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Using Kinematic GNSS Data to Assess the Accuracy
and Precision of the TanDEM-X DEM Resampled at
I-m Resolution Over the Western Corinth
Gulf, Greece

Pierre Briole

, Simon Bufféral, Dimitar Dimitrov, Panagiotis Elias, Cyril Journeau, Antonio Avallone,

Konstantinos Kamberos, Michel Capderou, and Alexandre Nercessian

Abstract—We assess the accuracy and the precision of the
TanDEM-X digital elevation model (DEM) of the western Gulf of
Corinth, Greece. We use a dense set of accurate ground coordinates
obtained by kinematic Global Navigation Satellite Systems (GNSS)
observations. Between 2001 and 2019, 148 surveys were made,
at a 1s sampling rate, along highways, roads, and tracks, with
a total traveled distance of ~25000 km. The data are processed
with the online Canadian Spatial Reference System precise point
positioning software. From the output files, we select 885252 co-
ordinates from epochs with theoretical uncertainty below 0.1 m in
horizontal and 0.2 m in vertical. Using specific calibration surveys,
we estimate the mean vertical accuracy of the GNSS coordinates at
0.2 m. Resampling the DEM by a factor of 10 allows one to compare
it with the GNSS in pixels of metric size, smaller than the width of
the roads, even the small trails. The best fit is obtained by shifting
the DEM by 0.47 + 0.03 m upward, 0.10 &= 0.1 m westward, and 0.36
=+ 0.1 m southward. Those values are 20 times below the nominal
resolution of the DEM. Once the shift is corrected, the root mean
square deviation between TanDEM-X DEM and GNSS elevations
is 1.125m. In forest and urban areas, the shift between the DEM
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and the GNSS increases by ~0.5m. The metric accuracy of the
TanDEM-X DEM paves the way for new applications for long-term
deformation monitoring of this area.

Index Terms—Digital elevation model (DEM), geophysics,
Global Navigation Satellite Systems (GNSS), land applications,
quality control, surface topography.

I. INTRODUCTION

HE western Gulf of Corinth, Greece is one of the most
T seismic areas in Europe. For 30 years, it has been gathering
the efforts of a wide community of European geophysicists
seeking for better observing and deciphering the physics of
earthquakes and the processes occurring before them [1]. The
long-term scientific and social objectives are to contribute to the
forecasting of earthquakes. The area is monitored by the Corinth
Rift Laboratory (CRL),' one of the Near Fault Observatories
of the European research infrastructure EPOS (European Plate
Observing System).?

Space techniques are increasingly used in the CRL. This
concerns the positioning made with the Global Navigation Satel-
lite Systems (GNSS) at permanent and campaign sites [2], and
through kinematic surveys. This concerns also the ground defor-
mation monitoring made by interferometry of satellite aperture
radar images (InSAR) with various systems observing in X, L,
and C bands [3], [4]. TerraSAR-X, one of them, was used in
particular for the analysis of an active fault located beneath
the city of Patras [5] and that of the bridge of “Rio-Antirio”
connecting Peloponnese to central Greece [6].

High-resolution imagery with optical (e.g., Pleiades) or radar
(e.g., TerraSAR-X) sensors is also a component of the CRL.
It will allow monitoring in the long-term surface changes of
anthropogenic origin, e.g., roads construction, and of natural
origin, e.g., landslides [7], coastal uplift [8], fault activity [9]-
[11], erosion-accumulation along rivers, and in the river deltas.

Used in interferometric SAR acquisition mode, it can lead to
the production of high-quality digital elevation models (DEM) as
is the case of the TanDEM-X DEM. Precise DEMs enhance the
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Fig. 1. Western Gulf of Corinth with the location of the three TanDEM-X tiles
and, in red, the 148 kinematic GNSS surveys.

capability of monitoring and interpreting the changes mentioned
above. In the case of large deformations, e.g., produced by
earthquakes, changes might be detected between high-resolution
DEMs and used jointly with InSAR. High-resolution DEMs
constitute information of major interest for the long-term study
of this area over decades and centuries. They contribute to
bridging short-term deformations captured by GNSS and InNSAR
with the long-term deformation and the resulting topography.
They contribute also to an accurate evaluation of the erosion
processes which is needed to interpret the landscape and its
relation with the active faulting.

The TanDEM-X DEM [12], [13] studied here was calculated
in 2017 by the German Space Agency (Deutsches Zentrum
fiir Luft- und Raumfahrt, DLR) with a mosaic of TerraSAR-X
images acquired between 2011-02-20 and 2014-09-09. It has a
nominal resolution of 2.5 pixels per arc s, which corresponds to
9.756 m in the EW axis and 12.329 m in the SN axis. The DEM
of the CRL area is composed of three tiles of 1 x 1 degree each,
which means 9001 x 9001 pixels. By convention, the centers
of the pixels are located at round coordinates. Therefore, the
pixel located at the north-east edge of our eastern tile has its
center at 20°E 39°N and its north-east corner at 19.9999444°E—
39.0000556°N. The accuracy and precision of the TanDEM-X
DEM have been studied in several environments, e.g., [14], [15],
with GNSS control points used in some cases, e.g., [16], [17]
but not with the density of our control network. Another way
to assess the precision of the DEM is with LIDAR observations
[18]. We remind that accuracy characterizes the closeness of the
DEM or the GNSS coordinates to the real shape of the ground,
while precision represents the internal closeness between DEM
and GNSS measurements.

II. GNSS KINEMATIC SURVEYS

From 2001 to 2019, 148 kinematic GNSS surveys suitable for
this analysis were performed. Fig. 1 shows the location of the
surveys and Table I provides details for each year.
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TABLE I
KINEMATIC GNSS SURVEYS

Year Number of surveys ~ GNSS points  Dates of the surveys
2001 2 9,393 27/9

2005 1 1,906 2/10

2006 2 1,250 1/10, 3/10

2008 3 3,421 22/4, 17-18/6

2010 10 32,289 14/2, 13/4, 22-25/5, 20-23/9
2012 16 103,986 24-29/9

2013 32 262,511 16/3, 16/6, 20-29/9
2014 25 170,827 23/9-4/10

2015 12 61,265 6-9/6,22-29/9

2016 19 64,6013 19-27/9

2017 19 118,825 12-15/6, 18-26/9
2018 3 26,727 16-18/6

2019 4 28,239 12-14/6, 16-17/6

“GNSS points” indicates the number of points used for the quality assessment. The total
number of GNSS points is 885 252.

The data was processed with the Canadian Spatial Reference
System Precise Point Positioning (CSRS-PPP) online software.
We compared its solutions with those of two other online
software, GIPSY-PPP, and IGN-PPP, and with our local
calculations made with GIPSY 6.4. We found that it was the one
giving the best repeatability of the traces and the lower number
of outliers. Moreover, for observations made after mid-2011, it
processes not only the GPS (global positioning system) data but
also the data of the GLONASS constellation, which is valuable
in the case of kinematic observations that are very sensitive to
the loss of satellites in vegetated or urban areas. All coordinates
are expressed in ITRF2014 [19] which is consistent at a few
millimeters level with the coordinates used for the TanDEM-X
data in the datum WGS84-G1150.

We extract from our CSRS-PPP solutions the most precise
epochs estimated by the calculation. Indeed, a compromise is
needed to keep enough points and sample all areas including the
urban and forest areas crossed during the surveys. We thus keep
the epochs with at least six satellites, speed of the car above 2 m/s,
uncertainties of the coordinates (as estimated by CSRS-PPP)
below 0.1 min horizontal and 0.2 m in vertical. We also eliminate
the solutions with scatter DEM-GNSS larger than four meters
as, during an initial analysis, we observed that the population of
those outliers was below 1% of the total. For those outliers, we
could not find any anomaly in the GNSS data so we believe that
they are almost entirely due to anomalies in the DEM. Finally,
our set of GNSS coordinates comprises 885 252 epochs, which
represents a total course of ~7500 km if we assume an average
speed of 30 km/h during the surveys.

A. Calibrating the Accuracy of the GNSS Surveys

As we cannot just rely on the theoretical uncertainties given
by our kinematic GNSS software, some GNSS surveys were
tailored specifically for assessing the accuracy of the data
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Fig.2. Kinematic GNSS survey performed on 2016-09-25 with three antennas
operated on a vehicle (see video at https://youtu.be/INDTStOGZRI).
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Fig.3. Inred, the survey of Sep. 25,2016, and in the green box, the calibration

area where multiple passes were acquired.
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Fig. 4. Left: map of the road profile with GNSS elevation in color (meters

above ellipsoid); right: latitude of the car as a function of time. Black box in the
left graph shows the location of Fig. 6 and gray box the location of Fig. 8.

processing, using part of the experimental protocols validated
in previous works [20]-[22]. On September 25, 2016, three
receivers were operated on the same car as shown in Fig. 2, on
a calibration trail observed periodically. The configuration with
three antennas allows examining at the same time the repeatabil-
ity along the repeated path and the fluctuations of the distances
and relative heights between the antennas. The latter provides
an evaluation of the GNSS data processing independent, at the
first order, of the path of each antenna.
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TABLE II
RELATIVE LOCATION OF THE ANTENNAS

Left-Center Right-Center Right-Left
Baseline length (m) 0.386+0.026 = 0.366 + 0.038 0.744+ 0.022
Height difference (m)  -0.005+0.053 | -0.056 +0.055  -0.050 + 0.078
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Fig. 6. Elevation of the repeated passes in a 100-m section of the road (the
location is shown in the small black box in Fig. 4).

Fig. 3 shows the location of the September 25, 2016 survey
with, in red, the area for which the results are presented. The
vehicle traveled five times from south to north and five times
from north to south as shown in Fig. 4 (right), thus the road
was sampled 27 times. We project along the latitude because the
profile is predominantly north—south with no overlaps. Fig. 5
shows the evolution of the calculated distance between antenna
pairs.

If the CSRS-PPP processing was perfect, the distances should
not change while we observe fluctuations within 0.1 m peak-to-
peak, with standard deviations listed in Table II. The jumps ob-
served when the car reverses its route may be due to uncorrected
clock biases in the modeling of the phase of the GNSS signals.

Fig. 6 shows the elevation of the profiles in a 100-m section
of the road. All are contained in an envelope of less than 0.2 m.

From the analysis of this GNSS survey, we conclude that,
in the case of a relatively open road like the one sampled on
2016-09-25, we can, with our method and the performance of
the CSRS-PPP calculation, retrieve an accurate elevation of the
road with a precision better than 0.1 m. This value is well below
the scatters between the GNSS and the DEM as we will see in
the next section. Thus, we can consider that our 885 252 GNSS
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Fig. 7. Resampling at I-m resolution a kinematic GNSS profile.

points constitute a nearly perfect ground truth for the assessment
of the DEM, at least along the roads and trails of the area (that
are indeed specific features in the imagery).

B. Generating GNSS Profiles in Steps of 1 m

In a survey along a trail like the one of September 25, 2016,
the speed of the car does not exceed ~25 km/h, i.e., one point
every ~7 m, while on asphalted roads the distance traveled in 1
s can reach 30 m. High speed usually means large open roads,
hence good GNSS signal, and relatively flat and smooth surface,
thus the DEM is expected to be very reliable. On the contrary,
low speeds often correspond to narrow paths, with GNSS signal
possibly of lower quality due to nearby vegetation and other
masks, and the DEM not able to mimic the uneven topography
below its native resolution.

Because of the accuracy of the GNSS and the smoothness
of the GNSS trajectories, we found it possible to oversample
our surveys in all places where they are continuous, and thus
estimate one horizontal and vertical road coordinates every 1 m.
Fig. 7 shows how the resampling was performed with a method
that fits smoothly the curves.

The 1-m resampling gives more weight to the areas where
we believe both the DEM and GNSS dataset are more reliable.
This is the case in particular along the main roads where the
vehicle is moving relatively fast with a three-dimensional (3-D)
trajectory very smooth. It leads to an increase of one order of
magnitude of our dataset from 885 252 to ~10.8 million points.
Along most of the observed roads those points sample, pixel by
pixel, the 1-m resampled TanDEM-X DEM, except in some rare
forest and urban areas where GNSS data is missing because of
the masks. With this oversampling and the redundancy of the
surveys, most of the homologous pixels located on the surveyed
roads contain several observations.

In the case of our calibration trail of Fig. 4, observed many
times from 2001 to 2019, the total number of GNSS elevations
ranges between 135 and 350 data points every 1 m along the
path as shown in Fig. 8 (left). The standard deviation increases
to ~0.2 m, which is twice that of the single survey of September
25,2016, because of the different experimental conditions. Fig. 8
(right) also shows a local peak of 0.5 m in a place where the road
was reworked for the installation of wind engines nearby (visible
in the video).> We consider that this value of 0.2 m is a good
estimate of the accuracy of the vertical coordinates of our GNSS

3[Online]. Available: https://youtu.be/INDTStOGZRI
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of the 148 surveys performed in the same area; right: standard deviation of the
road elevation (m) estimated every 1 m along the calibration road.

points. As we will see below, this accuracy is five times better
than that of the TamDEM-X DEM and therefore appropriate for
the assessment of the DEM’s accuracy.

III. VERTICAL ACCURACY OF THE TANDEM-X DEM

We now compare the TanDEM-X DEM with the elevation of
the GNSS points using strategies already used in previous works
[21], [22], and other guidelines for DEM assessment [23], [24].
We use two different approaches, the first one is using the whole
GNSS data set as a global entity and the second one is based on
a preliminary survey-per-survey analysis.

A. Resampling of the DEM

We first resample the DEM at a higher resolution. Indeed,
its native resolution is too coarse to take into account precisely
enough the local slopes and the exact location of the GPS points
within the pixels. Resampling the DEM by a factor of 10 leads
to pixels of size ~1 m, which allows efficient comparison of the
DEM and GNSS, as this size is smaller than the width of the
sampled road even the smallest ones.

We tested a bilinear interpolation and a cubic interpolation
(see validation in Section IV-C) and hereafter we use the second
one because, as we will see later, it leads to lower scatters
between the DEM and the GNSS. The resampling is performed
with the GDAL software package, using the GDAL VRT (virtual
data set) routine. The instruction to make the resampling is
“gdalbuildvrt -tr 0.000011111 0.000011111 -r cubic dem.vrt
xtif” with dem.vrt name of the virtual DEM and xtif our three
TanDEM-X tiles in their original tif format. The resampled
virtual DEM is a matrix of 270 010 x 90 010 pixels, with a
size of 0.00001111° (25 pixels per arc s), thus 0.9756 m in the
EW axis and 1.2329 m in the SN axis.
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B. Vertical Shift With Respect to All the GNSS Points

Fig. 9 shows the histogram of the difference DEM-GNSS for
the whole set of 885 252 points. Using the mean as the metric, the
DEM is shifted upward by 0.466 m with respect to the GNSS.
The histogram is not perfectly symmetric and the median is
0.376 m thus 0.09 m below the mean.

Fig. 10 shows the difference DEM-GNSS of the whole dataset
plotted as a function of the elevation. The colors show the density
of points. Most points are located at low elevation, with a gentle
density decrease while going up. All elevations are sampled up
to 1750 m which is close to the ~2200 m top elevation of the
area. Fig. 11 shows that the areal distribution of the scatters is
relatively homogeneous. To the northwest, some red sections
fit with the location of a highway built after the production of
the DEM. The mean standard deviation of the 885 252 scatters
DEM-GNSS is 1.124 m. This shows that, after correction of the
shift, the DEM has, a 1-m precision in the CRL area, at least
along the surveyed roads and trails.
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C. Vertical Shift From a Survey Per Survey Analysis

Since we have a large number of surveys, we can also assess
independently the accuracy and precision of each one, and then
combine the evaluations. This allows detecting and handling,
separately for each survey, possible errors of antenna height
measurement or other biases of any type associated with the
specific receiver and antenna used. Those biases are likely to
induce spatially correlated shifts within the affected surveys.

For each survey, we calculate the mean shift between the
DEM and the GNSS points, and its root mean square (rms)
scatter. Fig. 12 shows those values plotted as a function of
longitude, latitude, and elevation. The rms scatters are plotted
as uncertainties bars on the Y-axis. With this method, looking
at the mean of all means, the average scatter DEM-GNSS is
now 0.495 £ 0.026 m, close to the 0.466 m found previously.
The uncertainty is estimated by dividing the mean of the 148
rms scatters (0.315 m) by the square root of the number of
observations (148), assuming a Gaussian distribution of the 148
single rms scatters. The fact that the value of 0.315 m is larger
than the 0.2 m mean accuracy of our GNSS coordinates (as
determined in Section II-B), suggests the possible existence of
spatial heterogeneities of the anomalies of the DEM with respect
to the GNSS.

Fig. 12 shows that the DEM is shifted homogeneously in the
entire area without tilts. It shows also no dependence at the first
order of the shift with the elevation, yet when we fit the data
with a second-order polynomial, we see a slight dependence.
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D. Precision of the Single September 25, 2016 Survey

The survey of September 25, 2016 (see Section II-A) allows
us to analyze locally the vertical shift DEM-GNSS in an area
with highly redundant data. Fig. 13 shows the vertical offset
(for the three antennas all together), which is 0.503 m, thus very
close to the overall offset found previously.

The rms scatter of the difference DEM-GNSS at each sample
point is 0.493 m, thus in this calibration area, the vertical
precision of the DEM (as assessed by the GNSS data) is ~0.5
m, two times less than its 1.086 m global precision estimated
in Section II-B. The scatters range between —0.5 m and 1.5
m as shown in Fig. 14, with fluctuations in various spatial
wavelengths.

E. Urban and Forest Areas

The roads traveled during the 148 surveys cross different types
of land cover including urban and forest areas. By extracting
9254 and 25 266 points belonging, respectively, to urban and
forest areas (Fig. 15), we find that the DEM overestimates on
average the elevation by 1.12 m in the former and 0.95 m in the
latter, thus an extra overestimation of ~0.53 m with respect to
the overall shift of the DEM. The detailed analysis of those areas
is beyond the objectives of this article.

IV. HORIZONTAL ACCURACY OF THE DEM

The mountainous CRL area is well adapted for evaluating the
accuracy of the georegistration of the TanDEM-X DEM. Indeed,
when a DEM shows a general slope, horizontal and vertical shifts
are not independent: a downwards translation would mimic a
shift in the downslope direction and vice versa.
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A. Global Analysis of the Whole Dataset

We offset the DEM in steps of 0.1 m in longitude, latitude,
and elevation, and calculate at each step the rms scatter between
DEM and GNSS elevations, hereafter called . As an example,
Fig. 16 shows the distribution of § as a function of the longi-
tudinal and latitudinal offsets v and (3, for two values of the
vertical offset v of —0.2 m (left) and —0.5 m (right). The latter
leads to lower deviations, which was expected as we know from
Section II-B and II-C that the vertical shift is close to —0.5 m.
Fig. 17 shows that, at the first order, § evolves as a parabolic
function of the variables «, (3, and ~y, which can be written as
follows:

§=Aa* +BB* + Cy* + Da + EB + Fy + G + Hay + 187.
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A least-square fit gives the following values for the polyno-
mial coefficients: A = 0.0242, B = 0.0189, C = 0.4349, D =
—0.0111, E=0.0002, F =0.4349, G = 1.2194, H = —0.0135,
I=-0.0285.

The rms scatter § is minimal and is 99 = 1.125 m for the
following values of the variables: g = —0.099 m, 5y = —0.360
m, 7o = —0.467 m. Those values indicate by how much the DEM
must be shifted in longitude, latitude, and elevation to give the
best fit of the DEM to the GNSS ground truth.

B. 3-D Shift From a Survey Per Survey Analysis

Here, like in Section III-C, we first estimate the shift (now
in 3-D) for every single survey. For each, we shift the DEM by
—2, —1, 1, and 2 m in longitude, and —2, —1, 1, and 2 m in
latitude, and calculate the mean shift and the rms scatter for the
eight cases. Fig. 18 shows the example of the calibration survey
of 2016-09-25 (central antenna).

By fitting the two sets of rms scatters with a second-order
polynomial, we can estimate the longitudinal and latitudinal
shifts that minimize the scatter. In the particular case, the best
fit is obtained with a shift of —0.14 m in longitude and —0.87 m
in latitude.

Only 111 of the 148 surveys give a distribution of rms scatters
that can be fitted with a second-order polynomial. Fig. 19 shows
the values of the best fitting longitudinal and latitudinal scatters
for those surveys. They are plotted as a function of longitude
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and latitude, respectively, which allows us to see that there is
no lateral variation. The standard deviations are 0.476 m in
longitude and 0.620 m in latitude. Those values are relatively
large, but this is not surprising as the horizontal control of the
DEM by using GNSS is necessarily less good than the vertical
control, in a ratio that should be roughly proportional to the
average slope in the sampled areas. The mean of the 111 shifts
is —0.11 £ 0.13 m in longitude and —0.28 £ 0.18 m in latitude,
which is consistent with what was found in the previous section.
The uncertainties are the average scatters divided by the square
root of the number of surveys.

Our analysis, using two different methods, shows that the
lateral shift of the DEM is well below 1 m. It is remarkable
that our GNSS dataset permitted us to make this assessment.
Moreover, by using GNSS points on both sides of the gulf and
outside of it, we ensured the presence of slopes in all azimuths in
the dataset, which reduces the covariance between vertical and
horizontal shifts.

Looking now at the best fitting vertical shifts of the DEM,
associated with the best fitting rms scatters, Fig. 20 shows that
their dependence as a function of longitude and latitude can
be assessed precisely. For example, when the DEM is shifted
northward (red curve), the vertical shift between the DEM and
the GNSS becomes lower, which is understandable intuitively
and is quantified here.

C. Using the GNSS Data Resampled at I m

We redo the analysis of Section IV-A with the resampled
10.8 million GNSS coordinates presented in Section II-B. This
resampled dataset contains more additional points where the ve-
hicles are moving fast, thus along the large roads and highways.
The values of the best fitting shifts in longitude, latitude, and
height become v = —0.024 m, § = —0.023 m, v = —0.338 m.
The rms scatter is now 1.150 m, very close to the previous one.
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25,2016 survey when using the original DEM and the resampled DEM with the
two different interpolations procedures.

In horizontal, the DEM appears now to be perfectly accurate.
In the vertical, there is a small (well below the value of the rms
scatter) but significant difference of 0.13 m with the range of
values of ~ found previously, and quite systematic in most of
the surveys as shown in Fig. 21.

This difference is presumably an attenuated global effect of
similar origin to the one that causes the overestimated shift of
0.53 m of the DEM in the urban and forest areas discussed in
Section III-E. Outside forest and urban areas, the small roads
and trails represent a significant part of our surveys. There,
the TanDEM-X DEM would correspond on average to objects
slightly higher (one to two decimeters) than the surface of roads.
A more detailed analysis is beyond the objectives of this article,
but this difference shows that the location of the sampled GNSS
points is not neutral in the evaluation of a DEM with the quality
of TanDEM-X.

D. Importance of the Cubic DEM Interpolation

Fig. 22 illustrates how the standard deviations vary, in the
case of our calibration area of September 25, 2016, when using
the DEM not resampled and the DEM resampled with both
interpolations. The cubic resampling leads to the lowest stan-
dard deviations, reaching the lowest value of 0.695 m (for that
particular surveyed area), while it is 0.73 m for the bilinear case
and 0.91 m when no resampling is applied.

V. CONCLUSION

Using a dense and accurate set of GNSS coordinates produced
by 148 kinematic GNSS surveys performed from 2001 to 2019
in the western Gulf of Corinth, covering a total distance of ~25
000 km, we establish that 1) the average vertical accuracy of
our GNSS data is ~0.2 m, 2) the TanDEM-X DEM is shifted
with respect to the GNSS ground true by —0.10 = 0.10 m
toward the east, and —0.36 =+ 0.10 m toward the north, —0.47 +
0.03 m toward up. Those values are 20 times below the nominal
resolution of the DEM.

We observe no lateral tilt of the DEM over the entire area and
no or minor dependence of the vertical DEM offset as a function
of the elevation.
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After shifting the DEM to its right vertical location, the rms
deviation between the DEM and the GNSS ground truth is 1.125
m. This average scatter is below the nominal expected precision
of the TanDEM-X DEM [13] and below the values found in
some publications where GNSS is used to assess its precision,
e.g., [23]. The scatter DEM-GNSS has components in a wide
range of spatial wavelengths.

We verified that resampling the original set of 885 252 GNSS
coordinates in profiles of 1-m steps can be done safely. This
resampling allows to create an almost complete coverage of the
roads of the area at this 1-m resolution with an accuracy of
0.2 m for any single point, thus an expected accuracy of 0.02
m for portions of road of 100 m length assuming a Gaussian
distribution of the errors.

We could assess the horizontal location of the TanDEM-X
DEM. This is valuable for the optimization of the registration of
the metric size ortho-images that go along with the DEM.

The GNSS surveys are made along roads and trails only, so
they cannot tell directly what are the accuracy and the precision
outside of those features. However, when plotting sections per-
pendicular to the roads we could not see in the DEM a specific
signature of the roads, except for some highways newly built.
Therefore, we believe that our evaluation of the DEM can be
widened to most of the entire area, except perhaps high slopes,
urban, and forest areas where the nominal resolution does not
permit to get everywhere to the ground level. In areas of high
relief, like river banks, limitations of the TanDEM-X DEM are
indeed reported in the literature, e.g., [26].

The accuracy and precision of the TanDEM-X DEM is ap-
proximately five times better than that of the EU-DEM calibrated
on another region of Greece [27]. This makes the TanDEM-X
DEM a valuable tool for monitoring the topographic changes
occurring in an active tectonic area like the CRL. In the case
of a large earthquake, which is occurring typically every few
decades [28], the seismic rupture can reach the surface and shift
it from a few centimeters to a few decimeters over distances
of several hundred meters to a few kilometers. In such a case,
DEM having the quality of the TanDEM-X DEM can contribute
to quantifying local vertical ground deformations, provided that
two DEMs are available, one before and one after the event.
In the last 10 years, there was not such a large event but there
were active landslides and active erosion phenomena along the
rivers and the shores of the gulf. Those changes might already
be detectable by comparing two TanDEM-X DEM produced at
two different epochs separated by a few years.

Our study leaves open questions, e.g., is the metric precision
of the DEM found along roads still valid in the rest of the DEM?
Would the comparison of two TanDEM-X DEM (or DEM with
equivalent precision) allows us to confirm the scatters found in
some sections of newly built highroads?

SUPPORTING INFORMATION

1) PDF containing metadata for the 148 GNSS surveys and
description of the format of the CSV files.

2) CSV files with the three-dimensional coordinates of the
885 252 selected GNSS points.
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