
transformed into  −w

′′ =
1

|w|γ
− 1 in (0, l)

w(0) = w(l) = 0.

(1.10)

We show that although there is a unique strictly positive solution, there also exist nonpositive
solutions and even solutions changing the sign, but only if l is large enough. In fact the number
of solutions increases with l and tends to infinity when l tends to infinity.

The paper is organized as follows:

• In Section 2 we show the existence of nonnegative solutions for (1.6) in the singular case
and the stability and uniqueness of these solutions.

• In Section 3 we prove the results corresponding to Section 2.

• In Section 4 we show that (1.8) implies that only nonnegative solutions are possible. The
proof of these results is given at the end of the Section.

• In Subsection 5.1 we state the results corresponding to the one-dimensional example. The
corresponding proofs are given in Subsection 5.2.

2 Existence, stability and uniqueness of nonnegative so-

lutions for the singular problem

The present section is devoted to the existence, in a sense which we describe below, of nonne-
gative solutions for problem {

−div a(x, u,∇u) = F (x, u) in Ω

u = 0 on ∂Ω,
(2.1)

where F = F (x, s) can take the value +∞ at s = 0. We also give a stability result with respect
to F for this kind of solutions. To finish, we show a uniqueness result when F is decreasing
in s and a = a(x, s, ξ) does not depend on s and is strictly monotone in ξ. The proof of these
results will be given in Section 3.

We assume the following conditions on Ω, p, a = a(x, s, ξ) and F = F (x, s):

• For Ω and p we assume:

Ω is a bounded open set in RN , N ≥ 1. (2.2)
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p ∈ (1,∞). (2.3)

Moreover, we define p∗ ∈ (1,∞], p′ ∈ (1,∞) and (p∗)′ ∈ [1,∞) by
p∗ =

Np

N − p
if p < N

p∗ is a fixed number in (1,∞) if p = N

p∗ = +∞ if p > N,

(2.4)

p′ =
p

p− 1
, (p∗)′ =

p∗

p∗ − 1
. (2.5)

• For the function a : Ω× [0,∞)× RN → RN we assume:

◦ The function a is a Carathéodory function, i.e.{
a(., s, ξ) is measurable in Ω, ∀ (s, ξ) ∈ [0,∞)× RN

a(x, ., .) is continuous in [0,∞)× RN , a.e. x ∈ Ω.
(2.6)

◦ There exist α, γ, a0 such that{
α > 0, γ ≥ 0, a0 ∈ L(p∗)′(Ω), a0 ≥ 0

a(x, s, ξ) · ξ ≥ α|ξ|p − γsp − a0(x)s, ∀ (s, ξ) ∈ [0,∞)× RN , a.e. x ∈ Ω.
(2.7)

◦ There exist β, b such that{
β > 0, b ∈ Lp(Ω), b ≥ 0,

|a(x, s, ξ)| ≤ β(
∣∣ξ|+ s+ b(x)

)p−1
, ∀ (s, ξ) ∈ [0,∞)× RN , a.e. x ∈ Ω.

(2.8)

◦ The function a is monotone in the second variable, i.e.(
a(x, s, ξ)− a(x, s, η)

)
· (ξ − η) ≥ 0, ∀ s ∈ [0,∞), ∀ ξ, η ∈ RN , a.e. x ∈ Ω. (2.9)

Moreover, we define λ by

λ = lim inf
R→∞

min

{
R∫

Ω
|v|pdx

: v ∈ W 1,p
0 (Ω) \ {0},

∫
Ω

(
a(x, v,∇v) · ∇v + γ|v|p

)
dx = R

}
. (2.10)

• For the function F : Ω× [0,∞)→ R ∪ {+∞}, we assume:

◦ The function F is a Carathéodory function, i.e.

F (., s) is measurable in Ω, ∀ s ∈ [0,∞), F (x, .) is continuous in [0,∞), a.e. x ∈ Ω. (2.11)

◦
F (x, 0) ≥ 0, a.e. x ∈ Ω. (2.12)

◦ There exists ν ≥ 0 such that for every δ > 0, there exists kδ satisfying

kδ ∈ L(p∗)′(Ω), kδ ≥ 0, F (x, s) ≤ kδ(x) + νsp−1, ∀ s ≥ δ, a.e. x ∈ Ω. (2.13)

◦ The constants γ in (2.7), ν in (2.13), and λ defined by (2.10) are related by

γ + ν < λ. (2.14)
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◦

If p ≤ N,

{
∃ν̃ ≥ 0, k̃ ∈ L(p∗)′(Ω), k̃ ≥ 0

F (x, s) ≥ −k̃(x)− ν̃sp∗ , ∀ s ≥ 0, a.e. x ∈ Ω

If p > N,

{
∀m ∈ N, ∃k̃m ∈ L1(Ω), k̃m ≥ 0,

F (x, s) ≥ −k̃m(x), ∀ s ∈ [0,m], a.e. x ∈ Ω.

(2.15)

Remark 2.1. The minimum in (2.10) is well defined, thanks to (2.7).
If a does not depend on s and satisfies the homogeneity condition

a(x, tξ) = tp−1a(x, ξ), ∀ ξ ∈ RN , ∀ t ≥ 0, a.e. x ∈ Ω,

then λ agrees with the first eigenvalue of the operator v ∈ W 1,p
0 (Ω) 7→ −div a(x,∇v), defined by

λ = min
v∈W1,p

0 (Ω)

v 6=0

∫
Ω
a(x,∇v) · ∇v dx∫

Ω
|v|pdx

.

Moreover, if λp denotes the first eigenvalue of the p-Laplacian operator, then, we have

αλp ≤ λ. (2.16)

This inequality can be proved as follows: We take a sequence Rn tending to infinity and a
sequence un ∈ H1

0 (Ω) such that

Rn =

∫
Ω

(
a(x, un,∇un) · ∇un + γ|un|p

)
dx, lim

n→∞

Rn∫
Ω
|un|pdx

= λ. (2.17)

In particular ‖un‖Lp(Ω) tends to infinity while the first equality, (2.7) and the definition of λp
give

λ ≥ lim sup
n→∞

∫
Ω

(α|∇un|p − a0|un|)dx∫
Ω
|un|pdx

≥ αλp.

From (2.16) we deduce that a sufficient condition to have (2.14) is to assume

γ + ν < αλp.

Remark 2.2. Condition (2.7) on a implies

a(x, 0, 0) = 0, a.e. x ∈ Ω. (2.18)

In fact, taking in (2.7) s = 0, replacing ξ by tξ with t > 0, and dividing by t, we get

a(x, 0, tξ) · ξ ≥ αtp−1|ξ|p, ∀ ξ ∈ RN , ∀ t > 0, a.e. x ∈ Ω.

Letting t tend to zero, this provides

a(x, 0, 0) · ξ ≥ 0, ∀ ξ ∈ RN , a.e. x ∈ Ω,

and then (2.18).

The definition of nonnegative solution for the singular problem (2.1) is as follows
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Definition 2.3. For a bounded open set Ω ⊂ RN and functions a, F satisfying (2.6),..., (2.9),
(2.11),...,(2.15), we say that u : Ω→ R is a nonnegative solution of (2.1) if it satisfies

u ∈ Lp∗(Ω) (2.19)

u ≥ 0 a.e. in Ω (2.20)

(u− δ)+ ∈ W 1,p
0 (Ω), ∀ δ > 0 (2.21)

∇uϕ ∈ Lp(Ω)N , ∀ϕ ∈ W 1,p
0 (Ω) ∩ L∞(Ω) (2.22)

F (x, u)+ϕp ∈ L1(Ω), ∀ϕ ∈ W 1,p
0 (Ω) ∩ L∞(Ω), ϕ ≥ 0 (2.23)

∫
Ω

a(x, u,∇u) · ∇
(
h(u)ϕp) dx =

∫
Ω

F (x, u)h(u)ϕp dx

∀ϕ ∈ W 1,p
0 (Ω) ∩ L∞(Ω), ϕ ≥ 0, ∀h ∈ W 1,∞(0,∞).

(2.24)

Remark 2.4. Assumption (2.15) on F and (2.19) imply that F (x, u)− belongs to L1(Ω) for
every nonnegative solution u of (2.1). By (2.23), this proves

F (x, u)ϕp ∈ L1(Ω), ∀ϕ ∈ W 1,p
0 (Ω) ∩ L∞(Ω), ϕ ≥ 0. (2.25)

Moreover, using
∇(h(u)ϕp) = h′(u)∇uϕp + p h(u)ϕp−1∇ϕ,

and assumptions (2.8), (2.22), we also have that a(x,∇u)∇(h(u)ϕ) is in L1(Ω) for every ϕ
and h in the conditions of (2.24). Thus, the two integrals which appear in (2.24) have a sense.

Assumption (2.21) in combination with (2.20) gives

0 ≤ u < δ on ∂Ω, ∀ δ > 0,

which gives a sense to the boundary condition u = 0 on ∂Ω.

Following proposition shows that in (2.24) we can enlarge the set of test functions by intro-
ducing

W =
{
w ∈ W 1,p(Ω), ∃ϕ ∈ W 1,p

0 (Ω) ∩ L∞(Ω), ϕ ≥ 0 a.e. in Ω,

|w| ≤ ϕp a.e. in Ω,
|∇w|
ϕp−1

χ{ϕ6=0} ∈ Lp(Ω)
}
.

(2.26)

Observe that contrarily to the test functions used in (2.24), this set does not depend on the
solution u. We have preferred to give the definition of solution taking test functions of the form
h(u)ϕp with ϕ ∈ W 1,p

0 (Ω) ∩ L∞(Ω), ϕ ∈ W 1,p
0 (Ω), h ∈ W 1,∞(Ω), instead of functions in W , in

order to compare with the definition of solution given in [13] and [14].

Proposition 2.5. The space W is a vectorial subspace of W 1,p
0 (Ω). It contains the space of

functions in W 1,p(Ω) ∩ L∞(Ω) with compact support in Ω and satisfies

wv ∈ W, ∀w ∈ W, ∀ v ∈ W 1,p(Ω) ∩ L∞(Ω). (2.27)

If a function u : Ω→ R is a nonnegative solution of (2.1) in the sense established in (2.3),
then it also satisfies

F (x, u) = 0, a.e. in {u = 0} (2.28)

|∇u|p−1|∇w| ∈ L1(Ω), ∀w ∈ W (2.29)∫
Ω

a(x, u,∇u) · ∇w dx =

∫
Ω

F (x, u)w dx, ∀w ∈ W. (2.30)

7



Remark 2.6. Proposition 2.5 proves in particular that every nonnegative solution of (2.1) in
the sense given by Definition 2.3 is a solution in the distribution sense, i.e. we have

−div a(x, u,∇u) = F (x, u) in D′(Ω). (2.31)

By (2.22), we also know that u is in W 1,p
loc (Ω) and then, for every open set ω strictly contained

in Ω, we have that div a(x, u,∇u) is in W−1,p′(ω) while by (2.23) F (x, u) is in L1(ω). It is
well known that then (2.31) implies that F (x, u)v belongs to L1(Ω) for every v ∈ W 1,p(Ω) with
compact support and∫

Ω

a(x, u,∇u) · ∇v dx =

∫
Ω

F (x, u)v dx, ∀ v ∈ W 1,p(Ω) with compact support in Ω. (2.32)

The following theorem provides a stability result for the nonnegative solutions of (2.1) when
the right-hand side varies.

Theorem 2.7. We consider a bounded open set Ω ⊂ RN , a function a : Ω× [0,∞)×RN → RN ,
satisfying (2.6), (2.7), (2.8) and (2.9), and a sequence of functions Fn : Ω × R → R ∪ {∞}
such that (2.11), (2.12), (2.13) (2.14) and (2.15) hold, with constants ν, ν̃ and functions kδ, k̃
and k̃m independent of n. We also assume the existence of F : Ω× R→ R ∪ {∞} such that

For a.e. x ∈ Ω, we have: tn ≥ 0, tn → t =⇒ Fn(x, tn)→ F (x, t). (2.33)

Then, if un is a sequence of nonnegative solutions of{
−div a(x, un,∇un) = Fn(x, un) in Ω

un = 0 in Ω,
(2.34)

there exists a nonnegative solution u of (2.1) such that for a subsequence of n, still denoted by
n, we have

un → u in Lq(Ω), ∀ q < p∗ (2.35)

un ⇀ u in Lp
∗
(Ω) (2.36)

(un − δ)+ ⇀ (u− δ)+ in W 1,p
0 (Ω), ∀ δ > 0. (2.37)

Thanks to Theorem 2.7 we will deduce the existence of nonnegative solutions for (2.1) which
is given in the following theorem.

Theorem 2.8. Let Ω be a bounded open set of RN . Then, for every function a : Ω× [0,∞)×
RN → RN which satisfies (2.6), (2.7), (2.8) and (2.9), and every function F which satisfies
(2.11), (2.12), (2.13), (2.14) and (2.15), there exists a nonnegative solution of problem (2.1)
in the sense of Definition 2.3.

We finish this section with the following comparison result for the nonnegative solutions
of (2.1) when the operator a = a(x, s, ξ) does not depend on s. It proves in particular the
uniqueness of nonnegative solutions when a is strictly monotone in ξ and F = F (x, s) is
nondecreasing in s. In the case when a depends on s it is also possible to extend some uniqueness
results for pseudomonotone problems (see e.g. [2], [4], [5]), but the corresponding proofs are
more complicated.
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Theorem 2.9. Let Ω be a bounded open set of RN and let a : Ω× [0,∞)×RN → RN be which
does not depend on s and satisfies (2.6), (2.7), (2.8) and

(a(x, ξ1)− a(x, ξ2)) · (ξ1 − ξ2) > 0, ∀ ξ1, ξ2 ∈ RN , a.e. x ∈ Ω. (2.38)

We consider two functions F1 and F2 which satisfy (2.11), (2.12), (2.13) and (2.15). We also
assume

∃i ∈ {1, 2} such that Fi(x, ·) is nonincreasing, a.e. x ∈ Ω (2.39)

F1(x, ξ) ≤ F2(x, ξ), ∀ ξ ∈ RN a.e. x ∈ Ω. (2.40)

Then, if u1, u2 are nonnegative solutions of{
−div a(x,∇ui) = Fi(x, ui) in Ω

u = 0 in Ω,
i = 1, 2, (2.41)

we have
u1 ≤ u2 a.e. in Ω. (2.42)

3 Proof of the stability, existence and uniqueness results

Let us prove in this section the different results exposed in Section 2 relative to the existence
and properties of the nonnegative solutions for the singular problem (2.1).

Proof of Proposition 2.5. In order to show that W is contained in W 1,p
0 (Ω), we consider

w ∈ W and ϕ ∈ W 1,p
0 (Ω) such that

w ∈ W, ϕ ∈ W 1,p
0 (Ω) ∩ L∞(Ω), ϕ ≥ 0, |w| ≤ ϕp a.e. in Ω,

|∇w|
ϕp−1

χ{w 6=0} ∈ Lp(Ω). (3.1)

Then, taking ϕn ∈ W 1,p(Ω), ϕn ≥ 0, with compact support which converges to ϕ in W 1,p
0 (Ω)

and is bounded in L∞(Ω), it is immediate to show that the sequence

wn =
[
w ∨ (−ϕpn)

]
∧ ϕpn ∈ W

1,p
0 (Ω),

converges to w in W 1,p(Ω). This proves that w is in W 1,p
0 (Ω).

Now, we consider w ∈ W 1,p
0 (Ω)∩L∞(Ω) with compact support. Let us prove that w is in W .

It is enough to observe that for every ϕ ∈ C1
c (Ω) with ϕ ≥ ‖w‖L∞(Ω) in suppw, the functions

w and ϕ satisfy (3.1).
Let us prove that W is stable by addition. For this purpose, we take w1, ϕ1 and w2, ϕ2

which are related as in (3.1), then taking into account that for i = 1, 2 ∇wi = 0 a.e. in
{wi = 0} ⊂ {ϕi = 0} it is simple to check that w1 + w2, ϕ1 + ϕ2 also satisfy (3.1).

To show (2.27), we take w ∈ W and v ∈ W 1,p(Ω) ∩ L∞(Ω), which we can assume not
identically zero, then we observe that for ϕ satisfying (3.1), we have

|wv| ≤
(
ϕ‖v‖

1
p

L∞(Ω)

)p
,

|∇(wv)|

‖v‖
p−1
p

L∞(Ω)ϕ
p−1

χ{ϕ6=0} ≤

 |∇w|
ϕp−1

‖v‖
1
p

L∞(Ω) +
|∇v|ϕ

‖v‖
p−1
p

L∞(Ω)

χ{ϕ6=0} ∈ Lp(Ω).

Assume now u a nonnegative solution of (2.1) in the sense of Definition 2.3 and consider a
function ϕ ∈ W 1,p

0 (Ω) ∩ L∞(Ω), ϕ ≥ 0 a.e. in Ω. For Sε : [0,∞)→ R defined by

Sε(s) =
(

1− s

ε

)
∨ 0, ∀ s ≥ 0, (3.2)
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we take h = Sε in (2.24) to deduce

−1

ε

∫
{u<ε}

a(x, u,∇u) · ∇uϕpdx+ p

∫
Ω

a(x, u,∇u) · ∇ϕSε(u)ϕp−1dx

=

∫
Ω

F (x, u)Sε(u)ϕpdx.

(3.3)

In the first term of this equality we use (2.7) and (2.18) to deduce

1

ε

∫
{u<ε}

a(x, u,∇u) · ∇uϕpdx ≥ α

ε

∫
{0<u<ε}

|∇u|pϕpdx−
∫
{0<u<ε}

(γεp−1 + a0)ϕpdx

and then

lim sup
ε→0

1

ε

∫
{0<u<ε}

a(x, u,∇u) · ∇uϕpdx ≥ α lim sup
ε→0

1

ε

∫
{0<u<ε}

|∇u|pϕpdx.

For the second term, we observe that (2.8), (2.22) and Hölder’s inequality imply that the
function a(x, u,∇u) ·∇ϕϕp−1 belongs to L1(Ω). Using then that Sε(u) converges a.e. to χ{u=0}
and (2.18), and the Lebesgue dominated convergence theorem we deduce

lim
ε→0

∫
Ω

a(x, u,∇u) · ∇ϕSε(u)ϕp−1dx = 0. (3.4)

For the third term in (3.3), we use (2.25), which allows us to apply Lebesgue dominated
convergence theorem to get

lim
ε→0

∫
Ω

F (x, u)Sε(u)ϕpdx =

∫
{u=0}

F (x, 0)ϕpdx.

Therefore, taking the limit in (3.5) when ε tends to zero we obtain

0 ≥
∫
{u=0}

F (x, 0)ϕpdx+ α lim sup
ε→0

1

ε

∫
{0<u<ε}

|∇u|pϕpdx,

which by (2.12) shows (2.28) and

lim
ε→∞

1

ε

∫
{0<u<ε}

|∇u|pϕp dx = 0, ∀ϕ ∈ W 1,p
0 (Ω) ∩ L∞(Ω), ϕ ≥ 0. (3.5)

Let us now prove (2.29) and (2.30), for w ∈ W . Decomposing w = w+ +w−, where both w+

and w− belong to W , we can assume w nonnegative. We take ϕ such that (3.1) holds. Using

|∇u|p−1|∇w| ≤
(
|∇u|p−1ϕp−1

)( |∇w|
ϕp−1

χ{ϕ6=0}

)
, a.e. in Ω

and taking into account (2.22) and (3.1) we conclude that (2.29) is a simple consequence of
Hölder’s inequality.

For ε ∈ (0, 1), we define Zε ∈ W 1,∞(0,∞) by

Zε(s) =
(s
ε
− 1
)+

∧ 1. (3.6)
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Then, for δ > 0, we use (2.24) with

ϕ =

((
2s

ε
− 1

)+

∧ 1

)
(w + δ)

1
p ∈ W 1,p

0 (Ω) ∩ L∞(Ω), h = Zε

Observing that
h(u)ϕp = Zε(u)(w + δ),

we get ∫
Ω

a(x, u,∇u) · ∇wZε(u) dx+
1

ε

∫
{ε<u<2ε}

a(x, u,∇u) · ∇u (w + δ) dx

=

∫
Ω

F (x, u) (w + δ)Zε(u) dx.

Since Zε(u) vanishes on the set {u < ε} and (2.21), (2.13) and (2.15) hold, we can pass to the
limit when δ tends to zero, to get∫

Ω

a(x, u,∇u) · ∇wZε(u) dx+
1

ε

∫
{ε<s<2ε}

a(x, u,∇u) · ∇uw dx =

∫
Ω

F (x, u)wZε(u) dx.

Thanks to (2.25), (2.8), (2.29), (3.1), (3.5) and Lebesgue dominated convergence theorem we
can pass to the limit in this equality to deduce (2.30). �

Proof of Theorem 2.7. The first part of the theorem is devoted to obtain some a priori
estimates for un.

Taking into account the definition of λ given by (2.10) and (2.14), we can fix in the proof
R0, ε > 0 such that

(ν + γ)

∫
Ω

|v|pdx ≤ (1− ε)
∫

Ω

(
a(x, v,∇v) · ∇v + γ|v|p) dx

∀ v ∈ W 1,p
0 (Ω) with

∫
Ω

(
a(x, v,∇v) · ∇v + γ|v|p) dx ≥ R0.

(3.7)

For δ > 0, we take (un − δ)+ ∈ W , with δ > 0, as test function in (2.34). Taking into
account that for every t > 0, there exists Ct > 0 such that

xp ≤ (1 + t)(x− δ)p + Ctδ
p, ∀x > δ > 0, (3.8)

and defining the Sobolev constant CΩ by (CΩ does not depend on Ω if p < N)

‖v‖Lp∗ (Ω) ≤ CΩ‖∇v‖Lp(Ω), ∀ v ∈ W 1,p
0 (Ω), (3.9)

we have for every t > 0∫
{un>δ}

a(x, un,∇un) · ∇un dx =

∫
Ω

Fn(x, un)(un − δ)+ dx

≤
∫

Ω

(
kδ + νup−1

n

)
(un − δ)+dx ≤ 1

p′tp′
‖kδ‖p

′

L(p∗)′ (Ω)
+
tpCp

Ω

p

∫
{un>δ}
|∇un|pdx

+ν(1 + t)

∫
{un>δ}

(un − δ)pdx+ νCtδ
p|Ω|.

(3.10)

If ∫
{un>δ}

(
a(x, un,∇un) · ∇un + γupn

)
dx ≤ R0, (3.11)
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then, thanks to (2.7) we easily get

(un − δ)+ is bounded in W 1,p
0 (Ω). (3.12)

In another case, using (3.7) with v = (un − δ)+ we deduce from (3.10)(
1− (1− ε)(1 + t)

) ∫
{un>δ}

a(x, un,∇un) · ∇un dx

≤ 1

p′tp′
‖kδ‖p

′

L(p∗)′ (Ω)
+
tpCp

Ω

p

∫
{un>δ}
|∇un|pdx+ νCtδ

p|Ω|,

which using (2.7) and taking t small enough to have

α
(
1− (1− ε)(1 + t)

)
− tpCp

Ω

p
> 0,

proves that (3.12) is also true when (3.11) does not hold.
Observe that decomposing un as un = (un ∧ 1) + (un − 1)+, estimates (3.12) and (3.9) also

imply
un is bounded in Lp

∗
(Ω). (3.13)

We have obtained an estimate for ∇un on the set {un > δ}. Let us now obtain an estimate
on the set {un < δ}. For this purpose, we take (δ − un)+ϕp with ϕ ∈ W 1,p

0 (Ω) ∩ L∞(Ω), ϕ ≥ 0
a.e. in Ω, as test function in (2.34). We get

−
∫
{un<δ}

a(x, un,∇un) · ∇un ϕpdx+ p

∫
Ω

a(x, un,∇un) · ∇ϕϕp−1(δ − un)+dx

=

∫
Ω

Fn(x, un)(δ − un)+ϕp dx.

(3.14)

Taking into account (2.7), (2.8) and ∇un = 0 a.e. in {un = 0}, we deduce

α

δ

∫
{un<δ}
|∇un|pϕpdx+

∫
Ω

F+
n (x, un)

(
1− un

δ

)+

ϕpdx

≤
∫
{un<δ}

(γδp−1 + a0)ϕpdx+ β

∫
{un<δ}

(
|∇un|+ δ + b

)p−1|∇ϕ|ϕp−1dx

+

∫
{un<δ}

F−n (x, un)ϕp dx,

(3.15)

which using (2.15) easily implies the existence of C > 0 such that

1

δ

∫
{un<δ}
|∇un|pϕpdx+

∫
Ω

F+
n (x, un)

(
1− un

δ

)+

ϕpdx ≤C
(
‖ϕ‖pL∞(Ω) + ‖∇ϕ‖p

Lp(Ω)N

)
∀ϕ ∈ W 1,p

0 (Ω) ∩ L∞(Ω), ϕ ≥ 0 a.e. in Ω, ∀ δ ∈ (0, 1).

(3.16)

From this inequality, (3.12) and (2.13) applied to Fn, we deduce in particular

|∇un|ϕ bounded in Lp(Ω), Fn(x, un)+ϕp bounded in L1(Ω), ∀ϕ ∈ W 1,p
0 (Ω) ∩ L∞(Ω). (3.17)

Taking into account (3.12), (3.13), (2.33), Rellich-Kondrachov’s compactness theorem and
Fatou’s lemma we deduce the existence of a subsequence of un, still denoted by un, and a
function u such that{

u ∈ Lp∗(Ω), u ≥ 0 a.e. in Ω, (u− δ)+ ∈ W 1,p
0 (Ω), ∀ δ > 0

|∇u|ϕ ∈ Lp(Ω), F (x, u)+ϕ ∈ L1(Ω), ∀ϕ ∈ W 1,p
0 (Ω) ∩ L∞(Ω),

(3.18)
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and such that (2.35), (2.36) and (2.37) hold.
Returning now to (3.15) and using (2.15) applied to Fn, (2.33), (2.12) and the Rellich-

Kondrachov compactness theorem we deduce

lim
δ→0

lim sup
n→∞

(
1

δ

∫
{un<δ}
|∇un|pϕpdx+

∫
Ω

F+
n (x, un)

(
1− un

δ

)+

ϕpdx

)
= 0, (3.19)

for every ϕ ∈ W 1,p
0 (Ω) ∩ L∞(Ω), ϕ ≥ 0.

Let us now prove that u is a nonnegative solution of (2.1). By (3.18), it just remains to
show (2.24). Even more, let us prove (2.30).

Taking into account (3.17) and (2.8), we can assume the existence of σ ∈ Lp
′

loc(Ω)N , such
that

a(x, un,∇un)ϕp−1 ⇀ σϕp−1 in Lp
′
(Ω)N , ∀ϕ ∈ W 1,p

0 (Ω) ∩ L∞(Ω), ϕ ≥ 0. (3.20)

Taking w ∈ W as test function in (2.34), we get∫
Ω

a(x, un,∇un) · ∇w dx =

∫
Ω

Fn(x, un)w dx. (3.21)

In the left-hand side of this equality we use

a(x, un,∇un) · ∇w =
(
a(x, un,∇un)ϕp−1

)
·
( ∇w
ϕp−1

)
χ{ϕ 6=0},

with ϕ ∈ W 1,p
0 (Ω) ∩ L∞(Ω) associated to w following Definition (2.26) of W . Thanks to (3.20)

we can then pass to the limit when n tends to infinity, to get

lim
n→∞

∫
Ω

a(x, un,∇un) · ∇w dx =

∫
Ω

σ · ∇w dx. (3.22)

In the right-hand side of (3.21), we use (2.36), (2.37), (3.19) and assumptions (2.13), (2.15)
applied to Fn to also obtain

lim
n→∞

∫
Ω

Fn(x, un)w dx =

∫
Ω

F (x, u)w dx.

Therefore, we have shown∫
Ω

σ · ∇w dx =

∫
Ω

F (x, u)w dx, ∀w ∈ W. (3.23)

To finish, let us prove
σ = a(x, u,∇u) a.e. in Ω, (3.24)

which combined with (3.18) and (3.23) will prove that u is a nonnegative solution of (2.1).
Taking m > 0 and (un ∧m)ϕ, with ϕ ∈ C∞c (Ω) as test function in (2.34), we have∫

{un<m}
a(x, un,∇un) · ∇un ϕdx+

∫
Ω

a(x, un,∇un) · ∇ϕ (un ∧m) dx

=

∫
Ω

Fn(x, un)(un ∧m)ϕdx,
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where we can pass to the limit thanks to (2.35), (2.36), (2.37), (2.33) and (3.19) to get

lim
n→∞

∫
{un<m}

a(x, un,∇un) · ∇un ϕdx+

∫
Ω

σ · ∇ϕ (u ∧m) dx =

∫
Ω

F (x, u)(u ∧m)ϕdx.

On the other hand, using w = (u ∧m)ϕ in (3.23), we have∫
{u<m}

σ · ∇uϕdx+

∫
Ω

σ · ∇ϕ (u ∧m) dx =

∫
Ω

F (x, u)(u ∧m)ϕdx.

Thus, we have proved

lim
n→∞

∫
{un<m}

a(x, un,∇un) · ∇un ϕdx =

∫
{u<m}

σ · ∇uϕdx, ∀m > 0.

This equality allows us to use the Minty rule (see e.g. [17], [18]) to deduce (3.24). �

Proof of Theorem 2.8. For every n ∈ N, we define Fn : Ω× [0,∞)→ R by

Fn(x, s) = [F (x, s) ∨ (−n)] ∧ n, ∀ s ∈ R, a.e. x ∈ Ω.

Then, we extend Fn to Ω× R and a to Ω× R× RN by taking

Fn(x, s) = Fn(x, 0), a(x, s, ξ) = a(x, 0, ξ), ∀ (s, ξ) ∈ (−∞, 0)× RN , a.e. x ∈ Ω.

Taking into account that Fn is a Carathéodory function and |Fn(x, s)| ≤ n a simple application
of the Schauder fixed point theorem and the theory of monotone operators provides a solution
un of {

−div a(x, un,∇un) = Fn(x, un) in Ω

un ∈ W 1,p
0 (Ω).

(3.25)

Multiplying (3.25) by −u−n , we have∫
{un<0}

a(x, 0,∇un) · ∇un dx =

∫
{un<0}

Fn(x, 0)un dx,

which using (2.7) and (2.12) proves un ≥ 0, i.e. un is a nonnegative solution of (3.25). Applying
Theorem 2.7 to this sequence we deduce the existence of a subsequence of un which converges
to a nonnegative solution of (2.1). �

Proof of Theorem 2.9 For δ, k > 0, we consider the function

z =
[(
u1 − u2 − δ

)+ ∧ k
]2
,

which satisfies
∇z = 2

(
u1 − u2 − δ

)
∇(u1 − u2)χ{u2+δ<u1<k+u2+δ}

and therefore
|∇z| ≤ 2

(
(u1 − δ)+ ∧ k

)(
|∇u1|+ |∇u2|

)
a.e. in Ω.

By u1, u2 nonnegative solutions of (2.41) and properties properties (2.21) and (2.22) of the
nonnegative solutions, we get that z is a nonnegative function of W 1,p

0 (Ω)∩L∞(Ω) and therefore
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zp belongs to the space W defined by (2.26). Taking zp as test function in the difference of the
equations satisfied by u1 and u2, we get

2p

∫
{u2+δ<u1<k+u2+δ}

(a(x,∇u1)− a(x,∇u2)) · ∇(u1 − u2)
(
u1 − u2 − δ

)2p−1
dx

=

∫
Ω

(
F1(x, u1)− F2(x, u2)

)[(
u1 − u2 − δ

)+ ∧ k
]2p
dx.

(3.26)

Let us first assume F1(x, .) non decreasing, then using F1(x, u2) ≤ F2(x, u2) a.e. in Ω, we
have

2p

∫
{u2+δ<u1<k+u2+δ}

(a(x,∇u1)− a(x,∇u2)) · ∇(u1 − u2)
(
u1 − u2 − δ

)2p−1
dx

≤
∫

Ω

(
F1(x, u1)− F1(x, u2)

)[(
u1 − u2 − δ

)+ ∧ k
]2p
dx.

Here, we observe that
u1 ≤ u2 =⇒

[(
u1 − u2 − δ

)+ ∧ k
]

= 0,

while by F1 non decreassing we have

u1 ≥ u2 =⇒ F1(x, u1)− F1(x, u2) ≤ 0,

Therefore, the right-hand side of (3.26) is nonpositive which, taking into account (2.38), proves

∇u1 = ∇u2 a.e. in {u2 + δ < u1 < k + u2 + δ}, ∀ δ > 0, ∀ k > 0,

and then
∇u1 = ∇u2 a.e. in {u2 < u1},

or equivalently, ∇(u1 − u2)+ = 0 a.e. in Ω. This proves that (u1 − u2)+ is constant in every
connected component of Ω, which combined with (ui− δ)+ ∈ W 1,p

0 (Ω) for every δ > 0, i = 1, 2,
proves u1 ≤ u2 a.e. in Ω.

Assume now F2(x, .) non decreasing. Using F1(x, u1) ≤ F2(x, u1) in (3.26) we get

2p

∫
{u2+δ<u1<k+u2+δ}

(a(x,∇u1)− a(x,∇u2)) · ∇(u1 − u2)
(
u1 − δ − u2

)2p−1
dx

≤
∫

Ω

(
F2(x, u1)− F2(x, u2)

)[(
u1 − u2 − δ

)+ ∧ k
]2p
dx.

This allows to repeat the above reasoning to deduce again u1 ≤ u2 a.e. in Ω. �

4 Nonexistence of a solution taking negative values when

F is too large near s = 0.

In Section 2, we have proved the existence of a nonnegative solution for problem (2.1) when
the function F = F (x, s) on the right-hand side can take the value plus infinity at s = 0. In
the present section we prove that if F (x, s) is bigger than τ/|s|, τ > 0, when s is close to
zero, then every solution of the semilinear problem is necessarily nonnegative. This result is a
consequence of the following lemma.
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Lemma 4.1. Let Ω be a bounded open set of RN , p > 1, and a : Ω × R × RN → RN be a
function which satisfies{

a(., s, ξ) is measurable in Ω, ∀ (s, ξ) ∈ R× RN

a(x, ., .) is continuous in R× RN , a.e. x ∈ Ω.
(4.1)

◦ There exist α, γ, a0 such that{
α > 0, γ ≥ 0, a0 ∈ L(p∗)′(Ω), a0 ≥ 0

a(x, s, ξ) · ξ ≥ α|ξ|p − γ|s|p − a0(x)|s|, ∀ (s, ξ) ∈ R× RN , a.e. x ∈ Ω.
(4.2)

◦ There exist β, b such that{
β > 0, b ∈ Lp(Ω), b ≥ 0,

|a(x, s, ξ)| ≤ β(
∣∣ξ|+ |s|+ b(x)

)p−1
, ∀ (s, ξ) ∈ R× RN , a.e. x ∈ Ω.

(4.3)

Let u and H be two measurable functions in Ω such that

(u+ δ)− ∈ W 1,p
0 (Ω), ∀ δ > 0 (4.4)

H ∈ L1({u < −δ}), ∀ δ > 0 (4.5)

∃ τ, δ0 > 0 such that H ≥ τ

|u|
a.e. in {−δ0 < u < 0} (4.6)

∫
Ω

a(x, u,∇u) · ∇v dx =

∫
Ω

Hv dx

∀ v ∈ W 1,p
0 (Ω) ∩ L∞(Ω), such that ∃ δ > 0 with v = 0 in {u > −δ}.

(4.7)

Then, we have
u ≥ 0 a.e. in Ω. (4.8)

The previous Lemma implies that any solution of problem (2.1) cannot take negative values
when F (x, s) ≥ τ/|s|, τ > 0, for s small. More exactly, one has:

Theorem 4.2. Let Ω be a bounded open set of RN and p > 1. We consider a function
a : Ω×R×RN → RN which satisfies (4.1), (4.2) and (4.3) and a function F : Ω×R→ R∪{∞},
which satisfies

F (·, s) is measurable in Ω, ∀ s ∈ R, F (x, ·) is continuous in R \ {0}, a.e. x ∈ Ω (4.9)

∃ δ0, τ > 0, with F (x, s) ≥ τ

|s|
, ∀s ∈ (−δ0, 0), (4.10)

and 
if p ≤ N,

{
∃νδ ≥ 0, kδ ∈ L1(Ω), kδ ≥ 0, ∀ δ > 0

|F (x, s)| ≤ kδ(x) + νδ|s|p
∗
, ∀ s with |s| > δ, a.e. x ∈ Ω

if p > N,

{
∃km,δ ∈ L1(Ω), km,δ ≥ 0, ∀m ∈ N, ∀ δ > 0

|F (x, s)| ≤ km,δ(x), ∀ s with δ < |s| < m, a.e. x ∈ Ω.

(4.11)

Then, any measurable function u : Ω→ R which is a solution of{
−div a(x, u,∇u) = F (x, u) in Ω \ {u = 0}

u ≥ 0 on ∂Ω,
(4.12)
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in the following sense:
(u+ δ)− ∈ W 1,p

0 (Ω), ∀ δ > 0∫
Ω

a(x, u,∇u) · ∇v dx =

∫
Ω

F (x, u)v dx

∀ v ∈ W 1,p
0 (Ω) ∩ L∞(Ω), such that ∃ δ > 0 with v = 0 in {|u| < δ},

(4.13)

satisfies
u ≥ 0 a.e. in Ω. (4.14)

Remark 4.3. Problem (4.12) is non standard since the equation takes place in the set Ω\{u =
0} which depends on the solution u. In general this set is not an open set since u has not reason
to be continuous.

The fact that the equation takes place in Ω \ {u = 0} is reflected in the (mathematically
correct) formulation (4.13) where the test functions v have to vanish on the set {u = 0}.

Remark 4.4. Definition 2.3 in Section 2 was concerned with nonnegative solutions. Thus, the
functions a = a(x, s, ξ) and F = F (x, s) were only defined for s nonnegative. It is clear that
Definition 2.3 could be extended in a natural way to the case where F is defined for s ∈ R
and where the solution can take negative values. In this new setting, any such solution to (2.1)
would have to be nonnegative in view of Theorem 4.2 when the function F satisfies assumption
(4.10), reinforcing in this case the uniqueness result of Theorem 2.9.

Remark 4.5. If in Lemma 4.1 we replace assumptions (4.4), (4.5), (4.6) and (4.7) by

(u− δ)+ ∈ W 1,p
0 (Ω), ∀ δ > 0, H ∈ L1({u > δ}), ∀ δ > 0,

∃ τ, δ0 > 0 such that H ≤ − τ

|u|
a.e. in {0 < u < δ}

∫
Ω

a(x, u,∇u) · ∇v =

∫
Ω

Hv dx

∀ v ∈ W 1,p
0 (Ω) ∩ L∞(Ω), such that ∃ δ > 0 with v = 0 in {u < δ}.

Then, instead of (4.8) we have that u ≤ 0 a.e. in Ω. The proof of this result just follows by
applying Lemma 4.1 to the functions ã, ũ and H̃ defined by

ã(x, s, ξ) = −a(x,−s,−ξ), ũ = −u, H̃ = −H.

Using this result one can also modify Theorem 4.2 to prove that the solution u of a nonlinear
problem with a singular right-hand side term F (x, u) such that

F (x, u) ≤ −τ
u
, if 0 < u < δ, for some δ > 0,

which is nonpositive on the boundary is necessarily nonpositive in the whole of Ω.

The results stated in Lemma 4.1 and Theorem 4.2 are based on the fact that the sign of u on
the boundary is known. When no boundary conditions are given it is still possible to show
Lemma 4.6 below. It proves that the solution of a nonlinear problem with a singular term,
which is sufficiently large for u close to zero, cannot changes the sign.
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Lemma 4.6. Assume Ω ⊂ RN , open, a : Ω × R × RN → R satisfying (4.1), (4.2) and (4.3).
We assume there exist u ∈ W 1,p

loc (Ω) and H ∈ L1
loc(Ω) such that there exist τ, δ0 > 0 satisfying

one of the following conditions:
|H| ≥ τ

|u|
a.e. in {0 < u < δ0}∫

Ω

a(x, u,∇u) · ∇v dx =

∫
Ω

Hv dx

∀ v ∈ W 1,p(Ω) ∩ L∞(Ω), spt(v) ⊂ Ω compact, ∃ δ > 0 with v = 0 in {v < δ}.

(4.15)

or 
|H| ≥ τ

|u|
a.e. in {−δ0 < u < 0}∫

Ω

a(x, u,∇u) · ∇v dx =

∫
Ω

Hv dx

∀ v ∈ W 1,p(Ω) ∩ L∞(Ω), spt(v) ⊂ Ω compact, ∃ δ > 0 with v = 0 in {v > −δ}.

(4.16)

Then, one of the following assertions hold:

u ≥ 0 a.e. in Ω or u ≤ 0 a.e. in Ω. (4.17)

Proof of Lemma 4.1. For ε < δ0/2, we take

vε :=
(

1 +
u

ε

)−
∧ 1 ∈ W 1,p

0 (Ω) ∩ L∞(Ω), ∀ ε > 0. (4.18)

as test function in (4.7). We have

−1

ε

∫
{−2ε<u<−ε}

a(x, u,∇u) · ∇u dx =

∫
Ω

Hvε dx =

∫
{u≤−δ0}

H dx+

∫
{−δ0<u}

Hvε dx,

and thus

−
∫
{u≤−δ0}

H dx =
1

ε

∫
{−2ε<u<−ε}

a(x, u,∇u) · ∇u dx+

∫
{−δ0<u}

Hvε dx. (4.19)

By (4.6), we know that H ≥ 0 a.e. in {−δ0 < u < 0}. This allows us to use the monotone
convergence theorem in the last term, which combined with (4.2), proves

lim sup
ε→0

α

ε

∫
{−2ε<u<−ε}

|∇u|pdx+

∫
{−δ0<u<0}

H dx ≤ −
∫
{u≤−δ0}

H dx,

and thus, taking into account (4.5), we get

H ∈ L1({u < 0}), lim sup
ε→0

1

ε

∫
{−2ε<u<−ε}

|∇u|pdx ≤ − 1

α

∫
{u<0}

H dx. (4.20)

Now, we observe that thanks to (4.6), for 0 < 2ε < δ0, we have

1

2ε

∣∣{x ∈ Ω : −2ε < u < −ε
}∣∣ ≤ ∫

{−2ε<u<−ε}

1

|u|
dx ≤ 1

τ

∫
{−2ε<u<−ε}

H dx,

and then, by the first assertion in (4.20)

lim
ε→0

1

ε

∣∣{x ∈ Ω : −2ε < u < −ε
}∣∣ = 0. (4.21)
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Let us now take Ψ ∈ C∞c (RN)N . Since vε defined by (4.18) belongs to W 1,p
0 (Ω), we have∫

Ω

vε div Ψ dx = −
∫

Ω

∇vε ·Ψ dx =
1

ε

∫
{−2ε<u<−ε}

∇u ·Ψ dx. (4.22)

Taking into account (4.20) and (4.21), we have on the first hand

lim sup
ε→0

1

ε

∫
{−2ε<u<−ε}

|∇u||Ψ| dx

≤ lim
ε→0

(
1

ε

∫
{−2ε<u<−ε}

|∇u|p dx
) 1

p
(

1

ε

∣∣∣{x ∈ ω : −2ε < u < −ε
}∣∣∣) 1

p′

‖Ψ‖L∞(Ω)N = 0.

On the other hand, using the definition (4.18) of vε and Lebesgue’s dominated convergence
theorem, we have

lim
ε→0

∫
Ω

vε div Ψ dx =

∫
{u<0}

div Ψ dx.

Thus, (4.22) provides

0 =

∫
Ω

χ{u<0}div Ψ dx, ∀Ψ ∈ C∞c (RN)N =⇒ ∇χ{u<0} = 0 in D′(RN). (4.23)

This proves that χ{u<0} is a constant function in RN , but {x ∈ Ω : u(x) < 0} ⊂ Ω implies that
χ{u<0} vanishes outside Ω. Therefore χ{u<0} = 0 a.e. in RN . �

Proof of Theorem 4.2. It is easily deduced Lemma 4.1 with H(x) = F (x, u(x)). Namely,
we observe that (4.13) implies (4.4) and (4.7), while Sobolev’s embedding theorem and (4.11)
provide (4.5). Finally, assumption (4.6) follows from (4.10). �

Proof of Lemma 4.6. To fix ideas we assume in the following that (4.15) holds. The other
case is completely similar. The proof follows the ideas of Lemma 4.1.

We take ϕ ∈ W 1,p(Ω) ∩ L∞(Ω). Then, for ε > 0, we define

vε :=
[(u
ε
− 1
)+

∧ 1
]
.

Taking v = vεϕ in (4.15), we get

1

ε

∫
{ε<u<2ε}

a(x, u,∇u) · ∇uϕdx+

∫
Ω

a(x, u,∇u) · ∇ϕvε dx =

∫
Ω

Hvεϕdx.

Then, using Lebesgue dominated convergence theorem we can pass to the limit when ε tends
to zero to deduce

lim
ε→0

1

ε

∫
{ε<u<2ε}

a(x, u,∇u) · ∇uϕdx =

∫
{0<u}

(
Hϕ− a(x, u,∇u) · ∇ϕ

)
dx,

which combined with (4.2) shows

lim sup
ε→0

1

ε

∫
{ε<u<2ε}

|∇u|pϕdx < +∞. (4.24)

On the other hand, for ε < δ0/2, we have

τ

ε

∫
{ε<u<2ε}

ϕdx ≤
∫
{ε<u<2ε}

|H|ϕdx,
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and so,

lim
ε→0

1

ε

∫
{ε<u<2ε}

ϕdx = 0. (4.25)

From (4.24) and (4.25) we then deduce similarly to (4.23) (observe that now the support ofΨ
is contained in Ω). ∫

{u>0}
div Ψ dx = 0, ∀Ψ ∈ C∞c (Ω)N .

This shows that the distributional gradient of χ{u>0} is zero and so that χ{u>0} is constant a.e.
in Ω, i.e. u ≥ 0 a.e. in Ω or u ≤ 0 a.e. in Ω. �

5 A one-dimensional example of a singular equation with

many solutions which change sign.

In Section 2 we have proved the existence of a nonnegative solution for the semilinear problem
(2.1) where F = F (x, s) is nonnegative at s = 0 and can take the value +∞. Later, in Section
4, we have shown that if F (x, s) is bigger than τ/|s|, τ > 0, when s is negative and close to
zero, then every solution of (2.1) is nonnegative. If contrarily, the right-hand side F tends to
+∞ when s tends to 0 with a speed of order 1/|s|γ, 0 < γ < 1, then some examples in [9]
and [10] show that a nonpositive solution can also exist. This proves that condition (4.10) in
Theorem 4.2 is optimal in the sense that it cannot be relaxed by

F (x, s) ≥ τ

|s|γ
a.e. in {δ0 < s < 0}, with δ0, τ > 0, γ < 1.

In the present section we explore the simple example in dimension N = 1 given by −u
′′ =

f

|u|γ
− g in (0, L)

u(0) = u(L) = 0,

(5.1)

with L, f, γ positive constants and g ∈ R. We will describe all the possible solutions.
Theorems 2.8 and 2.9 applied to (5.1) show the existence and the uniqueness of a nonnegative

solution for (5.1), for every f, γ > 0 and g ∈ R. For γ ≥ 1, Theorem 4.2 shows that every
solution of the problem is nonnegative. So, the solution given by Theorem 2.8 is the unique
solution to this problem. Also, if γ < 1 and g ≤ 0, the right-hand side in problem (5.1) is
nonnegative and then, the classical weak maximum principle implies that every solution has
also to be nonnegative. Thus, we will assume in what follows

f, g > 0, 0 < γ < 1.

We first observe that a change of scale in the variables x and u allows us to reduce the
number of parameters. Namely, for r, t > 0 to be chosen, we define the new unknown function
w by

w(x) = ru(tx), x ∈ (0, L/t). (5.2)

The differential equation in (5.1) is then transformed into

−w′′ = frγ+1t2

|w|γ
− grt2 in (0, L/t).
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Taking

r =

(
g

f

) 1
γ

, t =
f

1
2γ

g
γ+1
2γ

, l =
L

t
, (5.3)

problem (5.1) reduces to  −w
′′ =

1

|w|γ
− 1 in (0, l)

w(0) = w(l) = 0.

(5.4)

The main results of this section are Theorem 5.3 and 5.7 below. They show in particular
the existence of solutions to problem (5.1) which take negative values and even change its sign
when l is big enough. Moreover the number of such solutions increases as l increases.

5.1 Statements of the results concerning problem 5.4.

In the introduction to this section we were speaking about solutions of problem (5.4) and (5.1),
but we did not define what we understand by a solution of these singular problems. The
definition that we will use is the following one:

Definition 5.1. Let γ be such that
0 < γ < 1.

A measurable function w : (0, l)→ R is a solution of (5.4) if it satisfies

w ∈ L1(0, l) (5.5)

(|w| − δ)+ ∈ W 1,1
0 (0, l), ∀ δ > 0 (5.6)

1

|w|γ
∈ L1

loc(0, l) (5.7)

−w′′ = 1

|w|γ
− 1 in D′(0, l). (5.8)

This definition could seem to be weaker than the one given by Definition 2.3 for nonnegative
solutions, but this is not the case because of the following Proposition.

Proposition 5.2. Let w be a solution of (5.4) in the sense of Definition 5.1. Then one has

w ∈ W 2,1(0, l) ∩H1
0 (0, l), (5.9)

and then in particular
1

|w|γ
∈ L1(0, l), w ∈ C1([0, l]). (5.10)

Moreover, defining c ≥ 0 by
c = |w′(0)|2, (5.11)

one has
|w′|2 = b(w) + c in [0, l], (5.12)

where b : R→ R is the function defined by

b(s) = − 2

1− γ
s

|s|γ
+ 2s, ∀ s ∈ R, (5.13)

where b(0) is understood as zero.
Finally, when c 6= 0 one has

w ∈ W 2,q(0, l),
1

|w|γ
∈ Lq(0, l), ∀ q < 1

γ
. (5.14)
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In the case where γ = 1/2, we are able to describe all the solutions of problem (5.4) in the
sense of Definition 5.1. This is the most simple case of the main result of this section

Theorem 5.3. Let γ be such that

γ =
1

2
.

Define T0 by
T0 = 2

√
2π.

Then, the set of the solutions of problem (5.4) in the sense of Definition 5.1 is the union of the
following branches:

1. For every l > 0, there exists 1 solution of problem (5.4) which is positive in (0, l). This
solution is the unique nonnegative solution of (5.4).

2. For l = T0, there exists 1 solution of problem (5.4) which is negative in (0, l). This
solution is the unique negative solution of (5.4).

3. For every l > T0, there exist 4 solutions of problem (5.4) which are as follows: the first
one is negative in (0, l), and is the unique solution (strictly) negative on (0, l); the 3 other
ones change sign at every zero and are negative on 1 nonempty subinterval of (0, l) and
positive on 1 or 2 nonempty subintervals of (0, l).

4. For l = 2T0, there exists 1 solution of problem (5.4) which is negative in (0, T0)∪ (T0, 2T0)
but which vanishes at T0.

5. For every l > 2T0, there exist 4 solutions to problem (5.4) which change sign at every zero
and are negative on 2 nonempty subintervals of (0, l) and positive on 1, 2 or 3 nonempty
subintervals of (0, l).

6. Simlilarly, for every k ∈ N, with k ≥ 3, for every l = kT0, there exists 1 solution of
problem (5.4) which is negative on

⋃k−1
j=0(jT0, (j + 1)T0) but which vanishes at t = jT0,

j ∈ {1, ..., k − 1}.

7. Similarly, for every k ∈ N, with k ≥ 3, for every l > kT0, there exist 4 solutions to problem
(5.4) which change sign at every zero and are negative on k nonempty subintervals of (0, l)
and positive on k − 1, k or k + 1 nonempty subintervals of (0, l).

Therefore when γ = 1/2, problem (5.4) has exactly

1 + 4k solutions if kT0 < l < (k + 1)T0, ∀ k ≥ 0, (5.15)

4k − 2 solutions if l = kT0, ∀ k ≥ 1. (5.16)

Remark 5.4. Let us denote by Bj
k, with k ∈ N, k ≥ 1, and j = 1, 2, 3, 4, the 4 functions

which to any l > k associate the 4 solutions of problem (5.4) in (0, l), which are negative
on k subintervals of (0, l), described in the latest point of Theorem 5.3, or more exactly their
extensions by zero to (0,∞) of these 4 solutions. Since these 4 solutions are uniquely defined by
formulas (5.38) and (5.42) below, it is not difficult to prove that the functions Bj

k are continuous
on (kT0,+∞) with value in L1(0,∞) or even W 1,p

0 (0,∞) for any p < ∞. This proves that in
the case where γ = 1/2, the set of all the solutions of (5.4) coincide with a set made of a
countable number of bundles of 4 continuous branches originating at every point l = kT0, with
k ≥ 1 to which one has to add the branch of the nonnegative solution originating for l = 0.
A representation of these branches with the type of solutions corresponding to each branch is
given in figure 2.
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Remark 5.5. As already said in the introduction of this section, problems (5.1) and (5.4)
are equivalent through the change of (independent and dependent) variables (5.2). In the case
γ = 1/2, since (5.3) implies that

g =

(
fl

L

) 2
3

,

setting

M =

(
fT0

L

) 2
3

,

Theorem 5.3 implies that problem (5.1) has a unique solution (which is positive) when 0 < g <

M , and a unique negative solution when g ≥ M . Moreover at every value g = Mk
2
3 , with

k ∈ N, a bundle of 4 branches of solutions appears, so that problem (5.1) has exactly 1 + 4k

solutions for Mk
2
3 < g < M(k + 1)

2
3 , k ≥ 0 and 4k − 2 solutions for g = Mk

2
3 , k ≥ 1.

Theorem 5.3 refers to the case γ = 1/2. In the case γ ∈ (0, 1/2) ∪ (1/2, γ) we do not know
the exact number of solutions of problem (5.4) and the structure of such solutions. However
we can still show some related results. For this purpose consider the function b defined by
(5.13), whose graph is given in figure 1. The following proposition gives some properties of this
function b we will need later to state and prove the results corresponding to the existence of
solutions for problem (5.4).

Proposition 5.6. For γ ∈ (0, 1), the function b defined by (5.13) satisfies

b is strictly increasing in (−∞,−1) and (1,∞), b is strictly decreasing in (−1, 1)

lim
s→−∞

b(s) = −∞, b(−1) =
2γ

1− γ
, b(1) = − 2γ

1− γ
, lim

s→∞
b(s) =∞

b vanishes at s = − 1

(1− γ)
1
γ

, s = 0, s =
1

(1− γ)
1
γ

.

(5.17)

• For 0 ≤ c < 2γ/(1 − γ), the equation b(s) + c = 0 has three solutions z1(c), z2(c) and
z3(c) with z1(c) < −1, 0 ≤ z2(c) < 1, 1 < z3(c).

• For c = 2γ/(1− γ) the equation b(s) + c = 0 has two solutions z1(2γ/(1− γ)) < −1 and
z2(2γ/(1− γ)) = 1.

• For c > 2γ/(1− γ), equation b(s) + c = 0 has a unique solution z1(c) and z1(c) < 1.

We define T− : [0,∞)→ R and T+ : [0, 2γ/(1− γ))→ R by

T−(c) = 2

∫ 0

z1(c)

dt√
b(t) + c

, ∀ c ∈ [0,∞). (5.18)

T+(c) = 2

∫ z2(c)

0

dt√
b(t) + c

, ∀ c ∈
[
0,

2γ

1− γ

)
. (5.19)

Then, we have

T− ∈ C0([0,∞)), T ∗ := min
c≥0

T−(c) > 0, lim
c→∞

T−(c) =∞ (5.20)

T+ ∈ C0
([

0,
2γ

1− γ

))
, T+ is strictly increasing, T+(0) = 0, lim

c→ 2γ
1−γ

T+(c) =∞. (5.21)
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Using the function T− defined by 5.18 we can now state our main result about the existence
of solution for problem (5.8) for γ ∈ (0, 1).

Theorem 5.7. Let γ be in (0, 1). Define T ∗ by (5.20) and T0 by

T0 = T−(0). (5.22)

Then, we have:
If T− is strictly increasing in [0,∞), then all the results in the statement of Theorem 5.3

still hold true.

If T− is not necessarily strictly increasing, we have:

1. For every l > 0, there exists 1 solution of problem (5.4) which is positive in (0, l). This
solution is the unique nonnegative solution of (5.4).

2. For every l < kT ∗, k ≥ 1, there is not any solution of problem (5.4) which is negative
on at least k nonempty open subintervals of (0, l) and vanishes on the boundary of these
intervals.

3. For every l ≥ T ∗, there exists at least 1 solution of problem (5.4) which is negative in
(0, l).

4. For every l = kT0, k ≥ 1, there exists 1 solution of problem (5.4) which is negative on⋃k−1
j=0(jT0, (j + 1)T0) but which vanishes at t = jT0, j ∈ {1, ..., k − 1}.

5. For every l > kT0, k ≥ 1, there exist at least 4 solutions of problem (5.4) which are
negative on exactly k disjoint open subintervals of (0, l), they vanish on the boundary of
these subintervals and are positive on the rest of (0, l), which is composed by k − 1, k or
k + 1 disjoint open subintervals.

In particular, for γ ∈ (0, l), problem (5.4) has at least

1 + 4k solutions if kT0 < l < (k + 1)T0, ∀ k ≥ 0, (5.23)

4k − 2 solutions if l = kT0, ∀ k ≥ 1. (5.24)

Remark 5.8. By Theorem 5.7, the number of solutions of (5.4) agrees with (5.15) or (5.16),
when the function T− is strictly increasing. In the case where γ = 1/2 this follows from the
next proposition which provides an explicit expression for T−. In the general case we do not
know when this is true or not. A numerical computation provides figure 5 showing the graph
for T− for several values on γ. It seems to indicate the existence of γ̃ ≤ 1/2, close to 1/2, such
that T− is not strictly increasing for γ ∈ (0, γ̃), while it is strictly increasing for γ ≥ γ̃.

Proposition 5.9. Assume γ = 1
2
. Then, the functions z1 and z2 defined by Proposition 5.6

are given by

z1(c) = −
(

2 +
c

2
+
√

4 + 2c
)
, ∀ c ≥ 0, z2(c) = 2− c

2
−
√

4− 2c, ∀ c ∈ [0, 2]. (5.25)

The functions T− and T+ defined by (5.18) are given by

T−(c) = 2
√

2

π − 2 arctan

√
−z1(c)− 2

√
−z1(c)√

−z1(c)
+

√
−z1(c)− 2

√
−z1(c)

 , ∀ c ≥ 0,

(5.26)

T+(c) = 2
√

2

2 arctanh

√
z2(c)√

2
√
z2(c)− z2(c)

−
√

2
√
z2(c)− z2(c)

 , ∀ s ∈ [0, 2). (5.27)

The function T+ is a strictly increasing function in [0,∞).
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5.2 Proof of the results corresponding to the one-dimensional ex-
ample.

The results exposed above are essentially a consequence of Theorem 5.10 below. First of stating
and proving this result, let us show Propositions 5.2 and 5.6.

Proof of Proposition 5.2. We start by observing that if w is a solution of (5.4) in the sense of
Definition 5.1, then, (5.7) and (5.8) imply that w is in W 2,1

loc (0, l), and therefore w′ is in C1(0, l).
Multiplying equation (5.8) by w′, we get

−
(
|w′|2

2

)′
=

w′

|w|γ
− w′ in (0, l),

and thus, there exists a constant c ∈ R such that

|w′|2 = − 2

1− γ
w

|w|γ
+ 2w + c in (0, l). (5.28)

Since w ∈ L1(0, l), we deduce from this equality that |w′|2 belongs to L1(0, l) and therefore
w ∈ H1(0, l). Then, (5.6) implies that w beongs to H1

0 (0, l). In particular, w belongs to
C0([0, l]) and then (5.28) shows that |w′| is in C0([0, l]).

Integrating equation (5.8) in (δ, l − δ), with δ > 0, we also have∫ l−δ

δ

dx

|w|γ
= −w′(l − δ) + w′(δ) + l − 2δ.

Since |w′| in C0([0, l]) implies w′ in L∞(0, l), the monotone convergence theorem implies that

1

|w|γ
∈ L1(0, l), (5.29)

and then (5.8) proves that w is in W 2,1(0, l). In particular, this means that w′ is in C0([0, l])
and by (5.28) that (5.12) holds.

If c 6= 0, then, using that w ∈ C1([0, l]) and that |w′(s)| = c2 for every s ∈ [0, l] such that
w(s) = 0, we deduce that 1/|w|γ belongs to Lq(0, l) for every q < 1/γ which combined with
(5.4) shows (5.14). �

Proof of Proposition 5.6. Statement (5.17) and the results about the number and position
of the zeros of the function b follow immediately by studying the sign of the derivative of b.

The continuity of the functions T− and T+ defined by (5.18) and (5.19) is simple to check.
Moreover, the definition of T+ and z2(0) = 0 implies T+(0) = 0. Since for c = 2γ/(1− γ), we
have z2(c) = 1 and b(1) + c = b′(1) = 0, we get

lim
c→ 2γ

1−γ

T+(c) = 2 lim
c→ 2γ

1−γ

∫ z2(c)

0

dt√
b(t) + c

=∞. (5.30)

In order to prove that T+ is strictly increasing, we recall that Theorems 2.8 and 2.9 show
that problem (5.1) has a unique nonnegative solution for every l ≥ 0. Taking into account
Theorem 5.10 below (see (5.41)) this solution is necessarily obtained as the restriction to [0, l]
of a periodic function of period T−(c) + T+(c), with l = T+(c) for some c ∈ [0, 2γ/(1 − γ)).
Moreover, by (5.42), it is given by

w(x) =


G−1(x) if x ∈

[
0,
l

2

]
G−1(l − x) if x ∈

[ l
2
, l
]
,
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with G defined by (5.36). This provides the implicit definition of w
x =

∫ w(x)

0

dt√
b(t) + c

if x ∈
[
0,
l

2

]
x =

∫ z2

0

dt√
b(t) + c

+

∫ z2

w(x)

dt√
b(t) + c

if x ∈
[ l

2
, l
]
.

The uniqueness of w implies then that for every l ∈ [0,∞), there exists a unique c ∈ [0, 2γ/(1−
γ)), which satisfies T+(c) = l. Combined with T+(0) = 0, (5.30) and T continuous, this shows
that T+ is strictly increasing.

In order to study the values of T−, we consider the function R defined by

R(z) = T−(z−1
1 (−z)), ∀ z ∈ (z−1

1 (0),∞), (5.31)

which is obtained by writing the function T− in the variable z = −z1(c). Then, recalling
definition (5.13) of b and that z1(c) is the unique negative root of b+ c, we get that R is given
by

R(z) = 2

∫ z

0

dr√
2

1−γ

(
r1−γ − z1−γ

)
+ 2(z − r)

, ∀ z ≥ 1

(1− γ)
1
γ

. (5.32)

Now, for z ∈ (0,∞) we define ψ : [0,∞)→ R by

ψ(r) =
2

1− γ
(
r1−γ − z1−γ)+

2

zγ
(z − r), ∀ r > 0.

Then, using

ψ(z) = 0, ψ′(r) = 2

(
1

rγ
− 1

zγ

)
≥ 0, ∀ r ∈ (0, z],

we deduce that ψ(r) ≤ 0 for every r ∈ [0, z], which implies

2

1− γ
(
r1−γ − z1−γ)+ 2(z − r) ≤ 2

(
1− 1

zγ

)
(z − r), ∀ r ∈ [0, z],

and then, for every z > 1, we have∫ z

0

dr√
2

1−γ

(
r1−γ − z1−γ

)
+ 2(z − r)

≥ 1√
2
(
1− 1

zγ

) ∫ z

0

dr√
z − r

=

√
2zγ+1

zγ − 1
.

Taking into account (5.32), the function z → zγ+1/(zγ − 1) increasing for z > (1 + γ)
1
γ and

(1− γ)−
1
γ > (1 + γ)

1
γ for 0 < γ < 1, we deduce

R(z) ≥
√

2

γ(1− γ)
1
γ

, ∀ z ≥ 1

(1− γ)
1
γ

, lim
z→∞

R(z) =∞.

Returning to the variable c = z−1
1 (−z), we have then proved

T−(c) ≥
√

2

γ(1− γ)
1
γ

, ∀ c ≥ 0, lim
c→∞

T−(c) =∞. (5.33)

�
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Theorem 5.10. Assume that w is a solution of (5.4) and define c by (5.11).

• If 0 ≤ c < 2γ/(1 − γ), then w is the restriction to [0, l] of a function in W 2,1
loc (R) (W 2,q

loc (R),
for every q < 1/γ if c > 0), still denoted by w, which is a solution of

−w′′ = 1

|w|γ
− 1 in R, (5.34)

periodic of period
T (c) := T−(c) + T+(c), (5.35)

with T−, T+ defined by (5.18), (5.19). Defining G by

G(s) =

∫ s

0

dt√
b(t) + c

, ∀ s ∈ [z1(s), z2(s)], (5.36)

we have that one of the two following conditions hold:
a)

l = kT (c), k ≥ 1 or l = kT (c) + T−(c), k ≥ 0 (5.37)

and for every j ∈ Z, we have

w(x) =


G−1

(
jT (c)− x

)
if x ∈

[
jT (c)− T+(c)

2
, jT (c) +

T−(c)

2

]
G−1

(
x− (jT (c) + T−(c))

)
if x ∈

[
jT (c) +

T−(c)

2
, (j + 1)T (c)− T+(c)

2

]
.

(5.38)

{
w
(
jT (c)

)
= w

(
jT (c) + T−(c)

)
= 0

w < 0 in
(
jT (c), jT (c) + T−(c)

)
, w > 0 in

(
jT (c) + T−(c), (j + 1)T (c)

) (5.39)



w is strictly decreasing in
[
jT (c)− T+(c)

2
, jT (c) +

T−(c)

2

]
w is strictly increasing in

[
jT (c) +

T−(c)

2
, (j + 1)T (c)− T+(c)

2

]
w
(
jT (c) +

T−(c)

2

)
= z1(c), w

(
(j + 1)T (c)− T+(c)

2

)
= z2(c)

w
(
jT (c) +

T−(c)

2
− r
)

= w
(
jT (c) +

T−(c)

2
+ r
)
, ∀ r ∈

[
0,
T (c)

2

]
,

(5.40)

b)
l = kT (c), k ≥ 1 or l = kT (c) + T+(c), k ≥ 0 (5.41)

w(x) = z(x− T+(c)) with z satisfying (5.38), (5.39) and (5.40). (5.42)

• If c ≥ 2γ/(1− γ), then
l = T−(c). (5.43)

Defining G by (5.36) in [z1(c), 1], we have that w is the restriction to [0, l] of a function in
W 2,q
loc (R) for every q < 1/γ solution of (5.34) defined by

w(x) =


G−1(−x) if x ∈

(
−∞, l

2

)
,

w(x) = G−1
(
x+ l

)
if x ∈

[ l
2
,∞
)
.

(5.44)
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Moreover, w satisfies
w > 0 in R \ (0, l), w < 0 in (0, l) (5.45)

w is strictly decreasing in
(
−∞, l

2

)
, w is strictly increasing in

( l
2
,∞
)

w
( l

2

)
= z1(c), w

( l
2
− r
)

= w
( l

2
+ r
)
, ∀ r ∈ (0,∞)

lim
x→±∞

w(x) =

{
1 if c = 2γ

1−γ

+∞ if c > 2γ
1−γ

(5.46)

Reciprocally, for every c ∈ R and l given by (5.37) or (5.41) if c < 2γ/(1− γ) and (5.43) if
c ≥ 2γ/(1− γ), the above expressions provide a solution of (5.4).

For γ = 1/2, the graph of the different types of solutions given by Theorem 5.10 is represented
in figures 3 and 4.

Proof of Theorem 5.10. We distinguish the different cases depending on the value of c:

Case 1: 0 ≤ c < 2γ/(1− γ).

By (5.12) and Proposition 5.6 we know that w([0, l]) is contained either in [z1(c), z2(c)] or
[z3(c),∞), but since z3(c) > 0 and w(0) = w(l) = 0, the last possibility cannot hold true.
Thus, we have

w(x) ∈ [z1(c), z2(c)], ∀x ∈ [0, l].

From w(0) = w(l) = 0, there exists r ∈ (0, l) such that w′(r) = 0, which combined with (5.12)
implies w(r) = z1(c) or w(r) = z2(c). To fix ideas we assume

∃ r ∈ (0, l) with w(r) = z1(c), (5.47)

the case w(r) = z2(c) is similar. Using (5.4) and z1(c) < −1, we have

w′(r) = 0, w′′(r) > 0. (5.48)

This implies that for x close to r, w′(x) is negative if x < r and positive if x > r. Taking into
account (5.12), we then have

w′√
b(w) + c

=

{
−1 in the biggest interval (α, r) such that b(w) + c > 0 in (α, r)

1 in the biggest interval (r, β) such that b(w) + c > 0 in (r, β).
(5.49)

Extending w as the solution of the differential equation (5.49) in the case α = 0 or β = l, we
can assume

w(α) = w(β) = z2(c). (5.50)

Using that b′(z1(c)), b′(z2(c)) 6= 0 we get that the function s → 1/
√
b(s) + c is integrable in

[z1(c), z2(c)]. Then, integrating in [x, r] of [r, x] in (5.49), and defining G : [z1(c), z2(c)]→ R by
(5.36), we get

G(w(x)) =


r − x− T−(c)

2
if x ∈

[
r − T (c)

2
, r
]

x− r − T−(c)

2
if x ∈

[
r, r +

T (c)

2

]
,

(5.51)
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with T−(c) and T (c) defined by (5.18), (5.35), i.e.
T−(c) = 2

∫ 0

z1(c)

dt√
b(t) + c

= −2G(z1(c))

T (c) = 2

∫ z2(c)

z1(c)

dt√
b(t) + c

= 2
(
G(z2(c))−G(z1(c))

)
.

(5.52)

Observe that
G(s) < 0 if s ∈ [z1(c), 0), G(s) > 0 if s ∈ (0, z2(c)],

implies

w < 0 in
(
r− T

−(c)

2
, r+

T−(c)

2

)
, w > 0 in

(
r− T (c)

2
, r− T

−(c)

2

)⋃(
r+

T−(c)

2
, r+

T (c)

2

)
.

Equation 5.51 provides the function w in the interval [α, β] = [r − T (c)/2, r + T (c)/2].
Recalling (5.48) we can now extend the definition of w to [r − T (c), r + T (c)]. Continuing
with this process and taking into account that by assumption w(0) = 0 we conclude that w is
periodic of period T (c) and its is given by formula (5.38) if w′(0) ≤ 0 or by (5.42) if w′(0) > 0.
The properties of w stated in (5.40) easily follow from (5.38). The fact that l must satisfy
(5.37) or (5.41) just follows from w(l) = 0.

Case 2: c = 2γ/(1− γ).

Using (5.28) and then that b+c is nonnegative on the range of w, we deduce by Proposition 5.6
that w([0, l]) is contained in [z1,+∞). By (5.28) and w(0) = 0, we get that in a neighborhood
of zero, the function w is the solution of one of the two following Cauchy’s problems{

w′ =
√
b(w) + c

w(0) = 0
or

{
w′ = −

√
b(w) + c

w(0) = 0
(5.53)

In the first case, defining G by (5.36), and using that the unique point bigger than zero, where
b + c vanishes is 1, we deduce that for every δ ∈ (0, l) such that in the interval (0, δ), the
function w is increasing and less than 1, we have

G(w(x)) = x in (0, δ), (5.54)

but for c = 2γ/(1− γ), we have b(1) = b′(1) = 0, and thus

G(1) =

∫ 1

0

dt√
b(t) + c

=∞. (5.55)

Then (5.54) would provide the expression of G in the whole interval [0, l]. However the function
constructed in this way is positive in (0,∞) in contradiction with w(l) = 0. This proves that
only the second possibility in (5.53) can hold true. Using then that w′(0) ≤ 0 and vanish on
0, l we conclude that there exists r ∈ (0, l) such that w′(r) = 0. By (5.28) and z1 the unique
negative zero of b + c, we must have w(r) = z1. Now, we can repeat the reasoning in the case
c < 2γ/(1 − γ) when we assumed (5.48). This shows that (an extension of) w satisfies (5.51)
where now, thanks to (5.55), we have

T = 2

∫ 1

z1(c)

dt√
b(t) + c

=∞.
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Then, (5.48) provides the expression of w in the whole of R. Since w(l) = 0, we get by symmetry
that r = l/2 and we easily conclude (5.43), (5.44), (5.45) and (5.46).

Case 3: c > 2γ/(1− γ).

Now, the unique zero of the function b + c is z1(c) and by (5.28), we have that w([0, l]) is
contained in [1,∞). Taking into account w(0) = w(l) = 0, we deduce as above the existence of
r ∈ (0, l) such that w′(r) = 0, w(r) = z1 < −1 and then that (5.51) holds with the difference
that now, there is not any point z2 bigger than z1 such that b(z2) + c = 0. Therefore T must
be defined as

T = 2

∫ ∞
z1(c)

dt√
b(t) + c

=∞.

Statement (5.51) then provides an expression of (an extension of) w in the whole of R. By
w(0) = w(l) = 0 we conclude again by symmetry that (5.43), (5.44), (5.45) and (5.46) hold
where now the limit of w at infinity is +∞ and not 1. �

Let us now prove Theorem 5.7. Observe that Theorem 5.3 follows from this result and Propo-
sition 5.9. Thus, the proof of Theorem 5.3 will not explicitly given.

Proof of Theorem 5.7. By Theorems 2.7 and 2.9, we know that problem (5.4) has a unique
positive solution for γ ∈ (0, 1).

If l < T ∗, then we have T−(c) > l for every c ≥ 0, but since w(0) = w(l) = 0, w < 0
in (0, l), we get that Theorem 5.10 (see 5.39), (5.43)) implies l = T−(c). Therefore, it cannot
exist a negative solution of (5.4) in (0, l) for l < T ∗. Analogously, for l < kT ∗ it cannot exist
a solution of (5.4) which is negative in k nonempty open subintervals of (0, l) and vanishes on
the boundary.

Assume l ≥ T ∗. Since T− is continuous and tends to infinity as infinity, we have that for
every l ≥ T ∗, there exists c ≥ 0 such that T−(c) = l. Defining then w by (5.38) if c < 2γ/(1−γ)
or (5.44) if c ≥ 2γ/(1 − γ) we deduce the existence of a negative solution of (5.4). If T− is
strictly increasing then T ∗ = T0 and equation T−(c) = l has a unique solution, and so there is
a unique negative solution for problem (5.4).

Assume l > T0. By Proposition 5.6, the function T− + T+ is continuous in [0, 2γ/(1 − γ))
and satisfies

min
c∈[0,2γ/(1−γ))

(T−(c) + T+(c)) ≥ T−(0) + T+(0) = T0, lim
c→ 2γ

1−γ

(T−(c) + T+(c)) = +∞,

therefore, there exists c ∈ (0, 2γ/(1 − γ)) such that T−(c) + T+(c) = l. Equation (5.38) then
provides a solution of problem (5.4) which is negative in (0, T−(c)) and positive in (T−(c), l),
with 0 < T−(c) < l, while (5.42) provides a solution which is positive in (0, T+(c)) and negative
in (T+(c), l). On the other hand, using also that T−+ 2T+ is continuous in [0, 2γ/(1− γ)) and

min
c∈[0,2γ/(1−γ))

(T−(c) + 2T+(c)) ≥ T−(0) + 2T+(0) = T0, lim
c→ 2γ

1−γ

(T−(c) + 2T+(c)) = +∞,

we can also find another number c ∈ (0, 2γ/(1 − γ)) such that T−(c) + 2T+(c) = l. Equation
(5.38) then provides a solution of problem (5.4) which is negative in (0, T−(c)) ∪ (T (c), T (c) +
T−(c)) and positive in (T−(c), T (c)), with 0 < T−(c) < T (c)+T−(c) < l. Joined to the negative
solution in (0, l) found above, this proves the existence of at least 4 solutions of (5.4) which are
negative in a nonempty interval of (0, l) and positive in zero, one or two nonempty intervals of
(0, l).

In the case l > kT0, k ≥ 2 a similar reasoning provides 4 solutions which are negative in k
nonempty intervals of (0, l) and positive in k − 1, k or k + 1 intervals.
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For l = kT0, k ≥ 2, equation (5.38) with c = 0 provides a solution which is nonpositive in
(0, l) but vanishes on jT0 for j = 1, . . . , k − 1. Observe that by Theorem 5.10 and T+(c) > 0
for every c > 0, we get that this is is the unique solution satisfying this property.

If the function T− is strictly increasing, then the function mT−+ nT+ is strictly increasing
for every m,n ∈ N, with m + n ≥ 1 and then it is injective. Therefore the solutions described
above are the only ones which are negative in k nonempty intervals of (0, l). �

Proof of Proposition 5.9. We recall that z1(c) < z2(c) are the smallest solutions of the
equation b(s) + c = 0, with b given by (5.13). For γ = 1/2 this equation reduces to

4
√
−s+ 2s+ c = 0 if s < 0, −4

√
s+ 2s+ c = 0 if s > 0,

whose resolution provides (5.25).
Let us now compute T−, i.e. the integral in (5.18), which written as function of

η =
√
−z1(c)⇐⇒ c = −4η + 2η2, (5.56)

reads as

−2

∫ 0

−η2

dt√
2t+ 4

√
−t+ 2η2 − 4η

,

or, using the change of variables t = −p2 ⇐⇒ p =
√
−t, as∫ η

0

4p dp√
−2p2 + 4p+ 2η2 − 4η

= 2
√

2

∫ η

0

p dp√
η2 − p2 − 2(η − p)

.

Using a second change of variables√
η2 − p2 − 2(η − p) = r(η − p) =⇒ p =

r2η − η + 2

r2 + 1
=⇒ dp =

4r(η − 1)

(r2 + 1)2
dr.

we can transform this integral into a rational integral. Namely, denoting

r1 =

√
η2 − 2η

η
, (5.57)

we have

T−(c) = 4
√

2

∫ ∞
r1

r2η − η + 2

(r2 + 1)2
dr = 8

√
2(η − 1)

∫ ∞
r1

r2

(r2 + 1)2
dr + 4

√
2(2− η)

∫ ∞
r1

dr

r2 + 1
,

where a primitive of r2/(1 + r2) is given by∫
r2

(r2 + 1)2
dr = −1

2

∫
r
d

dr

(
1

r2 + 1

)
dr = − r

2(r2 + 1)
+

1

2
arctan r.

Using (5.57), we then get

T−(c) = 2
√

2π − 4
√

2 arctan

√
η2 − 2η

η
+ 2
√

2η2 − 4η. (5.58)

By (5.56), this provides expression (5.26) for T−.
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Let us now show that T− is strictly increasing in c. By (5.58) and η =
√
−z1(c) strictly

increasing in c, we just need to show that the function

φ(η) = −2
√

2 arctan

√
η2 − 2η

η
+
√

2η2 − 4η

is strictly increasing in
[√
−z1(0),∞

)
= [2,∞). This just follows from

φ′(η) =
(2η − 1)(η − 2)

(η − 1)
√

2η2 − 4η
≥ 0, ∀ η ∈ (2,∞).

�
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Figure 1: Graph of the function b.

Figure 2: Branches of solutions for γ = 1/2.
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Figure 3: The cases γ = 1
2
, c = 0, c = 1.8, c = 1.9999.
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Figure 4: The cases γ = 1
2
, c = 2, c = 2.1.
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Figure 5: The graph of T− for γ = 0.2, γ = 0.4, γ = 0.5, γ = 0.7
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