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Abstract
A complex screen is an arrangement of panels that may not be even locally orientable
because of junction lines. A comprehensive trace space framework for first-kind varia-
tional boundary integral equations on complex screens has been established in Claeys
and Hiptmair (Integr Equ Oper Theory 77:167–197, 2013. https://doi.org/10.1007/
s00020-013-2085-x) for the Helmholtz equation, and in Claeys and Hiptmair (Integr
Equ Oper Theory 84:33–68, 2016. https://doi.org/10.1007/s00020-015-2242-5) for
Maxwell’s equations in frequency domain. The gist is a quotient space perspective
that allows to make sense of jumps of traces as factor spaces of multi-trace spaces
modulo single-trace spaces without relying on orientation. This paves the way for for-
mulating first-kind boundary integral equations in weak form posed on energy trace
spaces. In this article we extend that idea to the Galerkin boundary element (BE) dis-
cretization of first-kind boundary integral equations. Instead of trying to approximate
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jumps directly, the new quotient space boundary element method employs a Galerkin
BE approach in multi-trace boundary element spaces. This spawns discrete bound-
ary integral equations with large null spaces comprised of single-trace functions. Yet,
since the right-hand-sides of the linear systems of equations are consistent, Krylov
subspace iterative solvers like GMRES are not affected by the presence of a kernel
and still converge to a solution. This is strikingly confirmed by numerical tests.

Keywords Complex screens · Galerkin boundary element method · Quotient space
boundary element method

Mathematics Subject Classification 65N38 · 78M15

1 Scattering at multi-screens

We are concerned with the scattering of acoustic or electromagnetic waves at
objects like those displayed in Fig. 1, i.e. geometries composed of essentially two-
dimensional piecewise smooth surfaces joined together. These objects can be regarded
as non-penetrable, more precisely: sound-soft, sound-hard, or perfectly conducting,
respectively. This implies vanishing traces of some fields on their “surface”. We face
boundary value problems posed on the unbounded complement of the scattering object.
Our goal is to solve them, that is, to compute the scatteredwave bymeans of a Galerkin
boundary element method (BEM).

To that end, we recast the boundary value problems as variational boundary integral
equations (BIEs) posed in spaces of functions on the surface of the scatteringobject. For
simple screens this is well established [31, Section 3.5.3]. Here, we call a simple screen
an orientable, piecewise smooth two-dimensional bounded manifold Γ embedded in
3D space R3. In this case, coercive variational first-kind boundary integral equations
arise, known as weakly singular and hypersingular BIEs in the acoustic setting [14,
15,33], and as Electric Field Integral Equation (EFIE) for electromagnetics [4]. These

BIEs are set inSobolev spaces of jumps of suitablefield traces, in ˜H− 1
2 (Γ ) and ˜H

1
2 (Γ ),

respectively, for acoustics [24, Ch. 3], and in ˜H− 1
2 (curlΓ , Γ ) for the EFIE. For these

Fig. 1 Two examples of multi-screen geometries; junctions lines colored red
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Quotient-space boundary element methods...

trace spaces, conforming boundary element subspaces are readily available, and they
give rise to Galerkin approximations whose numerical analysis is fairly mature [5].

Obviously, for two-dimensional objectsΓ , like those shown in Fig. 1, which are not
globally orientable, the notion of jumps becomes problematic. It is not straightforward
how to adapt the jump trace spaces from the simple-screen setting to more general
situations. A breakthrough was achieved in [8] for the BIEs of acoustic scattering, and
in [9] towards generalizing the EFIE. The main idea was to consistently view trace
spaces, including those for jumps, from the perspective of quotient spaces and to start
from multi-valued traces. We survey these results in Sect. 2.

An important step in [8,9] was the rigorous characterization of geometries as those
of Fig. 1. The authors introduced the class ofmulti-screens and defined themas follows,
see [8, Section 2] for more details:

Definition 1.1 (Lipschitz Partition [8, Definition 2.2]) A Lipschitz partition of Rd ,
d = 2, 3, is a finite collection of Lipschitz open sets

(

Ω j
)

j=0...n such that Rd =
∪n

j=0Ω j and Ω j ∩ Ωk = ∅, if j �= k.

Definition 1.2 (Multi-screen [8, Definition 2.3]) A multi-screen is a subset Γ ⊂ R
d

such that there exists a Lipschitz partition R
d denoted

(

Ω j
)

j=0...n satisfying Γ ⊂
∪n

j=0∂Ω j and such that for each j = 0 . . . n, we haveΓ ∩∂Ω j = Γ j whereΓ j ⊂ ∂Ω j

is some Lipschitz screen in the sense of Buffa-Christiansen [4, section 1.1].

We want to take the cue from the theoretical investigations to develop Galerkin
BEM for multi-screens in 3D (d = 3). Of course, application of the BEM entails
restricting the set of admissible multi-screens. We confine ourselves to those that are
the union of (closed) triangles such that the intersection of two triangles is either empty,
a single point, or a common edge of both. Fittingly, we call these shapes triangulated
multi-screens, and some of them are rendered in Fig. 2.

We are going to present an approach thatwill yield aGalerkinBEMdiscretization of
the boundary integral equations for acoustic and electromagnetic scattering at general
triangulated multi-screens. We rely on minimal information about the geometry and

Fig. 2 Two examples of triangulated multi-screens: triple- and quadruple junctions
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no special treatment of “junction lines” or ”joints” is necessary. Moreover, assembly
of the linear systems of equations arising from Galerkin BEM can be farmed out to
codes designed for closed surfaces. Nomodifications nor augmentations of these linear
systems is required, nor is user interaction in the form of marking special edges or
nodes, see the core Sect. 4 of this article.

We stress this benefit, because it sets ourmethod apart from the heuristics employed
in computational acoustics and electromagnetics so far. For these approaches the under-
lying intuition is that the unknowns of the first-kind BIEs still represent local jumps of
field variables. For instance, for the geometric situation of a triple-junction of Fig. 1
(left) and a scalar field, this means that the three jumps have to add to zero at the junc-
tion line, which gives rise to an algebraic constraint on the level of boundary-element
degrees of freedom. Similarly, for electromagnetic scattering, simulation codes impose
a sort of Kirchhoff law at junction lines: the equivalent surface currents have to satisfy
some linear constraints, see [30, Section V], [35, Section 3.4], [6, Section 3], and [10,
Section I]. Alternatively, in [18] the authors impose essential Kirchhoff conditions in
the trial space, while [10] proposes to enforce the Kirchhoff condition weakly on the
discrete level in the spirit of mortar finite element techniques. A rigorousmathematical
underpinning for these approaches and analysis in suitable trace spaces has not been
provided thus far.

List of symbols

H
+ 1

2 (Γ ) := H1(Rd\Γ )/H1
0,Γ (Rd), multi-trace space, (2.2a)

H
− 1

2 (Γ ) := H(div,Rd\Γ )/H0,Γ (div,Rd), multi-trace space, (2.2b)

H+ 1
2 ([Γ ]) := H1(Rd)/H1

0,Γ (Rd), single-trace space, (2.3a)

H− 1
2 ([Γ ]) := H(div,Rd)/H0,Γ (div,Rd), single-trace space, (2.3b)

˜H+ 1
2 ([Γ ]) := H

+ 1
2 (Γ )/H+ 1

2 ([Γ ]), jump space, (2.4)
˜H− 1

2 ([Γ ]) := H
− 1

2 (Γ )/H− 1
2 ([Γ ]), jump space, (2.4)

� u̇, ṗ �:= ∫

[Γ ] u̇ ṗ dσ , bilinear pairing on H
+ 1

2 (Γ ) × H
− 1

2 (Γ ), (2.6)

H
− 1

2 (curlΓ , Γ ) := H(curl,R3\Γ )/H0,Γ (curl,R3\Γ ), multi-trace space, (2.8)

H− 1
2 (curlΓ , [Γ ]) := H(curl,R3)/H0,Γ (curl,R3), single-trace space, (2.9)

˜H− 1
2 (curlΓ , [Γ ]) := H

− 1
2 (curlΓ , Γ )/H− 1

2 (curlΓ , [Γ ]), jump space, (2.10)

� u̇, v̇ �×= ∫

[Γ ](u̇ × n) · v̇ dσ , bilinear pairing on H
− 1

2 (curlΓ , Γ ) ×
H

− 1
2 (curlΓ , Γ ), (2.11)

gradΓ : surface gradient, (2.12)
curlΓ : surface rotation/curl, (2.13)
γD/γN : Dirichlet/Neumann trace, Page 8
SLκ /DLκ : single-layer and double-layer potentials, Page 8
Vκ /Wκ : weakly singular and hypersingular BIO, (3.1), (3.2)
γT /γR : electric and magnetic trace, (3.13a) and (3.13b)
T0: triangulation of screen Γ , Page 12
T : triangulation of inflated screen, Page 12
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S 0
1 (T ) p.w. linear continuous functions on inflated screen, Page 14

S −1
0 (T ) p.w. constant functions on inflated screen, Page 14

2 Trace spaces: quotient-space view

We briefly review the new perspective on trace spaces on multi-screens developed in
[8, Section 4-6] and [9, Section 3-5]. The underlying ideas will inspire the construction
of boundary element spaces in Sect. 4.

2.1 Acoustic scattering: scalar trace spaces

Given a multi-screen we consider the following chains of nested Sobolev spaces of
functions/vectorfields1

H1
0,Γ (Rd) ⊂ H1(Rd) ⊂ H1(Rd\Γ ), (2.1a)

H0,Γ (div,Rd) ⊂ H(div,Rd) ⊂ H(div,Rd\Γ ), (2.1b)

where a subscript X0,Γ indicates a space obtained as the closure in X of smooth
functions/vectorfields compactly supported in R

d\Γ . All inclusions in (2.1) define
closed subspaces, which renders the associated quotient spaces Hilbert spaces. A
particular pair of them, called multi-trace spaces [8, Section 5], is

H
+ 1

2 (Γ ) := H1(Rd\Γ )/H1
0,Γ (Rd), (2.2a)

H
− 1

2 (Γ ) := H(div,Rd\Γ )/H0,Γ (div,Rd). (2.2b)

We will tag the elements of these spaces with a dot on top (e.g. u̇, ṗ), and the sym-
bol under the ˙ should be regarded as a representative function ∈ H1(Rd\Γ ) or
H(div,Rd\Γ ), respectively. Another pair of quotient spaces, the single-trace spaces
[8, Section 6.1], are defined as

H+ 1
2 ([Γ ]) := H1(Rd)/H1

0,Γ (Rd), (2.3a)

H− 1
2 ([Γ ]) := H(div,Rd)/H0,Γ (div,Rd). (2.3b)

From [8, Proposition 6.2] we learn that the spaces H+ 1
2 ([Γ ]) and H− 1

2 ([Γ ]) are

closed subspaces of H+ 1
2 (Γ ) and H

− 1
2 (Γ ), respectively. This allows us to introduce

the jump spaces [8, Section 6.2]

˜H+ 1
2 ([Γ ]) := H

+ 1
2 (Γ )/H+ 1

2 ([Γ ]) and ˜H− 1
2 ([Γ ]) := H

− 1
2 (Γ )/H− 1

2 ([Γ ]).
(2.4)

1 See [17, Section 1.1] for an introduction to the relevant Sobolev spaces.
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Trace-like operators for functions in H1(Rd\Γ ) and H(div,Rd\Γ ) are supplied by
the canonical surjections

πD : H1(Rd\Γ ) → H
1
2 (Γ ) and πN : H(div,Rd\Γ ) → H

− 1
2 (Γ ). (2.5)

Restricted to H1(Rd) and H(div,Rd) they give rise to traces onto H+ 1
2 ([Γ ]) and

H− 1
2 ([Γ ]), respectively.

Remark 2.1 As explained in [8, Section 5.2], ifΓ = ∂Ω ,Ω ⊂ R
d a Lipschitz domain,

then then the multi-trace spaces agree with product spaces of traces from inside and
outside,

H
+ 1

2 (Γ ) = H
1
2 (∂Ω) × H

1
2 (∂Ω) and H

− 1
2 (Γ ) = H− 1

2 (∂Ω) × H− 1
2 (∂Ω),

whereas the single-traces spaces coincide with the standard trace spaces,

H+ 1
2 ([Γ ]) = H

1
2 (∂Ω) and H− 1

2 ([Γ ]) = H− 1
2 (∂Ω),

and so do the jump spaces:

˜H+ 1
2 ([Γ ]) = H

1
2 (∂Ω) and ˜H− 1

2 ([Γ ]) = H− 1
2 (∂Ω).

Remark 2.2 Let us convey an intuitive grasp of the trace spaces introduced above.
We start with the multi-trace spaces and the observation that H(div,Rd\Γ ) is a

space of functions attaining different values on both sides of Γ . Thus functions in the

multi-trace space H
+ 1

2 (Γ ) are multi-valued on Γ : they are given independently on
both sides of Γ . A way to understand this is to imagine an “infinitesimally inflated”

screen, see Fig. 3 for a 2D rendering. Then H
+ 1

2 (Γ ) can be viewed as a standard
Dirichlet trace space on the surface of the inflated screen. The same considerations

apply toH− 1
2 (Γ ), where we now deal with normal component traces onto the inflated

screen.
The single-trace space H+ 1

2 ([Γ ]) is easier to understand: it simply comprises
single-valued functions on Γ . More care has to be taken to arrive at the right interpre-

tation of H− 1
2 ([Γ ]), because we have to fix a local normal n on Γ in order to make

sense of a single-valued normal component.

Following [8, Section 5.1] we introduce a bilinear pairing onH+ 1
2 (Γ ) ×H

− 1
2 (Γ ):

� u̇, ṗ � :=
∫

[Γ ]
u̇ ṗ dσ :=

∫

Rd\Γ
p · ∇u + udiv(p) dx, (2.6)

with u ∈ H1(Rd\Γ ) and p ∈ H(div,Rd\Γ ). According to [8, Prop. 5.1] this pairing

induces an isometric duality between H
+ 1

2 (Γ ) and H
− 1

2 (Γ ). From [8, Section 6.2]
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[    ]

Fig. 3 Inflating a 2D multi-screen

we also learn that � u̇, ṗ � spawns isometric dualities connecting H+ 1
2 ([Γ ]) and

˜H− 1
2 ([Γ ]), and H− 1

2 ([Γ ]) and ˜H+ 1
2 ([Γ ]), respectively.

The bilinear pairing also offers a characterization of single-trace spaces through
self-polarity:

Proposition 2.1 ([8, Proposition 6.3]) For u̇ ∈ H
+ 1

2 (Γ ) and ṗ ∈ H
− 1

2 (Γ ) the fol-
lowing equivalences hold true:

u̇ ∈ H+ 1
2 ([Γ ]) ⇐⇒ ∫

[Γ ] u̇q̇ dσ = 0 ∀q̇ ∈ H− 1
2 ([Γ ]),

ṗ ∈ H− 1
2 ([Γ ]) ⇐⇒ ∫

[Γ ] v̇q̇ dσ = 0 ∀v̇ ∈ H+ 1
2 ([Γ ]).

2.2 Electromagnetic scattering: tangential vectorial trace spaces

In the context of electromagnetic scattering we start from the chain of nested closed
subspaces

H0,Γ (curl,R3) ⊂ H(curl,R3) ⊂ H(curl,R3\Γ ). (2.7)

Parallel to Sect. 2.1 we introduce the quotient spaces of “tangential vector fields”

multi-trace space : H
− 1

2 (curlΓ , Γ ) := H(curl,R3\Γ )/H0,Γ (curl,R3), (2.8)

single-trace space : H− 1
2 (curlΓ , [Γ ]) := H(curl,R3)/H0,Γ (curl,R3), (2.9)

jump space : ˜H− 1
2 (curlΓ , [Γ ]) := H

− 1
2 (curlΓ , Γ )/H− 1

2 (curlΓ , [Γ ]), (2.10)

with associated canonical surjection πT : H(curl,R3\Γ ) → H
− 1

2 (curlΓ , Γ ), which
supplies a generalized tangential trace operator. More details can be found in [9,
Section 4.3], [9, Def. 4.4], and [9, Def. 4.6], respectively.
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By [9, Prop. 4.2] an isometric self-duality of H− 1
2 (curlΓ , Γ ) is induced by the

bilinear form � ·, · �×: H− 1
2 (curlΓ , Γ ) × H

− 1
2 (curlΓ , Γ ) �→ C defined as

� u̇, v̇ �× :=
∫

[Γ ]
(u̇ × n) · v̇ dσ :=

∫

R3\Γ
curl(u) · v − u · curl(v) dx, (2.11)

u, v ∈ H(curl,R3\Γ ). This pairing also gives rise to an isometric duality of

H− 1
2 (curlΓ , [Γ ]) and ˜H− 1

2 (curlΓ , [Γ ]), cf. [9, Lemma 4.7]. A result analogous to
Proposition 2.1 holds as well:

Proposition 2.2 ( [9, Proposition 4.5]) For u̇ ∈ H
− 1

2 (curlΓ , Γ ), we have

u̇ ∈ H− 1
2 (curlΓ , [Γ ]) ⇐⇒ � u̇, v̇ �×= 0 ∀v̇ ∈ H− 1

2 (curlΓ , [Γ ])

The variational formulations of boundary integral equations for electromagnetic
scattering rely on surface differential operators. To begin with we define the surface

gradient gradΓ : H 1
2 (Γ ) → H

1
2 (curlΓ , Γ ) through the formula

gradΓ (πD(p)) := πT (gradp) ∀p ∈ H1(R3\Γ ), (2.12)

and the surface curl operator curlΓ : H− 1
2 (curlΓ , Γ ) → H

− 1
2 (Γ ) using the formula

curlΓ (πT (u)) := πN (curl(u)) ∀u ∈ H(curl,R3\Γ ). (2.13)

By restriction and duality the surface differential can also be defined for tangential
single-trace and jump spaces, see the commuting diagram of [9, Lemma 5.3].

Remark 2.3 In line with Remark 2.1 we find H
− 1

2 (curlΓ , Γ ) = H− 1
2 (curlΓ , Γ ) ×

H− 1
2 (curlΓ , Γ ) and H− 1

2 (curlΓ , [Γ ]) = H− 1
2 (curlΓ , Γ ) for Γ = ∂Ω , Ω a 3D

Lipschitz domain.
The gist of the interpretation suggested in Remark 2.2 carries over to the vectorial

case too.

3 Boundary integral equations onmulti-screens

We summarize the contents of [8, Section 8] and [9, Section 7–9], which introduced
and analyzed representation formulas and boundary integral operators for acoustic and
electromagnetic scattering at multi-screens. We restrict ourselves to multi-screens in
3D, d = 3.

3.1 Weakly singular and hypersingular scalar BIEs

We first study acoustic wave propagation governed by theHelmholtz equation−Δu−
κ2u = 0 in R

d\Γ , Γ a multi-screen, κ ∈ C, Re κ ≥ 0, the wave number. The two
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relevant trace operators are the2

Dirichlet trace: γD : H1(Rd\Γ ) → H
+ 1

2 (Γ ) , γD := πD ,

Neumann trace: γN : H1(Δ,Rd\Γ ) → H
− 1

2 (Γ ) , γN := πN ◦ grad ,

wherewe used the canonical surjections from (2.5). Bymeans of two potentials we can
state the boundary representation formula [8, (8.3)] for solutions of the homogeneous
Helmholtz equation satisfying Sommerfeld radiation conditions. These potentials are
the

single-layer potential: SLκ(q̇)(x) :=
∫

[Γ ]
γD(Gκ,x)q̇ dσ , q̇ ∈ H

− 1
2 (Γ ),

double-layer potential: DLκ(v̇)(x) :=
∫

[Γ ]
γN (Gκ,x)v̇ dσ , v̇ ∈ H

+ 1
2 (Γ ),

x /∈ Γ ,

where Gκ,x(y) := Gκ(x−y), with Gκ(z) := exp(ıκ‖z‖)
4π‖z‖ being the radiating fundamental

solution of the Helmholtz equation in R3 .
A key novel feature of the layer potentials for multi-screens are their non-trivial

kernels that even allow a precise characterization:
Lemma 3.1 ([8, Lemma 8.6]) The kernels of the layer potentials coincide with the
single-trace subspaces:

ṗ ∈ H
− 1

2 (Γ ) : SLκ( ṗ) = 0 ⇔ ṗ ∈ H− 1
2 ([Γ ]) ,

v̇ ∈ H
− 1

2 (Γ ) : DLκ(v̇) = 0 ⇔ v̇ ∈ H
1
2 ([Γ ]).

By the regularity of the potentials and the pertinent jump relations the following
boundary integral operators (BIOs) are well-defined and continuous:

Weakly singular BIO: Vκ := γD ◦ SLκ : H− 1
2 (Γ ) → H

+ 1
2 (Γ ), (3.1)

Hypersingular BIO: Wκ := γN ◦ DLκ : H+ 1
2 (Γ ) → H

− 1
2 (Γ ). (3.2)

For sufficiently regular arguments the weakly singular BIO can be stated in integral
form

(Vκ φ̇)(x) =
∫

[Γ ]
Gκ(x − y)φ̇(y) dσ(y) , φ̇ ∈ H

− 1
2 (Γ ) ∩ L

∞(Γ ), (3.3)

where integration is carried out over the virtual inflated screen, cf. Fig. 3.
Both integral operators occur in first-kind boundary integral equations (BIE)

related to exterior boundary value problems (BVPs) for the Helmholtz equation. If
u ∈ H1

loc(R
d\Γ ) is a solution of the exterior Helmholtz Dirichlet BVP

2 Notation: H1(Δ,Rd\Γ ) := {v ∈ H1(Rd\Γ ), Δv ∈ L2(Rd\Γ )}
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⎧

⎪

⎨

⎪

⎩

−Δu − κ2u = 0 in R
d\Γ ,

γDu = ġD ∈ H+ 1
2 ([Γ ]) on Γ ,

lim
r→∞ r

(

∂u
∂r (x) − iκu(x)

) = 0, r := ‖x‖,
(3.4)

then the unknown Neumann trace γN (u) ∈ H
− 1

2 (Γ ) can be found by solving

φ̇ ∈ H
− 1

2 (Γ ) : Vκ(φ̇) = ġD. (3.5)

This BIE can be cast in equivalent variational form as follows: find φ̇ ∈ H
− 1

2 (Γ ) such
that

� Vκ φ̇, ψ̇ � = � ġD, ψ̇ � ∀ψ̇ ∈ H
− 1

2 (Γ ). (3.6)

We can proceed similarly for the exterior Helmholtz-Neumann BVP

⎧

⎨

⎩

−Δu(x) − κ2u = 0 in R
d\Γ ,

γNu = ḣN ∈ H− 1
2 ([Γ ]) on Γ ,

limr→∞ r
(

∂u
∂r (x) − iκu(x)

) = 0, r = ‖x‖,
(3.7)

for which the unknown Dirichlet data γD(u) ∈ H
+ 1

2 (Γ ) solve the BIE

v̇ ∈ H
+ 1

2 (Γ ) : Wκ(v̇) = ḣN . (3.8)

Also this BIE can be written in variational form and it results in the problem

Find v̇ ∈ H
+ 1

2 (Γ ) such that � Wκ v̇, ṗ �=� ḣN , ṗ � ∀ ṗ ∈ H
+ 1

2 (Γ ).

(3.9)

The bilinear form on the left-hand side can be conveniently expressed by integration
by parts as shown in [31, Section 3.3]. For sufficiently regular argument functions we
find the integral representation through an improper integral over the virtual inflated
screen:

� Wκ v̇, ṗ � =
∫

[Γ ]

∫

[Γ ]
Gκ(y − x)

{

(gradΓ v̇ × n)(y) · (gradΓ ṗ × n)(x)

− κ2n(y) · n(y)v̇(y) ṗ(x)
}

dσ(y)dσ(x).

(3.10)

Lemma 3.1 has the direct implication that also the BIOs Vκ and Wκ have non-trivial
kernels given by single-trace functions.

Lemma 3.2 (Kernels of boundary integral operators) The kernels of Vκ and Wκ

agree with H− 1
2 ([Γ ]) and H+ 1

2 ([Γ ]), respectively.
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Hence, Vκ and Wκ remain well-defined on the quotient spaces ˜H− 1
2 ([Γ ]) and

˜H+ 1
2 ([Γ ]), respectively. They even enjoy coercivity on jump spaces: there exist com-

pact operators KV : ˜H− 1
2 ([Γ ]) → H+ 1

2 ([Γ ]) and KW : ˜H+ 1
2 ([Γ ]) → H− 1

2 ([Γ ])
such that the following Gårding inequalities are satisfied [8, Prop. 8.8]

Re

{∫

[Γ ]
q̇(Vκ + KV ) ¯̇q dσ

}

≥ C‖q̇‖2
˜H− 1

2 ([Γ ])
∀q̇ ∈ ˜H− 1

2 ([Γ ]), (3.11)

Re

{∫

[Γ ]
v̇(Wκ + KW ) ¯̇v dσ

}

≥ C‖v̇‖2
˜H+ 1

2 ([Γ ])
∀v̇ ∈ ˜H+ 1

2 ([Γ ]), (3.12)

with C > 0 depending only on κ and Γ .
We remark that the presence of non-trivial kernels thwarts uniqueness of solutions

of (3.6) and (3.9). Yet, Proposition 2.1 still gives us existence, since ġD ∈ H+ 1
2 ([Γ ])

and ḣN ∈ H− 1
2 ([Γ ]) ensures consistency of the right-hand side linear forms: they

vanish on the single-trace spaces.

3.2 Electric-field integral equations

The complex amplitudes of the electric and magnetic fields for time-harmonic elec-
tromagnetic waves propagating in empty space satisfy the homogeneous Maxwell’s
equations curl curlE− κ2E = 0, with wave number κ > 0. This second order partial
differential equation induces two key trace operators:

Electric trace: γT : H(curl,R3\Γ ) → H
− 1

2 (curlΓ , Γ ), γT := πT , (3.13a)

Magnetic trace: γR :H(curl2,R3\Γ ) → H
− 1

2 (curlΓ , Γ ), γR := πT ◦ curl ,

(3.13b)

whereπT is the canonical surjection implied by the definition (2.8) ofH− 1
2 (curlΓ , Γ ).

Both trace operators are continuous and surjective. They are instrumental in the defini-
tion of Maxwell single- and double-layer potentials, here given in distributional form

as in [9, Section 7.1]: for u̇ ∈ H
− 1

2 (curlΓ , Γ ),

SLκ(u̇) = −Gκ ∗ γ ′
T (u̇) + κ−2∇(Gκ ∗ γ ′

D · curlΓ (u̇)), (3.14)

DLκ(u̇) = −Gκ ∗ γ ′
R(u̇). (3.15)

Slightly abusing notation, the operator Gκ∗ is the Newton potential for the vectorial
Helmholtz operator with wave number κ > 0 [31, Section 3.1.1]. From [9, Sec-
tion 7.2] we know that the single-layer potential SLκ maps continuously the space

H
− 1

2 (curlΓ , Γ ) into Hloc(curl,R3) and the double-layer potential DLκ maps contin-

uously the space H− 1
2 (curlΓ , Γ ) into Hloc(curl,R3\Γ ).
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We consider the exterior boundary value problem modeling electromagnetic scat-
tering at the screen Γ :

⎧

⎪

⎨

⎪

⎩

curl curlE − κ2E = 0 in R
d\Γ ,

γTE = ġ ∈ H− 1
2 (curlΓ , [Γ ]) on Γ ,

lim
r→∞ r

(

curlE(x) × x
‖x‖ − iκE(x)

) = 0, r := ‖x‖.
(3.16)

Introducing the boundary integral operator Tκ := γT ◦ SLκ : H
− 1

2 (curlΓ , Γ ) →
H

− 1
2 (curlΓ , Γ ) we find that the magnetic trace ṗ := γR(E) ∈ H

− 1
2 (curlΓ , Γ ) of the

solution E of (3.16) solves the first-kind boundary integral equation

Tκ ṗ = ġ in H
− 1

2 (curlΓ , Γ ), (3.17)

called the electric field integral equation (EFIE), which can be cast into weak form:
Seek ṗ ∈ H

− 1
2 (curlΓ , Γ ) such that

� Tκ(ṗ), q̇ �× =� ġ, q̇ �× ∀q̇ ∈ H
− 1

2 (curlΓ , Γ ) . (3.18)

It is possible to give a more explicit form to the left-hand side of the EFIE by plugging
into it the definition of the single layer potential:

� Tκ(ṗ), q̇ �×
= κ−2 � γD · Gκ ∗ γ ′

D(curlΓ ṗ), curlΓ q̇ � − � γT · Gκ ∗ γ ′
T (ṗ), q̇ �×,

(3.19)

which, for sufficiently regular ṗ, q̇ ∈ H
− 1

2 (curlΓ , Γ ), can be written explicitly as

� γD · Gκ ∗ γ ′
D(curlΓ ṗ), curlΓ q̇ �

=
∫

[Γ ]

∫

[Γ ]
Gκ(x − y)curlΓ ṗ(x)curlΓ q̇(y)dσ(x)dσ(y), (3.20)

� γT · Gκ ∗ γ ′
T (ṗ), q̇ �×

=
∫

[Γ ]

∫

[Γ ]
Gκ(x − y)(n(x) × ṗ(x)) · (n(y) × q̇(y))dσ(x)dσ(y). (3.21)

The weak EFIE possesses a unique solution in the jump space ˜H− 1
2 (curlΓ , [Γ ]), since

its associated bilinear form satisfies a generalized Gårding inequality, see [9, Section

9]. Conversely, solutions in H
− 1

2 (curlΓ , Γ ) cannot be unique:

Lemma 3.3 (Kernel of EFIE boundary integral operator, [9, Lemma 7.9]) The

kernel of Tκ coincides with the single-trace space H− 1
2 (curlΓ , [Γ ]).

Fortunately, as ġ ∈ H− 1
2 (curlΓ , [Γ ]), the right-hand side of (3.18) is consistent

thanks to Proposition 2.2.
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⇒

Fig. 4 2D multi-screen and inflated screen equipped with a mesh: the blue strokes represent nodes of the
mesh

4 Quotient-space boundary-elementmethods

We aim for a conforming Galerkin discretization of the variational boundary integral
equations (3.6), (3.9), and (3.18), employing piecewise polynomial subspaces of the

multi-trace spaces H+ 1
2 (Γ ), H− 1

2 (Γ ), and H
− 1

2 (curlΓ , Γ ).
Functions belonging to multi-traces spaces can have different values on “opposite

sides” of parts of a multi-screen. In the spirit of Remark 2.2 we adopt the perspective
of a virtual inflated screen as indicated in Fig. 3 for a 2D situation. On such an inflated
screen [Γ ], in a combinatorial sense, a “virtual surface mesh”T consisting of smooth
panels can be defined as if [Γ ] was the surface of a domain, see Fig. 4 right. In terms
of geometry, different panels may overlap or even coincide, of course.

We restrict ourselves to triangulatedmulti-screens embedded in 3D space as already
adressed in the Introduction. For the sake of simplicitywe assume that themulti-screen
Γ is composedof flat parts only and that allmeshes comprise onlyflat triangular panels.

4.1 Orientedmulti-screen surface triangulations

LetT0 be a triangulation of Γ , that is, a set of open flat triangles,T0 = {K }, such that
(I) Γ 0 = ⋃{K : K ∈ T0},
(II) the triangles K are mutually disjoint: K , K ′ ∈ T0, K �= K ′ implies K ∩K ′ = ∅,
(III) for K , K ′ ∈ T0, K �= K ′, the intersection K ∩ K ′ is either empty or a common

vertex or edge of both,
(IV) and no triangle of T0 has more than one edge on the boundary ∂Γ .

The notion of “edges”, “boundary edges”, and “nodes” ofT0 should be clear. Require-
ment (IV) has been includedmerely to simplify the presentation of the algorithmbelow.
Further, we designate

– by E (K ) the set of the three edges of a triangle K ∈ T0,
– and by T (e) the set of triangles abutting an edge e of T0.
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Fig. 5 Definition of the angle between two (oriented) triangles sharing an edge: case of consistently oriented
triangles

We equip every triangle K with a fixed orientation by ordering its vertices or,
equivalently, prescribing a unit normal vector nK ∈ R

3. We also endow every edge of
T0 with an intrinsic direction and write oK ,e ∈ {−1,+1} for the relative orientation
of the edge e ∈ E (K ) and the triangle K .

For two adjacent triangles K , K ′ ∈ T0 with joint edge e := ∂K ∩ ∂K ′ we set
oK ,K ′ = −oK ,e · oK ′,e, that is oK ,K ′ = 1 tells us that both triangles are oriented
consistently. Thenwe can define the angle enclosed by K and K ′,∠(K , K ′) ∈ [0, 2π),
as the angle of the counterclockwise rotation around the common edge ∂K ∩ ∂K ′ that
transforms oK ,K ′ · nK ′ into −nK , see Fig. 5.

In a first step for every K ∈ T0 we create two copies K+ and K− with the same
geometry but to be regarded as different entities. The reader may imagine K+ and
K− as the two sides of K with nK pointing from K− to K+. These sides form the set
underlying what we call the virtual surface mesh for Γ :

T := {K+, K− : K ∈ T0} . (4.1)

In addition, K+ will be endowed with the unit normal nK , whereas the unit normal
−nK is assigned to K−. This defines the orientation for every triangle of T .

Nowwe present an algorithm that constructs the incidence information forT in the
form of the symmetric adjacency relation adjT ⊂ T ×T for T : (K1, K2) ∈ adjT ,
if and only if these two triangles have a common edge inT . With adjT at our disposal
the edge and vertex sets for T can be built.

1 foreach K ∈ T0 {
2 foreach e ∈ E (K ) {
3 i f ( �T (e) = 1 ) { // Test for boundary edge

4 adjT ← adjT ∪{(K+, K−), (K−, K+)} ;
5 }
6 e l s e { // Geometric test for finding adjacent sides

7 Tmin := argminT {∠(K , T ) : T ∈ T (e)\{K }} ;
8 Tmax := argmaxT {∠(K , T ) : T ∈ T (e)\{K }} ;
9 adjT ← adjT ∪{(K+, T

oK ,Tmin
min )} ; // “upper side”

10 adjT ← adjT ∪{(K−, T
−oK ,Tmax
max )} ; // “lower side”

11 } } }
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The asymptotic computational effort for running this algorithm is O(�T0) for
�T0 → ∞. It yields a relation adjT such that

�{(T , T ′) : ∃T ′ ∈ T , (T , T ′) ∈ adjT } = 3 ∀T ∈ T ,

that is, every triangle has three neighbors and every edge ofT belongs to two triangles.
This is characteristic of a triangulation of the closed surface of a volume domain.
Furthermore, using the normal directions for panels of T as detailed above, those
turn out to be oriented consistently: their normals all point into the exterior of the
virtual inflated screen.

4.2 Boundary-element spaces

We take for granted the availability of a triangular virtual surface mesh T as built in
Sect. 4.1. On this mesh we introduce the standard lowest-order piecewise polynomial
boundary element spaces

– S 0
1 (T ) ⊂ C0([Γ ]) ofT -piecewise linear “continuous” functions on the inflated

screen [Γ ], and
– S −1

0 (T ) ⊂ L2([Γ ]) of T -piecewise constant functions on [Γ ].
We equip these spaces with the usual minimally supported local basis functions

S 0
1 (T ) = span{bi }NV (T )

i=1 , NV (T )=̂ no. of nodes of T , (4.2)

S −1
0 (T ) = span{β i }NT (T )

i=1 , NT (T )=̂ no. of triangles of T . (4.3)

These spaces supply finite-dimensional subspaces of the multi-trace spaces:

S 0
1 (T ) ⊂ H

+ 1
2 (Γ ), S −1

0 (T ) ⊂ H
− 1

2 (Γ ), (4.4)

which qualifies them as trial and test spaces for boundary element Galerkin discretiza-
tion of the variational problems (3.9) and (3.6), respectively.

For the Galerkin discretization of the EFIE (3.18) we rely on the standard edge
element space on T [5, Section 8]

N0(T ) ⊂ H
− 1

2 (curlΓ , Γ ), (4.5)

also known as Rao-Wilton-Glisson (RWG) boundary element space in computational
engineering. For the edge-associated local basis functions with minimal supports we
write η1, . . . , ηNE (T ), where NE (T ) is the total number of edges of T .

These boundary element spaces enjoy the customary approximation properties. In
particular, they are asymptotically dense. To state the result, we consider a uniformly
shape-regular sequence {T�}�∈N of meshes with h� → 0 for � → ∞, where h� stands
for the mesh width h� := maxK∈T�

diam K .
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Lemma 4.1 (Asymptotic density of boundary element spaces)

∀v̇ ∈ H
+ 1

2 (Γ ) : inf
vh∈S 0

1 (T�)

‖v̇ − vh‖
H

+ 1
2 (Γ )

→ 0,

∀ϕ̇ ∈ H
− 1

2 (Γ ) : inf
ϕh∈S −1

0 (T�)

‖ϕ̇ − ϕh‖
H

− 1
2 (Γ )

→ 0,

∀ṗ ∈ H
− 1

2 (curlΓ , Γ ) : inf
ph∈N0(T�)

‖ṗ − ph‖
H

− 1
2 (curlΓ ,Γ )

→ 0

for � → ∞.

The proof relies on the fact that, using the notations of Definition 1.2, the space

X∞ :=
{

v ∈ C∞(R3\Γ ), v |Ω j ∈ C∞(Ω j )
}

is dense in H1(R3\Γ ), and that (X∞)3 is dense in both H(div,R3\Γ ) and
H(curl,R3\Γ ). Then standard approximation estimates for traces of smooth func-
tions yield asymptotic density.

Remark 4.1 Our considerations can easily be extended to boundary element spaces of
higher polynomial degree. We do not elaborate on this just for the sake of a concise
presentation.

4.3 Assembly of BE Galerkinmatrices

We explain the approach in the case of (3.9) for Re κ≥0 using S 0
1 (T ) as trial and

test space. Invoking (3.10) the entries of the Galerkin matrix AWκ ∈ C
NV (T ),NV (T )

are

(

AW ,κ

)

k,� =
∑

K1∈T

∑

K2∈T

∫

K1

∫

K2

Gκ (y − x)
{

gradΓ b
k(y) × n(y) · gradΓ b

�(x) × n(x)

− κ2n(y) · n(y)bk(y)b�(x)
}

dσ(y)dσ(x), (4.6)

for 1 ≤ k, � ≤ NV , where bk, b� are “tent basis functions” ofS 0
1 (T ). Note that n(y)

andn(x) stand for the “exterior” unit normals on K2 and K1, respectively, as introduced
above. The Galerkin matrices AV ,κ ∈ C

NT (T ),NT (T ) and AT,κ ∈ C
NE (T ),NE (T ) for

the variational weakly singular BIE (3.6) and EFIE (3.18) are given by analogous
formulas based on (3.3) and (3.20), (3.21). We skip the details.

Remark 4.2 The integrals in (4.6) are standard weakly singular integrals over pairs
of panels. They can be evaluated using the established quadrature policy from [31,
Chapter 5]. If BEM software that can compute contributions of pairs of panels to
Galerkin BEM matrices is available , it can be used without further adaption. The
only requirement is that the result, up to the last digit, depends exclusively on the
geometry of K1 and K2 and in noway on their internal representation (like the ordering
of vertices, etc.). If this condition is not met, one might arrive at linear systems of
equations that are not consistent. This will disrupt the convergence of iterative solvers.
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4.4 Kernels of discretized boundary integral operators

According to Lemma 3.2 the kernels of the weakly singular and hypersingular bound-
ary integral operators Vκ and Wκ coincide with single-trace spaces. We immediately
conclude that

kern(AW ,κ ) ←→ ZW (T ) := S 0
1 (T ) ∩ H+ 1

2 ([Γ ]),
kern (AV ,κ ) ←→ ZV (T ) := S −1

0 (T ) ∩ H− 1
2 ([Γ ]),

kern(AT,κ ) ←→ ZT(T ) := N0(T ) ∩ H− 1
2 (curlΓ , [Γ ]).

(4.7)

Here, ←→ means that the nullspace of the matrix on the left consists of the vectors
of basis expansion coefficients of all functions belonging to the BE function space on
the right.

In light of the interpretation of the single-trace spaces as spaces of “uni-valued
traces”we find that these kernels are the span of locally supported basis functions asso-
ciated with the non-inflated screen mesh T0. Writing NV (T0), NE (T0), and NT (T0)

for the number of nodes, edges, and triangles in T0, respectively, we conclude

dim kern(AW ,κ ) = NV (T0) ,

dim kern(AV ,κ ) = NT (T0) ,

dim kern(AT,κ ) = NE (T0) .

(4.8)

Remark 4.3 If the multi-screen consists of a few flat parts, some contributions to the
kernels of the Galerkin matrices can be identified easily. Let us examine S 0

1 (T ) ∩
H+ 1

2 ([Γ ]): Let k and � be the indices of those two distinct nodes of T spawned by a
single node of T0. Then,

bk + b� ∈ H+ 1
2 ([Γ ]) , bk − b� /∈ H+ 1

2 ([Γ ]) .

Thus, for the sake of Galerkin discretization of the hypersingular BIE, we can replace
the two basis functions bk and b� by their difference bk − b� in the boundary element
space. Similarly, if a node of T0 lies on ∂Γ and, therefore, spawns only a single node

of T with index m, then bm ∈ H+ 1
2 ([Γ ]) and this basis function can be dropped

altogether. This results in a reduced boundary element space visualized in Fig. 6 for a
2D setting.

Remark 4.4 In the case of a simple screen, that is, if Γ is an orientable, two-
dimensional, triangulated manifold with boundary, a solution obtained by the
quotient-space BEM agrees with the solution produced by the standard Galerkin BEM
in jump space up to amulti-trace function in the kernel of the underlying boundary inte-
gral operators. Thus, the quotient-space BEM is a genuine generalization to complex
screens of well-established and widely used BEM.
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Fig. 6 Reduced boundary element space on T by eliminating certain functions in S 0
1 (T ) ∩ H+ 1

2 ([Γ ]).
Red squares represent (retained) basis functions ofS 0

1 (T ), magenta bullets differences of basis functions

4.5 Convergence of Galerkin solutions

From [8, Prop. 8.9] we learn that the variational boundary integral equations (3.6)

and (3.9) have unique solutions in ˜H− 1
2 ([Γ ]) and ˜H+ 1

2 ([Γ ]), respectively. The anal-
ogous result for (3.18) is given in [9, Prop. 6.6] and claims uniqueness of solutions in
˜H− 1

2 (curlΓ , [Γ ]).
Uniqueness of solutions combined with the coercivity estimates (3.11) and (3.12)

paves the way for using the abstract result of [31, Theorem 4.2.9] in the jump spaces
˜H− 1

2 ([Γ ]) and ˜H+ 1
2 ([Γ ]). Thuswe conclude asymptotic quasi-optimality ofGalerkin

solutions with respect to the norms of the jump spaces.

For instance, if we adopt the setting of Lemma 4.1 and write φ̇ ∈ H
− 1

2 (Γ )/φ� ∈
S −1

0 (T�) for the solution/boundary element Galerkin solution of (3.6), then for suf-
ficiently large �

∥

∥φ̇ − φ�

∥

∥

˜H− 1
2 ([Γ ]) ≤ C inf

ϕ�∈S −1
0 (T�)

∥

∥φ̇ − ϕ�

∥

∥

˜H− 1
2 ([Γ ])

≤ C inf
ϕ�∈S −1

0 (T�)

∥

∥φ̇ − ϕ�

∥

∥

H
− 1
2 (Γ )

, (4.9)

with C > 0 independent of �. A corresponding estimate holds true for (3.9).
For the Galerkin discretization of the variational EFIE (3.18) the situation is

more complicated, since the sesqui-linear form merely satisfies a generalized Gård-

ing inequality. Thus, we have to resort to Hodge-type splittings of H− 1
2 (curlΓ , Γ )

induced by regular decompositions ofH(curl,R3\Γ ), see [9, Section 9.2]. They pos-
sess discrete counterparts and those can be used to verify asymptotic quasi-optimality

of Galerkin solutions in ˜H− 1
2 (curlΓ , [Γ ]), as elaborated in [5, Section 9.1], [2, Sec-

tion 6], and [3].
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Fig. 7 Simple 3D multi-screen composed of flat polygonal panels (cyan) with highlighted junction line
(orange), edges (magenta), and corner points (red). Panels triangulated with algebraically graded tensor-
product mesh

Eventually, quasi-optimality estimates like (4.9) can be combinedwith interpolation
error estimates for boundary element spaces, e.g., from [31, Section 4.1] and [5,
Section 8], to infer rates of asymptotic convergence for our boundary element Galerkin
solutions in jump-space norms. For instance, for the concrete case of (4.9), a piecewise
smooth multi-screen, a shape-regular and quasi-uniform family of meshes {T�}�∈N
withmeshwidthsh� > 0, andassuming that the solutionu of (3.4) belongs to H2

loc(R
d),

[31, Theorem 4.1.33] gives us

∥

∥φ̇ − φ�

∥

∥

˜H− 1
2 ([Γ ]) ≤ Ch3/2� ∀� ∈ N , (4.10)

because φ̇ will belong to H1 locally on each smooth part of Γ .

Remark 4.5 The right-hand side bound in (4.9) can be controlled by choosing

meshes adapted to the exact solution φ̇ ∈ H
− 1

2 (Γ ). Since φ̇ = γN (u), where
u ∈ H1

loc(Δ,Rd\Γ ) solves the exterior Dirichlet problem (3.4), elliptic regularity
theory for linear scalar second-order boundary value problems, see the monographs
[13], [23,25, Chapter 10 & 11], provides precise information on the local behavior of
φ̇ at edges, corners, and junction lines of a multi-screen.

Let us discuss the case of a 3D multi-screen Γ comprised of a few flat polygonal

panels, like that shown in Fig. 7. Assume that the Dirichlet data ġD ∈ H+ 1
2 ([Γ ]) are

the restriction to Γ of a function analytic in a neighborhood of Γ . Then the results
published in [11,12,27,29,32] [34, Section 1.5] tell us that

– φ̇ is analytic in the interior of panels of Γ ,
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– in a neighborhood U ⊂ [Γ ] of any interior point of a (straight) edge of the screen
φ̇ features a 1/√-type singularity,

φ̇(x) = 1√
d(x, ∂Γ )

ψ(x) + η(x) , x ∈ U ,

with smooth functions ψ, η. Here we wrote d(x, ∂Γ ) for the distance of x ∈ Γ to
∂Γ .

– locally at interior points of junction lines φ̇ is the sum of a smooth function and
countably many singular contributions behaving like r �→ rαk , αk > − 1

2 , κ ∈ N,
where r is the distance to the junction line,

– “weaker” singularities arise at corner points.

As pointed out in [16], for low-order BEM this a priori knowledge of the singularities
of φ̇ suggests the use of sequences of anisotropic tensor-product meshes algebraically
graded towards edges and junction lines with a grading factor ≥ 3, see Fig. 7. Thus,
we can expect to recover the same asymptotic rates of algebraic convergence (in terms
of number of degrees of freedom) as for a smooth φ̇ [26, Chapter 3], [28, Section 3],
[19, Chapter 7].

If one is not confined to BE spaces of fixed low polynomial degree, then hp-
BEM on anisotropic geometrically graded tensor-product meshes is an option offering
asymptotic exponential convergence [1,19, Chapter 8]. Since these topics are outside
the intended scope of this article, we are not going to pursue them further, neither here
nor in the next section.

5 Numerical results for triangulatedmulti-screens

We investigate the performance of quotient-space BEM in a few numerical experi-
ments, which were carried out using the BETL library [21]. For each of the BIE we
report the dimensions of the discrete kernels, we compute the generalized condition
numbers of the Galerkin matrices (quotient of largest and smallest non-zero singular
values), and study the convergence of the Conjugate Gradient (GC) and General-
ized Minimal Residual (GMRES) iterative solvers. We stop the iterations once the
Euclidean norm of the residual has shrunk by a factor of 106.

The experiments were carried out for the multi-screens displayed in Fig. 2: a “triple
junction” and a “quadruple junction”. That figure also displays the coarsest mesh in
each case. Table 1 provides information on the screen mesh T0 and the associated
virtual surface mesh T on different refinement levels. These refinement levels were
generated by uniform refinement of T0. As before, NT (M ), NE (M ) and NV (M )

denote the number of triangular panels, edges, and nodes, respectively, of the screen
triangulation M ∈ {T ,T0}.

For each of the BIEs of interest, we summarize our results in a table and provide a
plot of singular values of the resulting Galerkin matrices for the sequences of meshes.
The tables report, for each refinement level (Ref. Level): the number of degrees of
freedom (DoFs); the generalized condition number of the Galerkin matrices (Gen.
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Table 2 Comparison of condition numbers forAV ,0,AW ,0 andAT ,1 on unit disk discretized with standard
BEM (T0) and quotient-space BEM (T )

Ref. Level Standard BEM (T0) Quotient- space BEM (T )
DoFs Condition Number DoFs Gen. Condition Number

AV ,0 1 20 1.52·101 40 1.30·101
2 80 3.84·101 160 2.89·101
3 320 8.37·101 640 6.05·101

AW ,0 1 6 1.46·100 12 1.15·102
2 31 2.67·100 62 2.37·102
3 141 5.45·100 282 7.77·102

AT ,1 1 25 1.36·101 50 8.07·103
2 110 6.80·102 220 3.48·104
3 460 3.04·103 920 1.51·105

Condition Number); the number of Krylov-subspace iterative solver iterations (CG It.
or GMRES It.); and the dimensions of the discrete kernels.

Generalized condition numbers were computed as the quotient of largest and small-
est non-zero singular values. These quantities are of interest because they are related
to the condition numbers one would obtain if computing the Galerkin matrices by
discretizing the jump spaces directly. For this reason, we expect that they behave like
O(h−1) for AV ,κ and AW ,κ , and like O(h−2) for AT ,κ , with mesh width h → 0.
We provide Table 2 at the end of this subsection to illustrate how these quantities
behave when the multi-screen is a unit disk, where the jump spaces can be discretized
with standard BEM. There we can see that the generalized condition number of the
quotient-space BEM matrices has the same growth as the condition number of the
standard BEM matrices.

For GMRES/CG, we chose as initial guess x0 = 0. As right hand side, we used
r := Az with z a random vector, and A the Galerkin matrix corresponding to the
associated BIE. Singular values, kernel dimensions and all plots were obtained using
MATLAB. Moreover, the generalized condition number was computed by regarding
every singular value smaller than 10−12 as zero. For simplicity, and given that the
size of the kernels (and thus the feasibility of our approach) does not depend on the
wavenumber κ , we take κ = 0 for the scalar BIEs and κ = 1 for the EFIE. This yields
symmetric positive definite Galerkin matrices in the scalar case and allows the use of
CG.

Remark 5.1 (Iterative solvers for singular linear systems) We remind that Krylov-
subspace iterative solvers can be applied for solving linear systems with singular
system matrices as long as they possess a solution, that is, if the right-hand side vector
is consistent, see [7,22] and [20, Sect. 6].

123



Quotient-space boundary element methods...

Ta
bl
e
3

R
es
ul
ts
of

th
e
nu

m
er
ic
al
ex
pe
ri
m
en
ts
fo
r
A
V

,κ
w
ith

κ
=

0

C
om

pl
ex

Sc
re
en

R
ef
.L

ev
el

D
oF

s
G
en
.C

on
di
tio

n
N
um

be
r

C
G
It
.

G
M
R
E
S
It
.

di
m
ke
rn

(A
V

,κ
)

T
ri
pl
e
Ju
nc
tio

n
1

24
1.
09

·10
1

8
9

12

2
96

2.
38

·10
1

13
15

48

3
38

4
4.
89

·10
1

20
18

19
2

Q
ua
dr
up

le
Ju
nc
tio

n
1

32
1.
54

·10
1

9
10

16

2
12

8
3.
25

·10
1

16
16

64

3
51

2
6.
66

·10
1

21
18

25
6

123



X. Claeys et al.

(a) (b)

Fig. 8 Singular values for the weakly singular operator AV ,κ with κ = 0 for different levels of mesh
refinement

5.1 Scalar case: weakly singular and hypersingular BIEs

First we present the results for the weakly singular BIE. As discussed in Sect. 4.2,
we discretize withS −1

0 (T ). Furthermore, following the discussion in Sect. 4.4, it is
clear that dim kern(AV ,κ ) = NV (T0), which is exactly what we observe in Table 3.
Moreover, Fig. 8 reveals the expected gap between the non-zero singular values of

AV ,κ corresponding to discrete functions approximating ˜H− 1
2 ([Γ ]), and the singular

values corresponding to the single-trace space H− 1
2 ([Γ ]), which spawn the kernel of

AV ,κ and are zero up to machine precision.
Table 3 also provides the computed generalized condition number, and the number

of CG and GMRES iterations. These quantities are consistent with our expectations,
and they confirm that Krylov subspace iterative solvers manage to find a solution to
this singular yet consistent linear system.

Next we consider the hypersingular BIE. One may compute the Galerkin matrix
AW ,κ based on S 0

1 (T ) as described in Sect. 4.2, or, as done in our implementation,
one may use S 0

1,0(T ) ⊂ C0([Γ ]) of piecewise linear “continuous” functions on
the inflated screen [Γ ], which are zero at the boundary of ∂Γ . We remark that this
further simplification does not affect the algorithm, as the dropped boundary basis

functions belong to S −1
0 (T ) ∩ H− 1

2 ([Γ ]) and, thus, are contained in kern(AW ,κ ),
c.f. Remark 4.3. In other words, they do not affect GMRES. However, due to this
choice, the number of degrees of freedom (DoFs) correspond only to the internal
vertices of T , and dim kern(AW ,κ ) = N∗

V (T0), where N∗
V (T0) denotes the number

of internal vertices of T0. This is exactly what one sees in Table 4.
Additionally, Fig. 9 shows the singular values ofAW ,κ . There we note the predicted

gap between the non-zero singular values (corresponding to discrete functions approx-
imating ˜H−1/2([Γ ])), and the singular values that are numerically zero (associated to

the single-trace spaceS 0
1,0(T0) ⊂ H− 1

2 ([Γ ]), which is the kernel of AW ,κ given our
choice of discretization).
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(a) (b)

Fig. 9 Singular values for the hypersingular operator AW ,κ with κ = 0 for different levels of mesh
refinement

(a) (b)

Fig. 10 Singular values for the EFIE AT ,κ with κ = 1 for different levels of mesh refinement

Table 3 also provides the computed generalized condition number, and the number
of CG and GMRES iterations. It is worth noticing that these quantities behave as
expected and that both solvers converge.

5.2 Vectorial case: EFIE

Finally, we study the EFIE. As for the hypersingular BIE, one can obtain the Galerkin
matrix AT ,κ relying on the trial/test spaceN0(T ) as in Sect. 4.2, or one may use the

space N0,0(T ) ⊂ H
− 1

2 (curlΓ , Γ ) of edge element functions on the inflated screen
[Γ ], which vanish at the boundary of ∂[Γ ]. As before, the algorithm is not affected
by this further simplification, since the dropped boundary basis functions belong to

N0(T )∩H− 1
2 (curlΓ , [Γ ]) and, hence, just contribute to kern(AT ,κ ). In this approach

the number of degrees of freedom (DoFs) in Table 3 agrees with that of the internal
edges of T . Consequently, dim kern(AT ) = N∗

E (T0), with N∗
E (T0) the number of

internal edges of T0. This is verified by our numerical experiments.
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We plot the singular values ofAT ,κ in Fig. 10. As before, we find a clear distinction
between the singular values belonging to the kernel and those corresponding to the
jump space. Similarly, Table 5 reveals that GMRESworks as predicted for this setting,
too.
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