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EQUIVARIANT KURANISHI FAMILY OF COMPLEX

COMPACT MANIFOLDS

AN-KHUONG DOAN

Abstract. We prove that actions of complex reductive Lie groups on a
complex compact manifold are locally extendable to its Kuranishi family.
This can be seen as an analogue of Rim’s result (see [12]) in the analytic
setting.
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1. Introduction

Let X0 be an algebraic scheme equipped with an action of an algebraic
group G, defined over a fixed algebraically closed field k. D. S. Rim posed
a problem which asks whether we can provide a G-action on the formal
semi-universal deformation of X0, extending the given G-action. If X0 is an
affine cone with Gm-action, Pinkham showed that the answer is affirmative
in [11]. Later on, Rim generalized this result to the case that X0 is an affine
scheme with at most isolated singularities or a complete algebraic variety
over k and that G is a linearly reductive algebraic group (see [12]). For
non-reductive groups, this is not the case, in general. A counter-example
to this phenomenon can be found in [5], where X0 is the second Hirzebruch
surface F2 and G is its automorphism group. In this paper, we would like to
reproduce Rim’s result when X0 is a complex compact manifold on which a
compact Lie group G acts holomorphically and then try to address the case
that G is a complex reductive Lie group (see Corollary 4.1 and Theorem 5.2
below).
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2 AN-KHUONG DOAN

A remark should be in order. The main different point here is that in the
algebraic setting, the semi-universal deformation of X0 and the extended
G-actions, constructed by Rim, are just formal. However, in the analytic
setting, its semi-universal deformation (often called Kuranishi family) is a
true deformation (a convergent deformation). So, an application of Rim’s
result gives us a G-equivariant Kuranishi family whose extended G-actions
are only formal, i.e. they are formal power series whose convergence is not
guaranteed. Actually, this way of using Rim’s theorem keeps being repeated
several times for example in the proof of Theorem 4.20 in [10] and in the
proof of Proposition 7.1 in [7], where the convergence is supposedly needed to
carry out. Moreover, an extension of the G-action on the Kuranishi space is
immediate if the Kuranishi family is locally universal. This follows from the
fact that each time we change the central fiber of the locally universal family
by a biholomorphism of X0, we obtain another locally universal family of
X0 which is canonically isomorphic to the old one. However, in the proof of
Lemma 3.4 in [4], the author produced a G-action on the base by claiming
that there exists a local universal deformation, which is not true in general
even for the type of complex compact manifold considered therein. Thus, a
very natural wish is to have a convergent G-extension. This is one of the
motivations for us to write the paper.

Let us now outline the organization of this article. First, we give a general
picture of deformations of complex compact manifolds in §2. The most
important result on the existence of semi-universal deformation (Kuranishi
family) is also included. Next, we attack the problem by giving a useful
existence criterion in §3, which turns out to be deduced from an elementary
lemma on complex structures of real vector spaces. In §4, we treat the
case that G is compact, in advance. The key point here is that in place of
imposing an arbitrary Hermitian metric on the holomorphic tangent bundle,
we can impose a G-invariant one for the sake of the compactness of G. In
fact, this idea is already contained in Catanese’s lecture note (see [3, Lecture
III, §7]). However, the author uses it to treat only the case that the actions
are required to be trivial on the base. If we take the set of fixed points by
the G-action in the base constructed in our case then the restriction of our
G-equivariant family on this set is nothing but Catanese’s family. Finally,
in §5, we deal with the complex reductive case by means of complexification
of compact groups.

Acknowledgements. This is a part of my Ph.D thesis at Institut de mathém-
atiques de Jussieu – Paris Rive Gauche (IMJ-PRG). I would like to pro-
foundly thank my thesis advisor - Prof. Julien Grivaux for many precious
discussions, for his enthusiastic instructions, his continuous support, his ex-
tremely careful reading and his comments, which help enormously to estab-
lish this work. I am warmly grateful to the referee whose work led to a
considerable improvement of the paper.
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2. Deformations of complex compact manifolds

We first recall some basic definitions in deformation theory of compact
complex manifolds. Let B be the category of germs of pointed complex
space (B, 0) (a complex space with a reference point) whose associated re-
duced complex space is a point and let X0 be a complex compact manifold.
An infinitesimal deformation of X0 is a deformation of X0 over a germ of
complex space (B, 0) ∈ B, i.e. a commutative diagram

X0 X

· (B, 0)

i

π

where π : X → (B, 0) is a flat proper morphism of complex spaces. For
simplicity, we denote such a deformation by π: X → (B, 0) (or sometimes
just X/B). If π: X → (B, 0) and π′: X ′ → (B′, 0) are two infinitesimal
deformations of X0, a morphism of infinitesimal deformations is a pair (Φ, φ)
of two morphisms of complex spaces Φ : X → X ′ and φ : (B, 0) → (B′, 0)
such that the following diagram commutes

X X ′

X0

(B, 0) (B′, 0).

.

Φ

π π′

φ

i

i′

Kuranishi proves the existence of a semi-universal deformation π: X →
(S, 0), called Kuranishi family, which contains all the information of small
deformations of X0 (cf. [8] or [9]). Semi-universality here means that any
other deformation ρ: Y → (T, 0) of X0 is defined by the pullback of the
Kuranishi family under a holomorphic map from (T, 0) to (S, 0), whose
differential at the reference point is unique.

Next, let us take a moment to recall the definition of group actions on
complex spaces. For the sake of completeness, we recall first that a mapping
α from a real analytic (resp. complex) manifold W to a Fréchet space F
over C is called real analytic (reps. holomorphic) if for each point w0 ∈ W
there exists an open coordinate neighborhood Nw0 and a real analytic (resp.
holomorphic) coordinate system t1, . . . , tn in N such that ti(w0) = 0 and for
all w ∈ N , we have that

α(w) =
∑

ai1,...,int
i1
1 (w) . . . tinn (w)
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where ai1,...,in ∈ F and the convergence is absolute with respect to any con-
tinuous semi-norm on F . Furthermore, by a Cp-map, we insinuate a p-times
continuously differentiable function. Let G be a real (resp. complex) Lie
group and X a complex space. A G-action on X is given by a group homo-
morphism Φ : G→ Aut(X), where Aut(X) is the group of biholomorphisms
of X.

Definition 2.1. The G-action determined by Φ is said to be real analytic
(resp. holomorphic) if for each open relatively compact U b X and for each
open V ⊂ X, the following conditions are satisfied

(i) W := WU,V := {g ∈ G | g · U ⊂ V } is open in G,

(ii) the map

∗ : W → O(U)

g 7→ f ◦ g |U
is real analytic (resp. holomorphic) for all f ∈ O(V ) ,

where U is the closure of U and O(P ) is the set of holomorphic functions on
P for any open subset P of X (O(P ) is equipped with the canonical Fréchet
topology).

To end this section, we introduce a very interesting kind of deformations-
the kind of G-equivariant ones, which is of central interest of the article. As
before, let X0 be a complex compact manifold equipped with a real analytic
(resp. holomorphic) G-action.

Definition 2.2. A real analytic (resp. holomorphic) G-equivariant defor-
mation of X0 is a usual deformation of X0 π: X → B equipped with a
real analytic (resp. holomorphic) G-action on X extending the given (resp.
holomorphic) G-action on X0 and a real analytic (resp. holomorphic) G-
action on B in a way that π is a G-equivariant map with respect to these
actions. We call these extended actions a real analytic (resp. holomorphic)
G-equivariant structure on π: X → B.

Therefore, we can rephrase our objective as finding a real analytic (resp.
holomorphic) G-equivariant semi-universal deformation of a given compact
complex manifold with a real analytic (resp. holomorphic) G-action.

Remark 2.1. For simplicity, by G-actions (resp. G-equivariant deforma-
tions), we really mean real analyticG-actions (resp. real analyticG-equivariant
deformations).

3. A sufficient condition for the existence of equivariant
structure

In this section, we give a criterion for a complex compact manifold X0

with a G-action to have a G-equivariant semi-universal deformation. From
now on, by complex compact manifold, we really mean a complex com-
pact connected manifold. First, we recall a technical result concerning the
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holomorphicity of real analytic functions defined on complex spaces (cf. [8,
Proposition 2.1]).

Proposition 3.1. If V is a complex space and v is a point of V , there
exists an integer α satisfying the following condition: If f : V → V ′ is a
Cα-map, where V ′ is another complex space, such that f is holomorphic at
each non-singular point of V then there is an open neighborhood V of v in
V such that the restriction of f on V is holomorphic.

Denote by Diff(X0) the group of diffeomorphisms of X0 where X0 is the
underlying differentiable manifold of X0. For S a complex space, a map
γ : S → Diff(X0) is said to be of class Ck when the map

Γ : X0 × S → X0

(p, s) 7→ γ(s)(p)

is of class Ck. If this is indeed the case, then for each s0 ∈ S the map

Γs0 : X0 × S → X0

(p, s) 7→ γ(s) ◦ (γ(s0))
−1(p)

is a Ck-family of deformations of the identity map of X0 with a parameter

in (S, s0). In particular, for each p ∈ X0, we obtain a Ck-map

Γs0,p : S → X0

s 7→ γ(s) ◦ (γ(s0))
−1(p).

Therefore, if we suppose further that s0 is a non-singular point then each
L ∈ TZar

s0 S will give rise to a vector d(Γs0,p)s0(L), in TpX0, where d(Γs0,p)s0
is the differential of Γs0,p at s0. Thus, the map

X0 → TX0

p 7→ d(Γs0,p)s0(L)

defines a Ck-vector field on X0, which we shall denote by L]s0γ.
Finally, before stating the main result, given a complex compact manifold

X0, let us bring back a celebrated characterization of its deformations and
in particular of its semi-universal deformation (see [8, Theorem 8.1]).

Theorem 3.1. A deformation of X0 is entirely encoded by a real analytic
map φ : S → A0,1(Θ) which varies holomorphically in S such that

(i) φ(0) = 0,
(ii) ∂φ(s)− 1

2 [φ(s), φ(s)] = 0 for all s ∈ S,

where A0,1(Θ) is the space of (0, 1)-forms with values in the holomorphic
tangent bundle Θ of X0 and S is a complex space with a reference point 0.
Moreover, this deformation is semi-universal if and only if

(iii) The Kodaira-Spencer map induced by φ is an isomorphism,
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(iv) We can find an open neighborhood S′ of 0 in S such that the follow-
ing conditions hold true: for any complex space B and for any real
analytic map ψ : B → A0,1(Θ), which varies holomorphically in B,
such that ψ(b1) = φ(s1) for a point (b1, s1) ∈ B × S′, we can find
a neighborhood B′ of b1, a holomorphic map τ : (B′, b1) → (S′, s1)
and a Cα-map γ : B′ → Diff(X0) such that
(a) φ(τ(b)) = ψ(b) ◦ γ(b) for all b ∈ B′. Here, ψ(b) ◦ γ(b) is the

complex structure induced by the complex structure ψ(b) and the
diffeomorphism γ(b),

(b) For each regular point b ∈ B′ and for all L ∈ T 0,1
b B ⊂ TZar

b B =

T 1,0
b B ⊕ T 0,1

b B, we have that L]bγ−1 + φ(τ(b)) ◦ L]b(γ−1) = 0

where α is the integer in Proposition 3.1 for (CdimCX0×B, 0×b1)
and γ−1 is the map B′ → Diff(X0) which to b ∈ B′, associates

(γ(b))−1.

Now, coming back to our case where the group action joins the game, we
claim the following.

Theorem 3.2. If the map φ can also be made G-equivariant with respect
to some G-action on S and the G-action on A0,1(Θ), induced by the one on
X0, then a G-equivariant semi-universal deformation of X0 exists.

In order to prove this, let us introduce a lemma on complex structures of
real vector spaces. Let V be a real vector space of even dimension imposed
with three different complex structures J, Jm, Jn and V C be its complexifi-
cation then we have three complex vector spaces (V, J), (V, Jm), (V, Jn) and
decompositions

V C = V 1,0
J ⊕ V 0,1

J , V C = V 1,0
Jm
⊕ V 0,1

Jm
, and V C = V 1,0

Jn
⊕ V 0,1

Jn

where V 1,0
. and V 0,1

. are eigenspaces attached to the eigenvalues i and −i,
respectively. Let π1,0 : V C → V 1,0

J and π0,1 : V C → V 0,1
J be the canonical

projections.
Now, suppose that the restrictions of π0,1 on V 0,1

Jm
and on V 0,1

Jn
are iso-

morphisms. Define m,n : V 0,1
J → V 1,0

J by m = π1,0 ◦ (π0,1 |
V 0,1
Jm

)−1 and

n = π1,0 ◦ (π0,1 |
V 0,1
Jn

)−1. It is well-known that

V 0,1
Jm

=
{
u+m(u) | u ∈ V 0,1

J

}
and V 0,1

Jn
=
{
u+ n(u) | u ∈ V 0,1

J

}
.

Lemma 3.1. Let ϕ: V → V be an R-linear map such that its complexifi-
cation ϕC is a C-linear map from (V, J) to (V, J). Then ϕ is C-linear as a
map from (V, Jm) to (V, Jn) if ϕC ◦m = n ◦ ϕC.
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Proof. We claim that ϕC(V 0,1
Jm

) ⊆ V 0,1
Jn

. Indeed, let v ∈ V 0,1
Jm

then v =

u+m(u) for some u ∈ V 0,1
J . So,

ϕC(v) = ϕC(u+m(u))

= ϕC(u) + ϕC ◦m(u)

= ϕC(u) + n ◦ ϕC(u).

Moreover, since ϕC is a C-linear map from (V, J) to (V, J) then

JϕC(u) = ϕCJ(u)

= ϕC(iu) since u ∈ V 0,1
J

= iϕC(u),

which implies that ϕC(v) ∈ V 0,1
J . Hence, ϕC(u) + n ◦ ϕ(uC) ∈ V 0,1

Jn
then so

is ϕ(v), which proves the claim.

Now, let v ∈ V 0,1
Jm

, then

Jnϕ
C(v) = −iϕC(v) by the claim,

= ϕC(−iv)

= ϕCJm(v).

Making use of the linear complex conjugation, we also get that

Jnϕ
C(v) = ϕCJm(v)

for all v ∈ V 1,0
Jm

. This ends the proof. �

Finally, it is the time for us to prove Theorem 3.2.

Proof of Theorem 3.2. First of all, by the discussion at the very beginning
of this section, we have a semi-universal deformation π : X → S of X0,
associated to φ. Let X0 be the underlying differentiable manifold of X0. By
[3, Theorem 4.5] after shrinking S if necessary, there exists a real analytic
diffeomorphism γ : X0 × S → X with π ◦ γ being the projection on the
second factor of X0 × S, and such that γ is holomorphic in the second set
of variables. Thus, for a point (x, s) ∈ X0 × S, we have a decomposition of
the tangent space

TxX ⊕ TZar
s S ∼= TZar

γ(x,s)X.

We claim that π : X → S carries a G-equivariant structure. Indeed, for
g ∈ G and (x, s) ∈ X0 × S, define

g.(x, s) = (g.x, g.s)

in which we think of g as just a diffeomorphism of X0. This gives clearly an
action of G on X0×S. We shall prove that in fact if we think of X as X0×S
with the complex structure φ(−) then G acts on X by biholomorphisms.
This is equivalent to showing that the differential of g at the point (x, s)

dg(x,s) : TZar
(x,s)X = TxX0 ⊕ TZar

s → TZar
g.(x,s)X = Tg.xX0 ⊕ TZar

gs
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is C-linear with respect to the complex structure induced by φ on the tan-
gent space TZar

(x,s)X. Since dg(x,s) = (dgx, dgs) is a diagonal map and g acts

holomorphically on S. Then it is sufficient to check that

dgx : (TxX0, J(x,s))→ (TgxX0, J(gx,gs))

is C-complex linear where J(x,s) and J(gx,gs) are complex structures induced

by maps φ(s)x : T 0,1
x X0 → T 1,0

x X0 and φ(gs)gx : T 0,1
gx X0 → T 1,0

gx X0, respec-
tively. On the other hand, as φ is G-equivariant then we have

gφ(s) = φ(gs)

for any s ∈ S. This is equivalent to

dgφ(s)dg−1 = φ(gs),

by definition of the action of a diffeomorphism g on a complex structure
φ(s). Thus, for each x ∈ X0,

dgxφ(s)x = φ(gs)gxdgx.

Making use of Lemma 3.1 for m = φ(s), n = φ(gs) and ϕ = dgx, we deduce
that dgx is C-complex linear so that g is in fact holomorphic. Thus, we
have just extended the G-action on the central fiber X0 to a G-action the
total space X. This action together with the given G-action on S makes π
G-equivariant, which completes the proof. �

4. The case that G is a compact Lie group

We treat compact group actions first. Let X0 be an n-dimensional com-
plex compact manifold equipped with a real analytic K-action, where K is
a compact real Lie group. The main result of this section is the following.

Theorem 4.1. There exists a complex space (S, 0) and a real analytic map
φ : (S, 0)→ A0,1(Θ) which varies holomorphically in S such that the condi-
tions (i), (ii), (iii) and (iv), listed in Theorem 3.1, are fulfilled. Furthermore,
φ is K-equivariant with respect to some K-action on S and the K-action on
A0,1(Θ), induced by the one on X0.

Corollary 4.1. Let X0 be a complex compact manifold X0 with a K-action,
where K is a compact real Lie group. Then there exists a K-equivariant
semi-universal deformation of X0.

Proof. It follows immediately from Theorem 4.1 above and Theorem 3.2. �

In order to prove Theorem 4.1, we shall follow Kuranishi’s method in
[8] with some appropriate modification. First of all, note that we have
a natural linear K-action on A0,1(Θ) and then on H1(X0,Θ). Moreover,
since K is compact, instead of imposing an arbitrary hermitian metric on
Θ as Kuranishi did, we can impose a K-invariant Hermitian metric 〈·, ·〉 on
Θ by means of Weyl’s trick. Therefore, we have a K-invariant metric on
A0,1(Θ). As usual, we find the formal adjoint ∂

∗
of ∂. Since K acts on X0
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by biholomorphisms then the operator ∂ is K-equivariant. By the adjoint
property together with the fact that the imposed metric is K-invariant,
we also have that ∂

∗
is K-equivariant. Hence, so is the Laplacian � :=

∂
∗
∂ + ∂∂

∗
. In addition, it is well-known that � is an elliptic operator of

second order. As a matter of fact, Hodge theory provides us a famous
orthogonal decomposition.

(4.1) A0,1(Θ) = H0,1
⊕
�A0,1(Θ)

and two linear operators:

(a) The Green operator G : A0,1(Θ)→ �A0,1(Θ),
(b) The harmonic projection operator H : A0,1(Θ)→ H0,1,

where H0,1 is the vector space of all harmonic vector (0, 1)-form on X0 (this
space can also be canonically identified with H1(X0,Θ)), such that for all
v ∈ A0,1(Θ), we have

(4.2) v = Hv +�Gv.

Lemma 4.1. The linear operators G and H are K-equivariant.

Proof. For any v ∈ �A0,1(Θ) and g ∈ K, gv is also in �A0,1(Θ) for the sake
of K-invariance of �A0,1(Θ). Thus, by (4.2) we have that

v = �Gv and gv = �Ggv.

So, the K-equivariance of � gives us

� (gGv) = g� (Gv) = gv.

Hence,
� (Ggv − gGv) = 0

so that Ggv − gGv ∈ H0,1. On the other hand, gGv ∈ �A0,1(Θ), and so is
Ggv − gGv. Consequently,

Ggv − gGv ∈ H0,1 ∩�A0,1(Θ) = {0}
so that

Ggv = gGv

for any v ∈ �A0,1(Θ) and g ∈ G.
Now for any v ∈ A0,1(Θ) and g ∈ K, we have that

gGv = gG(Hv +�Gv)

= gGHv + gG (�Gv)

= gG (�Gv) since GH = 0,

= G (g�Gv) by the above case,

= Gg (v −Hv) by the decomposition (4.2),

= Ggv −GgHv
= Ggv since H0,1 is also K-invariant.

Thus, the K-equivariance of G follows.
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For the K-equivariance of H, we have that

gHv = g(v −�Gv)

= gv − g�Gv
= gv −�Ggv since �, G are K-equivariant,

= Hgv.

This ends the lemma. �

Next, Kuranishi would like to parametrize the set

Φ :=

{
φ ∈ A0,1(Θ) | ∂φ− 1

2
[φ, φ] = 0, ∂

∗
φ = 0

}
which actually forms an effective and complete family. We shall repeat
briefly his argument. For any φ ∈ Φ, we have that

�φ− 1

2
∂
∗
[φ, φ] = 0.

Applying Green’s operator on this, we get

φ− 1

2
G∂
∗
[φ, φ] = Hφ.

Thus, Φ is a subset of

Ψ :=

{
φ ∈ A0,1(Θ) | φ− 1

2
G∂
∗
[φ, φ] ∈ H0,1

}
.

Therefore, it is natural to parametrize Ψ first. Let {Uσ} be a finite covering
of X0 and xσ = (x1σ, · · · , xnσ) be a local chart of X0 on Uσ. Let {fσ} be
a smooth partition of unity with respect to the covering {Uσ} of X0. We
introduce another norm in A0,1(Θ). For l = (l1, · · · , ln), where lj is some

non-negative integer (j ∈ [1, · · · , n]), we denote by Dl
σ, the partial derivative(

∂

∂x1σ

)l1
· · ·
(

∂

∂xnσ

)ln
and set |l| = l1 + · · ·+ ln. For u ∈ A0,1(Θ) and for an integer k ≥ 0, we set

‖u‖2k =
∑
σ

∑
|l|≤k

∫ 〈
Dl
σfσu(xσ), Dl

σfσu(xσ)
〉
dv

where dv is the volume element of X0. This norm is called Sobolev k-
norm. From now on, we fix once for all a sufficiently large integer k. Let
Hk(Θ) be the Hilbert space obtained by completing A0,1(Θ) with respect to
this Sobolev k-norm. Making use of Inverse Mapping Theorem for Banach
manifolds to the map

F : A0,1(Θ)→ A0,1(Θ)

φ 7→ φ− 1

2
G∂
∗
[φ, φ],
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there exists a complex Banach analytic map φ : W → Hk(Θ) such that

s = Fφ(s) = φ(s)− 1

2
G∂
∗
[φ(s), φ(s)]

for all s ∈W , where

W :=
{
s ∈ H0,1 | ‖s‖k < ε

}
and ε is sufficiently small. Hence, for s ∈W , we have that

�φ(s)− 1

2
∂
∗
[φ(s), φ(s)] = 0,

which follows from the fact that �G∂
∗

= ∂
∗

and that s is harmonic. By the
regularity of elliptic differential operators, we deduce that φ is holomorphic
and that the image of φ is actually in A0,1(Θ). In other words, we obtain a
holomorphic map

(4.3) φ : W → A0,1(Θ)

whose image, by construction, covers a neighborhood of 0 in Ψ and so, a
neighborhood of 0 in Φ.

Finally, a necessary and sufficient condition on s for φ(s) to be in Φ is
that H[φ(s), φ(s)] = 0. Set S′ := {s ∈W | H[φ(s), φ(s)] = 0}. Restricting
on S′, we obtain a holomorphic map

(4.4) φ : S′ → A0,1(Θ)

which satisfies the conditions (i), (ii), (iii) and (iv) in Theorem 3.1.
Now, we add the K-action. Recall that the Lie bracket [·, ·] on A0,1(Θ) is

defined as follows. For two element α, β ∈ A0,1(Θ) given in local coordinates

α =
∑

mu
i dz

i
⊗ ∂

∂zu
and β =

∑
nvjdz

j
⊗ ∂

∂zv

then

[α, β] :=
∑

dzi ∧ dzj
⊗[

mu
i

∂

∂zu
, nvj

∂

∂zv

]′
where [·, ·]′ is the usual Lie bracket for the Lie algebra of vector fields on X0.
Let g ∈ K then

g.α :=
∑

g∗
(
dzi
)⊗

g∗

(
gui

∂

∂zu

)
where g∗ and g∗ are the pull-back of differential forms and the push-forward
of vector fields, respectively. With this definition, the G-action clearly com-
mutes with the Lie bracket, i.e.

g[·, ·] = [g·, g·]
because the wedge product ∧ and the Lie bracket [·, ·]′ do. Moreover, G and

∂
∗

are K-equivariant. Thus, F is also K-equivariant.

Lemma 4.2. There exists an open neighborhood U of 0 contained in W
such that U is K-invariant.
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Proof. For each g ∈ K, there exists a neighborhood Vg of g and Kg of 0 such
that Vg.Kg ∈ W . By the compactness of K, there exists a finite set I ⊂ K
such that K =

⋃
g∈I Vg. Let P =

⋂
g∈I Kg then P is an open neighborhood

of 0 in H0,1. Thus,

K.P =

⋃
g∈I

Vg

 .

⋂
g∈I

Kg

 ⊆W.
Finally, set U :=

⋃
g∈K VgK. This is the desired K-invariant open neigh-

borhood of 0 contained in W . �

Now, restricting the map in (4.3) on this U , we obtain a map

(4.5) φ : U → φ(U) ⊆ A0,1(Θ)

which is K-equivariant because it is the inverse of the K-equivariant map
F on U . Finally, set S := S′ ∩ U .

Lemma 4.3. S is K-invariant and this K-action is real analytic.

Proof. Let s ∈ S′ ∩ U and g ∈ K then we have

H[φ(g.s), φ(g.s)] = H[g.φ(s), g.φ(s)] since φ is K-equivariant on U,

= Hg.[φ(s), φ(s)] since the action commutes with the bracket,

= gH[φ(s), φ(s)] by Lemma 4.1,

= g.0 since s in S′,

= 0.

Thus, g.s ∈ S′. Moreover, g.s ∈ U by the construction of U . Hence,
g.s ∈ S′ ∩ U so that S is K-invariant. The part that this K-action on S
is real analytic follows from the fact that it is the restriction of a linear
K-action on U . �

Proof of Theorem 4.1. The restriction of the map φ in (4.5) on S gives us a
map

φ : S → A0,1(Θ)

which satisfies all the conditions given in the theorem. �

5. The case that G is a complex reductive Lie group

In this final section, we would like to extend Corollary 4.1 to the case that
G is a complex reductive Lie group.

We begin by introducing the definition of holomorphic local (G,K)-action
on a complex space X where K is a compact subgroup of G. Denote by

∏
X

the collection of all pair π = (Uπ, Vπ), where Uπ and Vπ are open subsets
in X such that Uπ b Vπ. Suppose that for each π ∈

∏
X we have an

open neighborhood Gπ of K and a mapping Φπ : Gπ → Hol(Uπ, Vπ) where
Hol(Uπ, Vπ) is the set of all holomorphic functions from Uπ to Vπ.
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Definition 5.1. One says that the system {Φπ} defines a local (G,K)-action
on X if the following conditions are satisfied.

(a) For all g, h ∈ G such that k := gh ∈ Gπ, we have

Φπ(g) ◦ Φπ(h) |Uπ,h= Φπ(k) |Uπ,h
where Uπ,h := {x ∈ Uπ | Φπ(h)(x) ∈ Uπ};

(b) Φπ(1G) = id;
(c) for all π, ρ ∈

∏
X and g ∈ Gπ ∩Gρ we have

Φπ(g) |Uπ∩Uρ= Φρ(g) |Uπ∩Uρ
so that gx := Φπ(g)x is independent of the choice of π with x ∈
Uπ, g ∈ Gπ;

(d) for any two open sets U b Uπ and V b Vπ, the set

W := WU,V := {g ∈ Gπ | g · U ⊂ V }
is open in Gπ and the map

∗ : W → O(U)

g 7→ f ◦ g |U
is continuous for all f ∈ O(V ) where U is the closure of U and O(P )
is the set of holomorphic functions on P for any open subset P of
X;

(e) The restriction of the system {Φπ} on K gives a global K-action on
X, i.e. a homomorphism of topological groups Φ : K → Aut(X).

Moreover, if G is a real (resp. complex) Lie group and if ∗ and Φ are real
analytic (resp. holomorphic), then the local (G,K)-action is called real ana-
lytic (resp. holomorphic). Two local (G,K)-actions defined by two systems
{Φπ} and {Φ′π} are said to be equivalent if for all π ∈

∏
X , the mappings

Φπ : Gπ → Hol(Uπ, Vπ) and Φ′π : G′π → Hol(Uπ, Vπ) coincide on a sub-
domain Gπ ∩ G′π containing K and their restrictions on K give the same
global K-action.

As before, by local G-action, we really mean real analytic local G-action.
If we let K be the identity element of G in Definition 5.1 then we recover
the usual definition of (holomorphic) local G-action on complex spaces (see
[1], Section 1.2 for more details). In this case, we have the following theorem
([1], page 25, Corollary).

Theorem 5.1. Let G be a (complex) Lie group, g the Lie algebra of G, and
S a complex space. Then we have two bijections{

equivalence classes of
local G-actions on S

}
←→

{
Lie algebra homomorphisms

g→ TS(S)

}
equivalence classes ofholomorphic local

G-actions on S

←→
{

complex Lie algebra
homomorphisms g→ TS(S)

}
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where TS(S) is the set of holomorphic vector fields on S.

Corollary 5.1. Let K be a connected compact real Lie group acting on
a complex space X and G be the complexification of K. There exists a
holomorphic local (G,K)-action on X extending the initial global K-action.

Proof. By Theorem 5.1, the initial K-action gives us a Lie algebra homo-
morphism ϕ : Lie(K)→ TX(X). Since TX(X) is a complex Lie algebra, the
C-linear extension of ϕ gives us a complex Lie algebra homomorphism ϕC :
Lie(K)C = Lie(G)→ TX(X). An application of Theorem 5.1 again provides
a holomorphic local G-action on X. Note that the restriction of this holo-
morphic local G-action on K gives a local K-action on X, which in fact is
equivalent to the initial global one on X. This follows from the fact that they
correspond to the same Lie algebra homomorphism ϕ : Lie(K) → TX(X).
Thus, it allows us to define a holomorphic local (G,K)-action on X as fol-
lows. If g ∈ K then then the action of g is determined by the initial global
K-action. If g ∈ G \K then the action of g is determined by the extended
holomorphic local G-action. This ends the proof. �

The two following lemmas are helpful in the sequel.

Lemma 5.1. Let f : X → Y be a proper surjective flat map of complex
spaces whose geometric fibers are all connected complex compact manifolds.
Then the natural maps OY → f∗OX is an isomorphism.

Proof. For y ∈ Y , we have that H0(Xy,Oy) = C(y) since Xy is a compact
complex manifold. So, the base change morphism

φ0(s) : (f∗OX)x ⊗OY,y C(y)→ H0(Xy,Oy) = C(y)

is clearly surjective. By [2, Chapter III, Theorem 3.4], φ0(s) is an isomor-
phism. Note that φ−1(s) is trivially surjective. So, an easy application of
[2, Chapter III, Corollary 3.7] gives us the freeness of the OY -module f∗OX
in a neighborhood of y. As φ0(y) is an isomorphism then f∗OX is free of
rank 1 in a neighborhood of y. But this holds for any y ∈ Y . Thus, f∗OX
is locally free of rank 1 and then the map OY → f∗OX turns out to be an
isomorphism. This completes the proof. �

Lemma 5.2. Let G be a complex reductive group and let K be a connected
real maximal compact subgroup such that KC = G. Let Q be open subset
of G. Let g be a point in G such that the K-orbit K.g intersects every
connected component of Q. Then if f is a holomorphic function on Q such
that f |K.g∩Q= 0 then f ≡ 0 on Q.

Proof. See ([6], page 634, Identity Theorem). �

Now, we are ready to state the second main result of this paper.

Theorem 5.2. Let X/S be the Kuranishi family of a complex compact man-
ifold X0 with a holomorphic action of a complex reductive Lie group G. Then
we can provide holomorphic local G-actions on X/S extending the holomor-
phic G-action on X0.
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Proof. Let K be a connected real maximal compact subgroup whose com-
plexification is exactly G. By Corollary 4.1, we obtain a K-equivariant
Kuranishi family π : X → S. If we can extend the K-actions on X and
on S to holomorphic local (G,K)-actions such that π is G-equivariant with
respect to these holomorphic local (G,K)-actions then our result follows
immediately since any local (G,K)-action is obviously a local G-action. By
Corollary 5.1, we obtain a holomorphic local (G,K)-action on X. Note that
the restriction on K of this local (G,K)-action is nothing but the initial
global K-action on X.

Let g ∈ N(K) \K where N(K) is a neighborhood of K. We shall prove
that g, as a biholomorphism on X, swaps fibers of π. Indeed, recall that by
construction, S is an analytic subset defined in a open subset U ⊂ Cn where
n := dimCH

1(X0,Θ). Consider the following holomorphic function

ρi : X
g→ X

π→ S
ι→ Cn πi→ C

where ι is the inclusion and πi is the ith-projection. Lemma 5.1 tells us that
π∗OX = OS which means precisely that any holomorphic function from X
to C factors through π. So, for each i, there exists a holomorphic function
σi : S → C such that ρi = σi ◦ π. So, σi’s together form a holomorphic
function σ : S → Cn which then is lifted to a holomorphic function νg :
S → S. More precisely, we have the following commutative diagram

X X

S S

Cn

π

g

π

ισ

νg

which means in particular that g exchanges fibers of π. Since g is a biholo-
morphism then so is νg. On one hand, νg is uniquely determined by g. This
follows from the fact that X is constructed from X × S, as the underlying
differentiable manifold, and the fact that g swaps fibers of π. On the other
hand, since the local (G,K)-action on X is holomorphic then νg(−) varies
holomorphically with respect to the variable g. Hence, the map g 7→ νg
defines a holomorphic local (G,K)-action on S, which extends the initial
K-action on S.

Finally, we shall prove that the restriction of the holomorphic local (G,K)-
action of X on the central fiber X0 is the initial G-action on X0. In order
to do it, we first show that the holomorphic local (G,K)-action on S fixes
the reference point 0. Let N(K) be a connected open neighborhood of K.



16 AN-KHUONG DOAN

Note that the holomorphic function

χ : G→ (S, 0)

g 7→ νg(0)

is constant on K, i.e. χ(k) = 0 for all k ∈ K. Consider the holomorphic
function

µi : G
χ→ (S, 0)

ι→ (Cn, 0)
πi→ C

where ι is the inclusion and πi is the ith-projection. Hence, we also have
µi(k) = 0 for all k ∈ K. Applying Lemma 5.2 with g = 1G and Q = N(K),
we obtain that µi is zero on N(K). But this holds for any i and so χ(g) = 0
for all g ∈ N(K). This justifies the claim. Therefore, the local (G,K)-action
on X preserves the central fiber X0, i.e. gX0 ⊂ X0 for g ∈ G whenever it
is defined. Consequently, we have a holomorphic local (G,K)-action on X0,
which is the restriction on X0 of the one on X. Because X0 is compact then
this action turns out to be global and it contains the initial K-action on X0.
As a matter of fact, it must coincide with the initial G-action on X0 because
the action of G on a complex compact manifold is uniquely determined by
the one of K.

In summary, what we have just done is to equip holomorphic local (G,K)-
actions on X and on S in a way that the map π : X → S is G-equivariant
with respect two these holomorphic local (G,K)-actions and that the re-
striction on the central fiber X0 of the holomorphic local (G,K)-action on
X is nothing but the initial holomorphic G-action on X0. This finishes the
proof. �
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10. R. Laza, G. Saccà, and C. Voisin, A hyper-Kähler compactification of the intermediate
Jacobian fibration associated with a cubic 4-fold. Acta Math. 371 (2017), no. 1, pp.
55–135.

11. H. C. Pinkham, Deformations of algebraic varieties with Gm-action. Astérique No.
20, Soc. Math. France, Paris (1974).

12. D. S. Rim, Equivariant G-structure on versal deformations. Transactions of the Amer-
ican Mathematical Society, 257(1) (1980): 217–226.

An-Khuong DOAN, IMJ-PRG, UMR 7586, Sorbonne Université, Case 247, 4
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