
HAL Id: hal-03200401
https://hal.sorbonne-universite.fr/hal-03200401

Submitted on 16 Apr 2021

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Inferring the function performed by a recurrent neural
network

Matthew Chalk, Gasper Tkacik, Olivier Marre

To cite this version:
Matthew Chalk, Gasper Tkacik, Olivier Marre. Inferring the function performed by a recurrent neural
network. PLoS ONE, 2021, 16 (4), pp.e0248940. �10.1371/journal.pone.0248940�. �hal-03200401�

https://hal.sorbonne-universite.fr/hal-03200401
https://hal.archives-ouvertes.fr

RESEARCH ARTICLE

Inferring the function performed by a

recurrent neural network

Matthew ChalkID
1*, Gasper TkacikID

2☯, Olivier Marre1☯

1 Institut de la Vision, INSERM, CNRS, Sorbonne Université, Paris, France, 2 IST Austria, Klosterneuburg,

Austria

☯ These authors contributed equally to this work.

* matthew.chalk@inserm.fr

Abstract

A central goal in systems neuroscience is to understand the functions performed by neural

circuits. Previous top-down models addressed this question by comparing the behaviour of

an ideal model circuit, optimised to perform a given function, with neural recordings. How-

ever, this requires guessing in advance what function is being performed, which may not be

possible for many neural systems. To address this, we propose an inverse reinforcement

learning (RL) framework for inferring the function performed by a neural network from data.

We assume that the responses of each neuron in a network are optimised so as to drive the

network towards ‘rewarded’ states, that are desirable for performing a given function. We

then show how one can use inverse RL to infer the reward function optimised by the network

from observing its responses. This inferred reward function can be used to predict how the

neural network should adapt its dynamics to perform the same function when the external

environment or network structure changes. This could lead to theoretical predictions about

how neural network dynamics adapt to deal with cell death and/or varying sensory stimulus

statistics.

Introduction

Neural circuits have evolved to perform a range of different functions, from sensory coding to

muscle control and decision making. A central goal of systems neuroscience is to elucidate

what these functions are and how neural circuits implement them. A common ‘top-down’

approach starts by formulating a hypothesis about the function performed by a given neural

system (e.g. efficient coding/decision making), which can be formalised via an objective func-

tion [1–10]. This hypothesis is then tested by comparing the predicted behaviour of a model

circuit that maximises the assumed objective function (possibly given constraints, such as

noise/metabolic costs etc.) with recorded responses.

One of the earliest applications of this approach was sensory coding, where neural circuits

are thought to efficiently encode sensory stimuli, with limited information loss [7–13]. Over

the years, top-down models have also been proposed for many central functions performed by

neural circuits, such as generating the complex patterns of activity necessary for initiating

PLOS ONE

PLOS ONE | https://doi.org/10.1371/journal.pone.0248940 April 15, 2021 1 / 25

a1111111111

a1111111111

a1111111111

a1111111111

a1111111111

OPEN ACCESS

Citation: Chalk M, Tkacik G, Marre O (2021)

Inferring the function performed by a recurrent

neural network. PLoS ONE 16(4): e0248940.

https://doi.org/10.1371/journal.pone.0248940

Editor: Jonathan David Touboul, Brandeis

University, UNITED STATES

Received: February 24, 2020

Accepted: March 8, 2021

Published: April 15, 2021

Copyright: © 2021 Chalk et al. This is an open

access article distributed under the terms of the

Creative Commons Attribution License, which

permits unrestricted use, distribution, and

reproduction in any medium, provided the original

author and source are credited.

Data Availability Statement: All relevant data are

within the manuscript.

Funding: This work was supported by ANR JCJC

grant (ANR-17-CE37-0013) to M.C, ANR Trajectory

(ANR-15-CE37-0011), ANR DECORE (ANR-18-

CE37-0011), the French State program

Investissements d’Avenir managed by the Agence

Nationale de la Recherche (LIFESENSES; ANR-10-

LABX-65), EC Grant No. H2020-785907 from the

Human Brain Project (SGA2), and an AVIESAN-

UNADEV grant to O.M.

Competing interests: The authors have declared

that no competing interests exist.

https://orcid.org/0000-0001-7782-4436
https://orcid.org/0000-0002-6699-1455
https://doi.org/10.1371/journal.pone.0248940
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0248940&domain=pdf&date_stamp=2021-04-15
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0248940&domain=pdf&date_stamp=2021-04-15
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0248940&domain=pdf&date_stamp=2021-04-15
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0248940&domain=pdf&date_stamp=2021-04-15
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0248940&domain=pdf&date_stamp=2021-04-15
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0248940&domain=pdf&date_stamp=2021-04-15
https://doi.org/10.1371/journal.pone.0248940
http://creativecommons.org/licenses/by/4.0/

motor commands [3], detecting predictive features in the environment [4], or memory storage

[5]. Nevertheless, it has remained difficult to make quantitative contact between top-down

model predictions and data, in particular, to rigorously test which (if any) of the proposed

functions is actually being carried out by a real neural circuit.

The first problem is that a pure top-down approach requires us to hypothesise the function

performed by a given neural circuit, which is often not possible. Second, even if our hypothesis

is correct, there may be multiple ways for a neural circuit to perform the same function, so that

the predictions of the top-down model may not match the data.

Here we propose a framework for considering optimal computation by a recurrent neural

network, that aims to overcome these problems. We first frame optimal computation by a

recurrent neural network as a reinforcement learning (RL) problem [14–21] (Fig 1). In this

framework, a reward function is assumed to quantify how desirable each state of the network

is for performing a given computation. Each neuron then optimises its responses (i.e. when to

fire a spike) so as to drive the network towards rewarded states, given a constraint on the infor-

mation each neuron encodes about its inputs. This framework is very general—different

choices of reward function result in the network performing diverse functions, from efficient

coding to decision making and optimal control.

Next, we show how this framework can be used to tackle the problem of inferring the

reward function from the observed network dynamics. Previous work has proposed ‘inverse

RL’ algorithms for inferring the original reward function from an agent’s actions [22–26].

Here we show how this framework can be adapted to infer the reward function optimised by a

recurrent neural network. Further, given certain conditions we show that the reward function

can be expressed as a closed-form expression of the observed network dynamics.

We hypothesise that the inferred reward function, rather than e.g. the properties of individ-

ual neurons, is the most succinct mathematical summary of the network, that generalises

across different contexts and conditions. Thus we could use our framework to quantitatively

predict how the network will adapt or learn in order to perform the same function when the

external context (e.g. stimulus statistics), constraints (e.g. noise level) or the structure of the

network (e.g. due to cell death or experimental manipulation) change. Our framework could

thus generate predictions for a wide range of experimental manipulations.

Results

General approach

We can quantify how well a network performs a specific function (e.g. sensory coding/decision

making) via an objective function Lπ (where π denotes the parameters that determine the net-

work dynamics) (Fig 1A). There is a large literature describing how to optimise the dynamics

of a neural network, π, to maximise specific objective functions, Lπ, given constraints (e.g. met-

abolic cost/wiring constraints etc.) [1–10]. However, it is generally much harder to go in the

opposite direction, to infer the objective function, Lπ, from observations of the network

dynamics.

To address this question, we looked to the field of reinforcement learning (RL) [16–20],

which describes how an agent should choose actions so as to maximise the reward they receive

from their environment (Fig 1B). Conversely, another paradigm, called inverse RL [22–26],

explains how to go in the opposite direction, to infer the reward associated with different states

of the environment from observations of the agent’s actions. By establishing a mapping

between optimising neural network dynamics (Fig 1A) and optimising an agent’s actions via

RL (Fig 1B) [14, 15] we could use inverse RL to infer the objective function optimised by a neu-

ral network from its observed dynamics.

PLOS ONE Inferring the function performed by a recurrent neural network

PLOS ONE | https://doi.org/10.1371/journal.pone.0248940 April 15, 2021 2 / 25

https://doi.org/10.1371/journal.pone.0248940

To illustrate this, let us compare the problem faced by a single neuron embedded within a

recurrent neural network (Fig 1C) to the textbook RL problem of an agent navigating a maze

(Fig 1D). The neuron’s environment is determined by the activity of other neurons in the net-

work and its external input; the agent’s environment is determined by the walls of the maze.

At each time, the neuron can choose whether to fire a spike, so as to drive the network towards

states that are ‘desirable’ for performing a given function; at each time, the agent in the maze

can choose which direction to move in, so as to reach ‘desirable’ locations, associated with a

high reward.

Both problems can be formulated mathematically as Markov Decision Processes (MDPs)

(Fig 1E). Each state of the system, s (i.e. the agent’s position in the maze, or the state of the

Fig 1. General approach. (A) Top-down models use an assumed objective function to derive the optimal neural dynamics. The inverse problem is to

infer the objective function from observed neural responses. (B) RL uses an assumed reward function to derive an optimal set of actions that an agent

should perform in a given environment. Inverse RL infers the reward function from the agent’s actions. (C-D) A mapping between the neural network

and textbook RL setup. (E) Both problems can be formulated as MDPs, where an agent (or neuron) can choose which actions, a, to perform to alter

their state, s, and increase their reward. (F) Given a reward function and coding cost (which penalises complex policies), we can use entropy-regularised

RL to derive the optimal policy (left). Here we plot a single trajectory sampled from the optimal policy (red), as well as how often the agent visits each

location (shaded). Conversely, we can use inverse RL to infer the reward function from the agent’s policy (centre). We can then use the inferred reward

to predict how the agent’s policy will change when we increase the coding cost to favour simpler (but less rewarded) trajectories (top right), or move the

walls of the maze (bottom right).

https://doi.org/10.1371/journal.pone.0248940.g001

PLOS ONE Inferring the function performed by a recurrent neural network

PLOS ONE | https://doi.org/10.1371/journal.pone.0248940 April 15, 2021 3 / 25

https://doi.org/10.1371/journal.pone.0248940.g001
https://doi.org/10.1371/journal.pone.0248940

network and external input), is associated with a reward, r(s). At each time, the agent can

choose to perform an action, a (i.e. moving in a particular direction, or firing a spike), so as to

reach a new state s0 with probability, p(s0|a, s). The probability that the agent performs a given

action in each state, π(a|s), is called their policy.

We assume that the agent (or neuron) optimises their policy to maximise their average

reward, hr(s)ipπ(s) (where h�ipπ(s) denotes the average over the steady state distribution, pπ(s),
with a policy π(a|s)). In addition, we assume that there is a constraint on the amount of infor-

mation the agent can ‘encode’ about their state, Iπ(a;s) (this corresponds, for example, to con-

straining how much a neuron can encode about the rest of the network and external input).

Intuitively, this constraint determines how complicated an agent’s policy is allowed to be: the

smaller, Iπ(a;s), the less the agent’s actions, a, can vary as a function of the state, s. In the limit

where Iπ(a;s) = 0 the agent’s actions are completely independent of their state. More formally,

we assume the agent finds a policy that maximises the following objective function:

Lp ¼ hrðsÞippðsÞ � lIpða; sÞ ð1Þ

where λ is a constant that controls the strength of the constraint [20]. Note that in the special

case where the agent’s state does not depend on previous actions (i.e. p(s0|a, s) = p(s0|s)) and the

reward only depends on the agent’s current state and action, this is the same as the objective

function used in rate-distortion theory [27, 28]. We can also write this objective function as:

Lp ¼ hrðsÞ � lcpðsÞippðsÞ ð2Þ

where cπ(s) is a ‘coding cost’, equal to the Kullback-Leibler divergence between the agent’s pol-

icy and the steady-state distribution over actions, DKL[π(a|s)kpπ(a)]. This coding cost specifies

how much the agent’s policy in each state, π(a|s), differs from the average distribution over

actions pπ(a). In the limit where cπ(s) = 0 for all s, then their choice of action choice will not

depend on s (i.e. π(a|s) = pπ(a) for all s). We hereon refer to the difference, r(s)−λcπ(s), as the

‘return’ associated with each state.

In the Methods we explain how this objective function can be maximised via entropy-regu-

larised RL [17, 20] to obtain the optimal policy, which satisfies the relation:

pðajsÞ / pp að Þe
1
l
hvpðs0Þipðs0 js;aÞ ; ð3Þ

where vπ(s) is the ‘value’ associated with each state, defined as the total return predicted in the

future if the agent starts in a given state, minus the average return, Lπ:

vpðsÞ ¼ rðsÞ � lcpðsÞ � Lp
þhrðs0Þ � lcpðs0Þippðs0 jsÞ � Lp
þhrðs00Þ � lcpðs00Þippðs00 js0Þppðs0 jsÞ � Lp þ . . .

ð4Þ

where s, s0 and s00 denote three consecutive states of the agent. Subtracting the average return,

Lπ, from each term in the sum ensures that this series converges to a finite value [29]. Thus,

actions that drive the agent towards high-value states are preferred over actions that drive the

agent towards low value states. Note the difference between a state’s value, v(s), and its return,

r(s)−λcπ(s): a state with low return can nonetheless have a high-value if it allows the agent to

transition to other states associated with a high return in the future.

Let us return to our toy example of the agent in a maze. Fig 1F (left) shows the agent’s tra-

jectory through the maze after optimising their policy using entropy regularized RL to maxi-

mise Lπ (Methods). In this example, a single location, in the lower-right corner of the maze,

has a non-zero reward (Fig 1F, centre). However, suppose we didn’t know this; could we infer

PLOS ONE Inferring the function performed by a recurrent neural network

PLOS ONE | https://doi.org/10.1371/journal.pone.0248940 April 15, 2021 4 / 25

https://doi.org/10.1371/journal.pone.0248940

the reward at each location just by observing the agent’s trajectory in the maze? In the Methods

we show that this can be done by finding the reward function that maximises the log-likeli-

hood of the optimal policy, averaged over observed actions and states, hlogπ�(a|s)idata. If the

coding cost is non-zero (λ> 0), this problem is generally well-posed, meaning there is a

unique solution for r(s).
Once we have inferred the reward function optimised by the agent, we can then use it to

predict how their behaviour will change when we alter their external environment or internal

constraints. For example, we can predict how the agent’s trajectory through the maze will

change when we move the position of the walls (Fig 1F, lower right), or increase the coding

cost so as to favour simpler (but less rewarded) trajectories (Fig 1F, upper right).

Optimising neural network dynamics

We used these principles to infer the function performed by a recurrent neural network. We

considered a model network of n neurons, each described by a binary variable, σi = −1/1,

denoting whether the neuron is silent or spiking respectively (Methods section). The network

receives an external input, x. The network state is described by an n-dimensional vector of

binary values, σ = (σ1, σ2, . . ., σn)T. Both the network and external input have Markov dynam-

ics. Neurons are updated asynchronously: at each time-step a neuron is selected at random,

and its state updated by sampling from σi� πi(σi|σ, x). The dynamics of the network are fully

specified by the set of response probabilities, πi(σi|σ, x), and input statistics, p(x0|x) (where x
and x0 denote the external input at consecutive time steps).

As before, we use a reward function, r(σ, x), to express how desirable each state of the net-

work is to perform a given functional objective. For example, if the objective of the network is

to faithfully encode the external input, then an appropriate reward function might be the nega-

tive squared error: rðx;σÞ ¼ � ðx � x̂ðσÞÞ2, where x̂ðσÞ denotes an estimate of x, inferred

from the network state, σ. More generally, different choices of reward function can be used to

describe a large range of functions that may be performed by the network.

The dynamics of the network (determined by the response probabilities for each neuron),

πi are said to be optimal if they maximise the average reward, hrðσ; xÞippðσ;xÞ, given a constraint

on the mutual information between each neuron’s responses and the rest of the network and

external inputs,
Pn

i¼1
Ipðsi;σ=i; xÞ (where σ/i denotes the state of every neuron except for neu-

ron i). As described in the previous section, this coding constraint effectively limits how much

each neurons responses can vary, depending on its inputs. Formally, this corresponds to maxi-

mising the objective function:

Lp ¼ hrðσ; xÞippðσ;xÞ � l
Xn

i¼1

Ipðsi;σ=i; xÞ: ð5Þ

where λ controls the strength of the constraint. For each neuron, this optimisation can be

framed as an MDP, where the state, action, and policy correspond to the network state and

external input {σ, x}, the neuron’s proposed update, σi, and the response probability πi(σi|σ, x),

respectively. Thus, we can optimise the network dynamics, by optimising each neuron’s

response probabilities, πi(σi|σ, x), via entropy-regularised RL, as we did for the agent in the

maze. As each update increases the objective function Lπ, we can alternate updates for different

neurons to optimise the dynamics of the entire network. In the Methods, we show that this

results in optimal response probabilities that satisfy the relation:

pi si ¼ 1jσ=i; x
� �

¼ 1þ
ppðsi ¼ 1Þ

1 � ppðsi ¼ 1Þ
e

1
nl
P
si¼� 1;1

sihvpðσ;x0Þipðx0 jxÞ

� �� 1

; ð6Þ

PLOS ONE Inferring the function performed by a recurrent neural network

PLOS ONE | https://doi.org/10.1371/journal.pone.0248940 April 15, 2021 5 / 25

https://doi.org/10.1371/journal.pone.0248940

where σ/i denotes the state of all neurons except for neuron i, and vπ(σ, x) is the value associ-

ated with each state:

vpðσ; xÞ ¼ rðσ; xÞ � lcpðσ; xÞ � Lp
þhrðx0;σ0Þ � lcpðσ0; x0Þippðσ0 jx;σÞpðx0 jxÞ � Lp
þhrðx00;σ00Þ � lcpðσ00; x00Þippðσ00 jx;σÞpðx00 jxÞ � Lp þ . . .

ð7Þ

The coding cost, cpðσ; xÞ ¼
Pn

i¼1
DKL½piðsijσ=i; xÞ k ppðsiÞ� penalises deviations from each

neuron’s average firing rate. The network dynamics are optimised by alternately updating the

value function and neural response probabilities until convergence (see Methods).

To see how this works in practice, we simulated a network of 8 neurons that receive a binary

input x (Fig 2A). The assumed goal of the network is to fire exactly 2 spikes when x = −1, and 6

spikes when x = 1, while minimising the coding cost. To achieve this, the reward was set to

unity when the network fired the desired number of spikes, and zero otherwise (Fig 2B). We

Fig 2. Training and inferring the function performed by a neural network. (A) A recurrent neural network receives a binary input, x. (B) The reward

function equals 1 if the network fires 2 spikes when x = −1, or 6 spikes when x = 1. (C) After optimisation, neural tuning curves depend on the input, x,

and total spike count. (D) Simulated dynamics of the network with 8 neurons (left). The total spike count (below) is tightly peaked around the rewarded

values. (E) Using inverse RL on the observed network dynamics, we infer the original reward function used to optimise the network from its observed

dynamics. (F) The inferred reward function is used to predict how neural tuning curves will adapt depending on contextual changes, such as varying

the input statistics (e.g. decreasing p(x = 1)) (top right), or cell death (bottom right). Thick/thin lines show adapted/original tuning curves, respectively.

https://doi.org/10.1371/journal.pone.0248940.g002

PLOS ONE Inferring the function performed by a recurrent neural network

PLOS ONE | https://doi.org/10.1371/journal.pone.0248940 April 15, 2021 6 / 25

https://doi.org/10.1371/journal.pone.0248940.g002
https://doi.org/10.1371/journal.pone.0248940

optimised the network as described above using entropy-regularised RL, and then plotted the

optimal tuning curves for each neuron, which show how their spiking probability should opti-

mally vary depending on the input, x, and number of spikes fired by other neurons (Fig 2C).

We confirmed that after optimisation the number of spikes fired by the network was tightly

peaked around the target values (Fig 2D). Decreasing the coding cost reduced noise in the net-

work, decreasing variability in the total spike count.

Inferring the objective function from the neural dynamics

We next asked if one could use inverse RL to infer the reward function optimised by a neural

network, just from its observed dynamics (Fig 2D). For simplicity, let us first consider a recur-

rent network that receives no external input. In this case, the optimal dynamics (Eq 6) corre-

spond to Gibbs sampling from a steady-state distribution: p σð Þ /
Q

ip sið Þexp
1

ln vp σð Þ
� �

. We

can combine this with the Bellmann equality, which relates the reward, value and cost func-

tions (according to: rðσÞ ¼ vpðσÞ þ lcpðσÞ � hvpðσ 0Þipðσ0 jσÞ þ Lp; see Methods) to derive an

expression for the reward function:

r σð Þ ¼ nl
Xn

i¼1

log
pðsijσ=iÞ

pðsiÞ

� �

þ C; ð8Þ

where p(σi|σ/i) denotes the probability that neuron i is in state σi, given the current state of all

the other neurons and C is an irrelevant constant (see Methods). Without loss of generality, we

can set the coding cost, λ, to 1 (since altering λ rescales the inferred reward and coding cost by

the same factor, rescaling the objective function without changing its shape). In the Methods,

we show how we can recover the reward function when there is an external input. In this case,

we do not obtain a closed-form expression for the reward function, but must instead infer it

via maximum likelihood.

To see how our inverse RL approach could work in principle for a network that receives

external inputs, we return to our earlier model network, whos ‘function’ was to fire a constant

number of spikes, depending on the the input (i.e. 2 spikes when x = −1, 6 spikes when x = 1).

Despite the simplicity of the model, it is not easy to guess the function it performs just by

observing the responses of the network (Fig 2D), or neuronal tuning curves (Fig 2C). However,

we can use inverse RL we to infer the reward function optimised by the network Fig 2E, from

its observed dynamics. Note, that our method did not make any a priori assumptions about

the parametric form of the reward function, which was allowed to vary freely as a function of

the network state and input, (σ, x). Nonetheless, we can use a simple clustering algorithm (e.g.

k-means) to recover the fact that the inferred reward took two binary values; further analysis

reveals that the reward is only non-zero when the network fired exactly 2 spikes when x = −1,

and 6 spikes when x = 1. As for the agent in the maze, we can use this inferred reward function

to predict how the network dynamics will vary depending on the internal/external constraints.

For example, we can predict how neural tuning curves will vary if we alter the input statistics

by decreasing the probability that the binary input, x, is equal to 1 (Fig 2F, upper), or remove a

cell from the network while keeping other aspects of the simulation unchanged (Fig 2F, lower)

(see Methods).

Our ability to correctly infer the reward function optimised by the network will be funda-

mentally limited by the amount of available data. Fig 3A shows how the correlation between

the inferred and true reward increases with the amount of data samples used to infer the

reward. (Note that each discrete time-step is considered to be one data sample.) As the number

of samples is increased, the distribution of inferred rewards becomes more tightly peaked

around two values (Fig 3B), reflecting the fact that the true reward function was binary. Of

PLOS ONE Inferring the function performed by a recurrent neural network

PLOS ONE | https://doi.org/10.1371/journal.pone.0248940 April 15, 2021 7 / 25

https://doi.org/10.1371/journal.pone.0248940

course, with real neural data we will not have access to the ‘true’ reward function. In this case,

we can test how well our inferred reward function is able to predict neural responses in differ-

ent conditions. Fig 3C and 3D shows how the predicted response distribution (when we alter

the input statistics by increasing the probability that the binary input x = 1, Fig 3C, or remove

cells, Fig 3D) becomes more accurate as we increase the number of samples used to estimate

the reward function.

Inferring efficiently encoded stimulus features

An influential hypothesis, called ‘efficient coding’, posits that sensory neural circuits have

evolved to encode maximal information about sensory stimuli, given internal constraints [7–

13]. However, the theory does not specify which stimulus features are relevant to the organism,

Fig 3. Inferring the reward from limited data. (A) The r2-goodness of fit between the true reward, and the reward

inferred using a finite number of samples (a sample is defined as an observation of the network state at a single time-

point). The solid line indicates the r2 value averaged over 20 different simulations, while the shaded areas indicate the

standard error on the mean. (B) Distribution of rewards inferred from a variable numbers of data samples. As the

number of data samples is increased, the distribution of inferred rewards becomes more sharply peaked around 0 and

1 (reflecting the fact that the true reward was binary). (C) The KL-divergence between the optimal response

distribution with altered input statistics (see Fig 2F, upper) and the response distribution predicted using the reward

inferred in the initial condition from a variable number of samples. The solid line indicates the KL-divergence

averaged over 20 different simulations, while the shaded areas indicate the standard error on the mean. A horizontal

dashed line indicates the KL-divergence between the response distribution with biased input and the original

condition (that was used to infer the reward). (D) Same as panel (C), but where instead of altering the input statistics,

we remove cells from the network (see Fig 2F, lower).

https://doi.org/10.1371/journal.pone.0248940.g003

PLOS ONE Inferring the function performed by a recurrent neural network

PLOS ONE | https://doi.org/10.1371/journal.pone.0248940 April 15, 2021 8 / 25

https://doi.org/10.1371/journal.pone.0248940.g003
https://doi.org/10.1371/journal.pone.0248940

and thus should be encoded. Here we show how one could use inverse RL to: (i) infer which

stimulus features are encoded by a recorded neural network, and (ii) test whether neurons

encode maximal information about these features, given assumed constraints on information

transmission.

Efficient coding posits that neurons maximise information encoded about some relevant

stimulus feature, y(x), given constraints on the information encoded by each neuron about

their inputs, x (Fig 4A). This corresponds to maximising:

Lp ¼ IpðyðxÞ;σÞ � l
Xn

i¼1

Ipðsi;σ=i; xÞ; ð9Þ

where λ controls the strength of the constraint. Noting that the second term is equal to the cod-

ing cost we used previously (Eq 5), we can rewrite this objective function as:

Lp ¼ h logppðyðxÞjσÞ � lcpðσ; xÞippðσjxÞpðxÞ ð10Þ

where we have omitted terms which don’t depend on π. Now this is exactly the same as the

objective function we have been using so far (Eq 5), in the special case where the reward func-

tion, r(σ, x), is equal to the log-posterior, logpπ(y(x)|σ). As a result we can maximise Lπ via an

iterative algorithm, where on each iteration we update the reward function by setting r(x, σ)

logpπ(y(x)|σ), before then optimising the network dynamics, via entropy-regularised RL. Thus,

thanks to the correspondence between entropy-regularised RL and efficient coding we could

derive an algorithm to optimise the dynamics of a recurrent network to perform efficient cod-

ing [30].

As an illustration, we simulated a network of 7 neurons that receive a sensory input consist-

ing of 7 binary pixels (Fig 4B, top). In this example, the ‘relevant feature’, y(x) was a single

binary variable, which was equal to 1 if 4 or more pixels were active, and -1 otherwise (Fig 4B,

bottom). We optimised the network dynamics using the efficient-coding algorithm described

above. Fig 4C shows how each neuron’s spiking probability varies with both the number of

active pixels and number of spikes fired by other neurons. Fig 6D shows how the optimal read-

out, p(y|σ), depends on the number of spiking neurons (Fig 4D). We verified that the opti-

mised network encodes significantly more information about the relevant feature than a

network of independent neurons, over a large range of coding costs (Fig 4E).

Now, imagine that we just observe the stimulus and neural responses (Fig 4F). Can we

recover the feature, y(x) encoded by the network? To do this, we first use inverse RL to infer

the reward function from observed neural responses (in exactly the same way as described in

the previous section) (Fig 4G). We made no a priori assumptions about the reward function,

so that it could vary freely depending on the network state and input, (σ, x). However, as we

described above, in the case where the network encodes maximal information about some

stimulus feature, y(x) (given assumed coding constraints), then the inferred reward, r(σ, x)

should be proportional to the log-posterior, logp(y(x)|σ). In this case, given σ, the inferred

reward, r(σ, x) will only depend on changes to the input, x, that alter y(x). As a result, we can

use the inferred reward to recover which inputs, x, map onto the same value of y(x), and thus,

what is the ‘relevant feature’ encoded by the network. In our example, we see that the inferred

reward collapses onto two curves only (blue and red in Fig 4G), depending on the total num-

ber of pixels in the stimulus. This allows us to deduce that the encoded feature, y(x), must be a

sharp threshold on the number of simultaneously active pixels. Note that this is not easy to see

by looking directly at the neuronal tuning curves, which vary smoothly with the number of

active pixels (Fig 4C). Next, having recovered y(x), we can check whether the network encodes

maximal information about this feature (given the assumed contraints on information

PLOS ONE Inferring the function performed by a recurrent neural network

PLOS ONE | https://doi.org/10.1371/journal.pone.0248940 April 15, 2021 9 / 25

https://doi.org/10.1371/journal.pone.0248940

transmission), by checking whether the inferred reward, r(σ, x) is proportional to the log-pos-

terior, logp(y(x)|σ), as predicted by the theory.

Note that our general approach could also generalise to more complex efficient coding

models, where the encoded variable, y, is not a binary function of the input, x. In this case, we

Fig 4. Efficient coding and inverse RL. (A) The neural code was optimised to efficiently encode an external input, x, so as to maximise information

about a relevant stimulus feature y(x). (B) The input, x consisted of 7 binary pixels. The relevant feature, y(x), was equal to 1 if>3 pixels were active,

and -1 otherwise. (C) Optimising a network of 7 neurons to efficiently encode y(x) resulted in all neurons having identical tuning curves, which

depended on the number of active pixels and total spike count. (D) The posterior probability that y = 1 varied monotonically with the spike count. (E)

The optimised network encoded significantly more information about y(x) than a network of independent neurons with matching stimulus-dependent

spiking probabilities, p(σi = 1|x). The coding cost used for the simulations in the other panels is indicated by a red circle. (F-G) We use the observed

responses of the network (F) to infer the reward function optimised by the network, r(σ, x) (G). If the network efficiently encodes a relevant feature, y
(x), then the inferred reward (solid lines) should be proportional to the log-posterior, logp(y(x)|σ) (empty circles). This allows us to (i) recover y(x) from

observed neural responses, (ii) test whether this feature is encoded efficiently by the network. (H) We can use the inferred objective to predict how

varying the input statistics, by reducing the probability that pixels are active, causes the population to split into two cell types, with different tuning

curves and mean firing rates (right).

https://doi.org/10.1371/journal.pone.0248940.g004

PLOS ONE Inferring the function performed by a recurrent neural network

PLOS ONE | https://doi.org/10.1371/journal.pone.0248940 April 15, 2021 10 / 25

https://doi.org/10.1371/journal.pone.0248940.g004
https://doi.org/10.1371/journal.pone.0248940

can perform a cluster analysis (e.g. k-means) to reveal which inputs, x, map onto similar

reward. If the network is performing efficient coding then these inputs should also map onto

the same encoded feature, y(x).

Finally, once we have inferred the function performed by the network, we can predict how

its dynamics will vary with context, such as when we alter the input statistics. For example, in

our simulation, reducing the probability that input pixels are active causes the neural popula-

tion to split into two cell-types, with distinct tuning curves and mean firing rates (Fig 4H) [13].

Parametric model of neural responses

The basic framework described above is limited by the fact that the number of states, ns, scales

exponentially with the number of neurons (ns = 2n). Thus, it will quickly become infeasible to

compute the optimal dynamics as the number of neurons increases. Likewise, we will need an

exponential amount of data to reliably estimate the sufficient statistics of the network, required

to infer the reward function (Fig 3).

For larger networks, this problem can be circumvented by using tractable parametric

approximation of the value function and reward functions. As an illustration, let us consider a

network with no external input. If we approximate the value function by a quadratic function

of the responses, our framework predicts a steady-state response distribution of the form: p(σ)

/ exp (∑i,j6¼i Jij σi σj + ∑ihiσi), where Jij denotes the pairwise couplings between neurons, and hi
is the bias. This corresponds to a pairwise Ising model, which has been used previously to

model recorded neural responses [30, 31]. (Note that different value functions could be used

to give different neural models; e.g. choosing v(x) = f(w � x), where x is the feed-forward input,

results in a linear-nonlinear neural model.) In Methods section we derive an algorithm to opti-

mise the coupling matrix, J, for a given reward function and coding cost.

To illustrate this, we simulated a network of 12 neurons arranged in a ring, with reward

function equal to 1 if exactly 4 adjacent neurons are active together, and 0 otherwise. After

optimisation, nearby neurons were found to have positive couplings, while distant neurons

had negative couplings (Fig 5A). The network dynamics generate a single hill of activity which

drifts smoothly in time. This is reminiscent of ring attractor models, which have been influen-

tial in modeling neural functions such as the rodent and fly head direction system [32–34].

(Indeed, eqn. 6 suggests why our framework generally leads to attractor dynamics, as each

transition will tend to drive the network to higher-value ‘attractor states’).

As before, we can then use inverse RL to infer the reward function from the observed net-

work dynamics. However, note that when we use a parametric approximation of the value

function this problem is not well-posed, and we have to make additional assumptions about

the form of the reward function. We first assumed a ‘sparse’ reward function, where only a

small number of states, σ, are assumed to be associated with non-zero positive reward (see

Methods). Using this assumption, we could well recover the true reward function from obser-

vations of the optimised neural responses (with an r2 value greater than 0.9).

Having inferred the reward function optimised by the network, we can then use it to predict

how the coupling matrix, J, and network dynamics will vary if we alter the internal/external

constraints. For example, we can use the inferred reward to predict how increasing the coding

cost will result in stronger positive couplings between nearby neurons and a hill of activity that

sometimes jumps discontinuously between locations (Fig 5B); removing connections between

distant neurons will result in two uncoordinated peaks of activity (Fig 5C); finally, selectively

activating certain neurons will ‘pin’ the hill of activity to a single location (Fig 5D).

To illustrate the effect of assuming different reward functions, we considered two different

sets of assumptions (in addition to the sparse model, described above): a ‘pairwise model’,

PLOS ONE Inferring the function performed by a recurrent neural network

PLOS ONE | https://doi.org/10.1371/journal.pone.0248940 April 15, 2021 11 / 25

https://doi.org/10.1371/journal.pone.0248940

Fig 5. Pairwise coupled network. (A) We optimized the parameters of a pairwise coupled network, using a reward

function that was equal to 1 when exactly 4 adjacent neurons were simultaneously active, and 0 otherwise. The

resulting couplings between neurons are schematized on the left, with positive couplings in red and negative couplings

in blue. The exact coupling strengths are plotted in the centre. On the right we show an example of the network

dynamics. Using inverse RL, we can infer the original reward function used to optimise the network from its observed

dynamics. We can then use this inferred reward to predict how the network dynamics will vary when we increase the

coding cost (B), remove connections between distant neurons (C) or selectively activate certain neurons (D).

https://doi.org/10.1371/journal.pone.0248940.g005

PLOS ONE Inferring the function performed by a recurrent neural network

PLOS ONE | https://doi.org/10.1371/journal.pone.0248940 April 15, 2021 12 / 25

https://doi.org/10.1371/journal.pone.0248940.g005
https://doi.org/10.1371/journal.pone.0248940

where the reward is assumed to be a quadratic function of the network state, and a ‘global

model’ where the reward is assumed to depend only on global spike count (see Methods). In

all three cases, the inferred reward function provided a reasonable fit to the true reward func-

tion, (averaged over states visited by the network; Fig 6A). However, only the sparse and pair-

wise models were able to predict how neural responses changed when, for example, we

optimised the network with a higher coding cost (Fig 6B).

Discussion

A large research effort has been devoted to developing ‘top-down’ models, which describe the

network dynamics required to optimally perform a given function (e.g. decision making [6],

control [3], efficient sensory coding [8] etc.). Here we describe how one can use inverse RL to:

(i) infer the function optimised by a network from observed neural responses; (ii) predict the

dynamics of a network upon perturbation.

An alternative ‘bottom-up’ approach is to construct phenomenological models describing

how neurons respond to given sensory stimuli and/or neural inputs [30, 31, 35, 36]. In com-

mon with our approach, such models are directly fitted to neural data. However, these models

generally do not set out to reveal the function performed by the network. Further, they are

often poor at predicting neural responses in different contexts (e.g. varying stimulus statistics).

Here we hypothesize that it is the function performed by a neural circuit that remains invari-

ant, not its dynamics or individual cell properties. Thus, if we can infer what this function is,

we should be able to predict how the network dynamics will adapt depending on the context,

so as to perform the same function under different constraints. As a result, our theory could

predict how the dynamics of a recorded network will adapt in response to a large range of

experimental manipulations, such as varying the stimulus statistics, blocking connections,

knocking out/stimulating cells etc. (Note however, that to predict how the network adapts to

Fig 6. Effect of assuming different types of reward function. We compared the inferred reward when we assumed a

sparse model (i.e. a small number of states associated with non-zero positive reward) a pairwise model (i.e. the reward

depends on the first and second-order response statistics) and a global model (i.e. the reward depends on the total

number of active neurons only). (A) r2 goodness of fit between the true and the inferred reward, assuming a sparse,

pairwise, or global model. (B) The KL-divergence between the optimal response distribution with high coding cost (see

Fig 5B) and the response distribution predicted using the reward inferred in the initial condition, assuming a sparse,

pairwise, or global model. A horizontal dashed line indicates the KL-divergence between the response distribution with

high coding cost and the original condition (that was used to infer the reward).

https://doi.org/10.1371/journal.pone.0248940.g006

PLOS ONE Inferring the function performed by a recurrent neural network

PLOS ONE | https://doi.org/10.1371/journal.pone.0248940 April 15, 2021 13 / 25

https://doi.org/10.1371/journal.pone.0248940.g006
https://doi.org/10.1371/journal.pone.0248940

these changes, we will need to infer the ‘full’ reward function; in some cases, this may require

measuring neural responses in multiple environments).

Another approach is to use statistical methods, such as dimensionality reduction tech-

niques, to infer information about the network dynamics (such as which states are most fre-

quently visited), which can then be used to try and gain insight about the function it performs

[37–40]. For example, in the context of sensory coding, an approach called ‘maximally infor-

mative dimensions’ seeks to find a low-dimensional projection of the stimulus that is most

informative about a neuron’s responses [41]. However, in contrast to our approach, such

approaches do not allow us to recover the objective function optimised by the network. As a

result, they do not predict how neural responses will alter depending on the the internal/exter-

nal constraints. It is also not clear how to relate existing dimensionality reduction methods,

such as PCA, to the dynamics of a recurrent neural network (e.g. are certain states visited fre-

quently because of the reward, external stimulus, or internal dynamics?). Nonetheless, in

future work it could be interesting to see if dimensionality reduction techniques could be used

to first recover a compressed version of the data, from which we could more easily use inverse

RL methods to infer the objective function.

There is an extensive literature on how neural networks could perform RL [14, 15, 21, 42–

44]. Our focus here was different: we sought to use tools from RL and inverse RL to infer the

function performed by a recurrent neural network. Thus, we do not assume the network

receives an explicit reward signal: the reward function is simply a way of expressing which

states of the network are useful for performing a given function. In contrast to previous work,

we treat each neuron as an independent agent, which optimises their responses to maximise

the reward achieved by the network, given a constraint on how much they can encode about

their inputs. As well as being required for biological realism, the coding constraint has the ben-

efit of making the inverse RL problem well-posed. Indeed, under certain assumptions, we

show that it is possible to write a closed form expression for the reward function optimised by

the network, given its steady-state distribution (Eq 40).

Our framework relies on several assumptions about the network dynamics. First, we

assume that the network has Markov dynamics, such that its state depends only on the preced-

ing time-step. To relax this assumption, we could redefine the network state to include spiking

activity in several time-steps. For example, we could thus include the fact that neurons are

unlikely to fire two spikes within a given temporal window, called their refractory period. Of

course, this increase in complexity would come at the expense of decreased computational

tractability, which may necessitate approximations. Second, we assume the only constraint

that neurons face is a ‘coding cost’, which limits how much information they encode about

other neurons and external inputs. In reality, biological networks face many other constraints,

such as the metabolic cost of spiking and constraints on the wiring between cells. Some of

these constraints could be included explicitly as part of the inference process. For example, by

assuming a specific form of approximate value function (e.g. a quadratic function of the neural

responses), we can include explicit constraints about the network connectivity (e.g. pairwise

connections between neurons). Other constraints (e.g. the metabolic cost of firing a spike),

that are not assumed explicitly can be incorporated implicitly as part of the inferred reward

function (e.g. a lower inferred reward for metabolically costly states, associated with high firing

rates). Finally, we assume that all (i) neurons in the network jointly optimise the same reward

function, and (ii) each neuron is optimised with full knowledge of the dynamics of the rest of

the network. Future work could look at incorporating ideas from the field of multi-agent rein-

forcement which addresses cases where these assumptions are not necessarily true [45, 46].

In addition to assumptions about the network dynamics, for large networks we will also

need to assume a particular parametric form for the reward function. For example, in the

PLOS ONE Inferring the function performed by a recurrent neural network

PLOS ONE | https://doi.org/10.1371/journal.pone.0248940 April 15, 2021 14 / 25

https://doi.org/10.1371/journal.pone.0248940

context of efficient coding (Fig 4), this is equivalent to assuming a particular form for the

decoder model (e.g. a linear decoder) that ‘reads-out’ the encoded variable from neural

responses [10]. To test the validity of such assumptions, we could see how well the reward

function, inferred in one context, was able to generalise to predict neural responses in other

contexts.

For our framework to make predictions, the network must adapt its dynamics to perform

the same function under different internal/external constraints. Previous work suggests that

this may hold in certain cases, in response to changes in stimulus statistics [47, 48], or optogo-

netic perturbations [49]. Even so, it may be that real neural networks only partially adapt to

their new environments. It would thus be interesting, in the future, to extend our framework

to deal with this. For example, we could assess whether contextual changes in the neural

responses enable the network to ascend the gradient of the objective function (given the new

constraints) as predicted by our model.

A central tenet of our work is that the neural network has evolved to perform a specific

function optimally, given constraints. As such, we could obtain misleading results if the

recorded network is only approximately optimal. To deal with this, recent work by one of the

present authors [50] proposed a framework in which the neural network is assumed to satisfy

a known optimality criterion approximately. In this work, the optimality criterion is formu-

lated as a Bayesian prior, which serves to nudge the network towards desirable solutions. This

contrasts with the work presented here, where the network is assumed to satisfy an unknown
optimality criterion exactly. Future work could explore the intersection between these two

approaches, where the network is assumed to perform an unknown optimality criterion

approximately. In this case, one will likely need to limit the space of possible reward functions,

so that inference problem remains well-posed.

Our work unifies several influential theories of neural coding, that were considered sepa-

rately in previous work. For example, we show a direct link between entropy-regularised RL

[17–20] (Fig 1), ring-attractor networks [32–34] (Fig 5), and efficient sensory coding [7–13]

(Fig 4). Further, given a static network without dynamics, our framework is directly equivalent

to rate-distortion theory [27, 28]. Many of these connections are non-trivial. For example, the

problem of how to train a network to efficiently code its inputs remains an open avenue of

research. Thus, the realisation that efficient sensory coding by a recurrent network can be for-

mulated as a multi-agent RL problem could help develop of future algorithms for learning effi-

cient sensory representations (e.g., in contrast with brute force numerical optimization as in

[9]). Indeed, recent work has shown how, by treating a feed-forward neural network as a

multi-agent RL system, one can efficiently train the network to perform certain tasks using

only local learning rules [51]. However, while interesting in its own right, the generality of our

framework means that we could potentially apply our theory to infer the function performed

by diverse neural circuits, that have evolved to perform a broad range of different functional

objectives. This contrasts with previous work, where neural data is often used to test a single

top-down hypothesis, formulated in advance.

Methods

Entropy-regularised RL

We consider a Markov Decision Process (MDP) where each state of the agent s, is associated

with a reward, r(s). At each time, the agent performs an action, a, sampled from a probability

distribution, π(a|s), called their policy. A new state, s0, then occurs with a probability, p(s0|s, a).

We seek a policy, π(a|s), that maximises the average reward, constrained on the mutual

information between between actions and states. This corresponds to maximising the

PLOS ONE Inferring the function performed by a recurrent neural network

PLOS ONE | https://doi.org/10.1371/journal.pone.0248940 April 15, 2021 15 / 25

https://doi.org/10.1371/journal.pone.0248940

Lagrangian:

Lp ¼ hrðsÞippðsÞ � lIpðA; SÞ ð11Þ

¼ hrðsÞ � lcpðsÞippðsÞ ð12Þ

where λ is a lagrange-multiplier that determines the strength of the constraint, and cπ(s) =

DKL[π(a|s)kp(a)].

Note that while in the rest of the paper we consider continuous tasks, where the Lagrangian

is obtained by averaging over the steady-state distribution, our framework can also be applied

without little changes to finite tasks, which occur within a time window, and where the

Lagrangian is given by: Lp ¼ 1

T

PT
t¼1
pp stjs0; a0ð Þ r stð Þ � cp stð Þð Þ. Unlike the continuous task

described above, the optimal network dynamics may not have a corresponding equilibrium

distribution [16].

Now, let us can define a value function:

vpðsÞ ¼ rðsÞ � lcpðsÞ � Lp
þhrðs0Þ � lcpðs0Þippðs0 jsÞ � Lp
þhrðs00Þ � lcpðs00Þippðs00 jsÞ � Lp þ . . .

ð13Þ

where s, s0 and s00 denote the agent’s state in three consecutive time-steps. We can write the fol-

lowing Bellmann equality for the value function:

vpðsÞ ¼ rðsÞ � lcpðsÞ � Lp þ hvpðs0Þippðs0 jsÞ: ð14Þ

Now, consider the following greedy update of the policy, π(a|s):

p�ðajsÞ ¼ argmax
p0
ðrðsÞ � Lp � lcp0 ðsÞ þ hvpðs

0Þipp0 ðs0 jsÞ
Þ ð15Þ

¼ argmax
p0
ð� lcp0 ðsÞ þ hvpðs

0Þipp0 ðs0 jsÞ
Þ ð16Þ

To preform this maximisation, we write the following Lagrangian:

Lp0 ¼ � l
X

a

p0 ajsð Þ log
p0ðajsÞ
ppðaÞ

þ
X

a;s0
p0 ajsð Þpðs0js; aÞvp s

0ð Þ þ
X

s

g sð Þ
X

a

p0 ajsð Þ � 1

 !

ð17Þ

where the last term is required to enforce the constraint that ∑a π(a|s) = 1. Setting the deriva-

tive to zero with respect to γ(s) and π(a|s), we have:

0 ¼ � l log
p�ðajsÞ
ppðaÞ

� lþ hvpðs
0Þipðs0 js;aÞ þ gðsÞ ð18Þ

0 ¼ 1 �
X

a

p�ðajsÞ ð19Þ

We can solve these equations to obtain the optimal greedy update:

p� ajsð Þ ¼
1

ZpðsÞ
ppðaÞe

1
l
hvpðs0Þipðs0 js;aÞ : ð20Þ

where Zπ(s) is a normalisation constant.

PLOS ONE Inferring the function performed by a recurrent neural network

PLOS ONE | https://doi.org/10.1371/journal.pone.0248940 April 15, 2021 16 / 25

https://doi.org/10.1371/journal.pone.0248940

Using the policy improvement theorem [16], we can show that this greedy policy update is

guaranteed to increase Lπ. To see this, we can substitute π� into the Bellmann equation to give

the following inequality:

vpðsÞ � rðsÞ � lcp� ðsÞ � Lp þ hvpðs0Þipp� ðs0 jsÞ ð21Þ

Lp � rðsÞ � lcp� ðsÞ þ hvpðs0Þipp� ðs0 jsÞ � vpðsÞ ð22Þ

Next, we take the average of both sides with respect to the steady-state distribution, pπ�(s):

Lp � hrðsÞ � lcp� ðsÞipp�ðsÞ þ hvpðs
0Þipp� ðs0 jsÞpp� ðsÞ � hvpðsÞipp� ðsÞ ð23Þ

� hrðsÞ � lcp� ðsÞipp�ðsÞ � L
�
p
: ð24Þ

Thus, repeated application of the Bellmann recursion (Eq 14) and greedy policy update (Eq

20) will return the optimal policy, π�(a|s), which maximises Lπ.
Inverse entropy-regularized RL. We can write the Bellmann recursion in Eq 14 in vector

form:

v ¼ r � r01 � lðc � c01Þ þ Pv ð25Þ

where v, c and r are vectors with elements, vs� v(s), cs� c(s), and rs� r(s). P is a matrix with

elements Pss0 = pπ(s0|s). We have defined r0� hr(s)ipπ(s) and c0� hc(s)ipπ(s) (and thus Lπ =

r0−λc0). Rearranging:

ðI � PÞv ¼ ðr � r01Þ � lðc � c01Þ ð26Þ

We can solve this system of equations (up to an arbitrary constant, v0) to find an expression

for v as a linear function of the reward:

v ¼ Aðr � r01Þ þ lbþ v01 ð27Þ

Substituting into Eq 20, we can express the agent’s policy directly as a function of the

reward:

πa / pae
1
l
Pav / pae

1
l
PaA r� r0ð ÞþPab ð28Þ

where πa is a vector with elements, (πa)s� π(a|s) and Pa is a matrix, with elements (Pa)ss0 �
p(s0|a, s).

To infer the reward function, r(s) (up to an irrelevant constant and multiplicative factor, λ),

we use the observed policy, π(a|s) and transition probabilities, p(s0|a, s), to estimate b, A, Pa
and pa. We then perform numerical optimisation to find the reward that maximises the log-

likelihood of the optimal policy in Eq 28, h logp�ðajsÞiD, averaged over observed data, D.

Optimising a neural network via RL

We consider a recurrent neural network, with n neurons, each described by a binary variable,

σi = −1/1, denoting whether a given neuron is silent/fires a spike in each temporal window.

The network receives an external input, x. The network state is described by a vector of n
binary values, σ = (σ1, σ2, . . ., σn)T. Both the network and input are assumed to have Markov

dynamics. Neurons are updated asynchronously, by updating a random neuron at each time-

PLOS ONE Inferring the function performed by a recurrent neural network

PLOS ONE | https://doi.org/10.1371/journal.pone.0248940 April 15, 2021 17 / 25

https://doi.org/10.1371/journal.pone.0248940

step with probability piðs
0
ijsÞ. The network dynamics are thus described by:

p σ0jσ; xð Þ ¼
1

n

Xn

i¼1

pi s
0

ijσ; x
� �Y

j6¼i

dðs0j; sjÞ: ð29Þ

where dðs0j; sjÞ ¼ 1 if s0j ¼ sj and 0 otherwise.

Equivalently, we can say that at each time, a set of proposed updates, ~σ , are independently

sampled from ~σ i �
Q

ipið~sijσÞ, and then a neuron i is selected at random to be updated, such

that s0i ~si.

We define a reward function, r(σ, x), describing which states are ‘desirable’ for the network

to perform a given function. The network dynamics are said to be optimal if they maximise the

average reward, hr(σ, x)ip(σ,x) given a constraint on how much each neuron encodes about its

inputs
Pn

i Ið~si;σ; xÞ. This corresponds to maximising the objective function:

L ¼ hrðσ; xÞipðσ;xÞ � l
Xn

i¼1

Ið~si;σ; xÞ ð30Þ

¼ hrðσ; xÞ � lcðσ; xÞipðσ;xÞ ð31Þ

where cðσ; xÞ ¼
Pn

i¼1
DKL½pið~sijσ; xÞ k pið~siÞ� is the coding cost associated with each state,

and penalises deviations from each neuron’s average firing rate.

We can decompose the transition probability for the network (Eq 29), into the probability

that a given neuron proposes an update, ~si, given the network state, σ, and the probability of

the new network state, σ0, given ~si and σ:

pð~s ijσÞ ¼ pið~s ijσ; xÞ ð32Þ

pðσ0jσ; ~s i; xÞ ¼
1

n
d s0i; ~s i
� �Y

k6¼i

dðs0k; skÞ þ
X

j6¼i

pj s
0

jjσ; x
� �Y

k6¼j

dðs0k; skÞ

 !

ð33Þ

Thus, the problem faced by each neuron, of optimising pið~s ijσ; xÞ so as to maximise L, is

equivalent to the MDP described in Methods section, where the action a, and state s corre-

spond to the neuron’s proposed update ~si and state of the network and external inputs fs; xg.
Thus, we can follow the exact same steps as in Methods section, to show that pið~sijσÞ is opti-

mised via the following updates:

vðσ; xÞ rðσ; xÞ � lcðσ; xÞ þ hvðσ0; x0Þipðσ0;x0 jσ;xÞ � L ð34Þ

pið~si ¼ 1jσ=i; xÞ 1þ
ppðsiÞ

1 � ppðsiÞ
e

1
nl

P
si¼� 1;1

sihvpðσ;x0Þipðx0 jxÞ

� �� 1

ð35Þ

where σ/i denotes the state of all neurons except for neuron i. As updating the policy for any

given neuron increases the objective function, L, we can alternate updates for different neurons

to optimise the dynamics of the network.

PLOS ONE Inferring the function performed by a recurrent neural network

PLOS ONE | https://doi.org/10.1371/journal.pone.0248940 April 15, 2021 18 / 25

https://doi.org/10.1371/journal.pone.0248940

Inferring network function via inverse RL

After convergence, we can substitute the expression for the optimal policy into the Bellman

equality, to obtain:

v σ; xð Þ ¼ r σ; xð Þ þ l
Xn

i¼1

log
X

si

p sið Þe
1
lnhvðσ;x

0Þipðx0 jxÞ � L ð36Þ

Rearranging, we have:

r σ; xð Þ ¼ v σ; xð Þ � l
Xn

i¼1

log
X

si

p sið Þe
1
lnhvðσ;x

0Þipðx0 jxÞ þ L ð37Þ

Thus, if we can infer the value function from the observed neural responses, then we can

recover the associated reward function through Eq 37.

To derive an expression for the reward, we first consider the case where there is no external

input. In this case, the optimal neural dynamics (Eq 35) correspond to Gibbs sampling from:

p σð Þ /
Yn

i¼1

p sið Þ

 !

e 1
lnv σð Þ: ð38Þ

Rearranging, we have a closed-form expression for the value function, v(σ), in terms of the

steady-state distribution:

v σð Þ ¼ nl log
pðσÞ

Qn
i¼1
pðsiÞ

� �

þ const: ð39Þ

We can then combine Eqs 39 and 37 to obtain a closed-form expression for the reward

function (up to an irrelevant constant):

r σð Þ ¼ nl
Xn

i¼1

log
pðsijσ=iÞ

pðsiÞ

� �

þ const: ð40Þ

Since we don’t know the true value of λ, we can simply set it to unity. In this case, our

inferred reward will differ from the true reward by a factor of 1

l
. However, since dividing both

the reward and coding cost by the same factor has no effect on the shape of the objective func-

tion, L (but only alters its magnitude), this will not effect any predictions we make using the

inferred reward.

With an external input, there is no closed-form solution for the value function.

Instead, we can infer v(σ, x) numerically by maximising the log-likelihood,

h log p�ðσ0jσ; xÞiD ¼ h log
Pn

i¼1
p�i ðs

0
ijσ; xÞdðσ

0
=i;σ=iÞiD, where p�i ðs

0
ijσ; xÞ denote optimal

response probabilities. Once we know v(σ, x) we can compute the reward from Eq 37.

Approximate method for larger networks

RL model. To scale our framework to larger networks we approximate the value function,

v(σ, x), by a parametric function of the network activity, σ and input, x. Without loss of

generality, we can parameterise the value function as a linear combination of basis functions:

PLOS ONE Inferring the function performed by a recurrent neural network

PLOS ONE | https://doi.org/10.1371/journal.pone.0248940 April 15, 2021 19 / 25

https://doi.org/10.1371/journal.pone.0248940

vϕ(σ, x)� ϕT f(σ, x). From Eq 36, if the network is optimal, then the value function equals:

v̂ϕ σ; xð Þ ¼ r σ; xð Þ þ l
Xn

i¼1

log
X

si

p sið Þe
1
nlhϕ

T f ðs;x0Þipðx0 jxÞ : ð41Þ

In the exact algorithm, we updated the value function by setting it equal to v̂ðσ; xÞ (Eq 34).

Since in the parametric case this is not possible, we can instead update ϕ to minimise:

G�ϕ ϕð Þ ¼
1

2

D
ðvϕðσ; xÞ � v̂�ϕðσ; xÞÞ

2
E

pðσ;xÞ
; ð42Þ

where v̂�ϕðσ; xÞ is the target value function, defined as in Eq 41, with parameters, �ϕ.

We follow the procedure set out in [18, 19] to transform this into a stochastic gradient

descent algorithm. First, we perform nbatch samples from the current policy. Next, we perform

a stochastic gradient descent update:

ϕ! ϕ �
Z

nbatch

Xnbatch

l¼1

f σl; xlð Þ vϕ σl; xlð Þ � v̂�ϕ σl; xlð Þ
� �

ð43Þ

where η is a constant that determines the learning rate. Finally, after doing this nepoch times, we

update the target parameters, �ϕ ϕ. These steps are repeated until convergence.

Inverse RL. We can infer the parameters of the value function, ϕ, by maximising the log-

likelihood: h log pϕðσ0jσ; xÞiD. We can choose the form of the value function to ensure that this

is tractable. For example, if the value function is quadratic in the responses, then this corre-

sponds to inferring the parameters of a pairwise Ising model [30, 31].

After inferring ϕ, we want to infer the reward function. At convergence,rϕ F(ϕ) = 0 and

�ϕ ¼ ϕ, so that:

0 ¼ hf ðσ; xÞðvϕðσ; xÞ � v̂ϕðσ; xÞÞiD ð44Þ

¼ hf ðσ; xÞðrðσ; xÞ � r̂ϕðσ; xÞÞiD ð45Þ

where

r̂ϕ σ; xð Þ ¼ f ðσ; xÞTϕ � l
Xn

i¼1

log
X

si

p sið Þe
1
nlϕ

T hf ðσ;xÞipðx0 jxÞ : ð46Þ

In the exact case, where vϕðσ; xÞ ¼ v̂ϕðσ; xÞ (and thus, G�ϕðϕÞ ¼ 0), then the inferred reward

equals r̂ϕðσ; xÞ. However, this is not necessarily true when we assume an approximate value

function.

Just as we did for the value function, we can express the reward function as a linear combi-

nation of basis functions: r(σ, x) = θT g(σ, x). Thus, Eq 45 becomes:

hf ðσÞgðσÞTiDθ ¼ hf ðσ; xÞr̂ϕðσ; xÞiD: ð47Þ

If the reward function has the same number of parameters than the approximate value

function (i.e. f(σ) and g(σ) have the same size), then we can solve this equation to find θ. Alter-

natively, if the reward function has more parameters than the value function, then we require

additional assumptions to unambiguously infer the reward.

PLOS ONE Inferring the function performed by a recurrent neural network

PLOS ONE | https://doi.org/10.1371/journal.pone.0248940 April 15, 2021 20 / 25

https://doi.org/10.1371/journal.pone.0248940

Simulation details

Agent navigating a maze. We considered an agent navigating a 15 × 15 maze. The agent’s

state corresponded to their position in the maze. The agent could choose to move up, down,

left or right in the maze. At each time there was a 5% probability that the agent moved in a

random direction, independent of their selected action. Moving in the direction of a barrier

(shown in blue in Fig 1D) would result in the agent remaining in the same location. After

reaching the ‘rewarded’ location (bottom right of the maze), the agent was immediately trans-

ported to a starting location in the top left of the maze. We optimised the agent’s policy at both

low and high coding cost (λ = 0.013/0.13 respectively) using the entropy-regularised RL algo-

rithm described in Methods section. The reward was inferred from the agent’s policy after

optimisation as described in Methods section.

Network with single binary input. We simulated a network of 8 neurons that receive a

single binary input, x. The stimulus has a transition probability: p(x0 = 1|x = −1) = p(x0 = −1|

x = 1) = 0.02. The reward function was unity when x = 1 and the network fired exactly 2 spikes,

or when x = −1 and the network fired exactly 6 spikes. We set λ = 0.114.

To avoid trivial solutions where a subset of neurons spike continuously while other neurons

are silent, we defined the coding cost to penalise deviations from the population averaged fir-

ing rate (rather than the average firing rate for each neuron). Thus, the coding cost was defined

as cðσÞ ¼
Pn

i¼1
h logpið~sijσÞ=pð~siÞipið~s i jσÞ, where pð~siÞ is the average spiking probability,

across all neurons.

We inferred the reward r(σ) from neural responses as described in Methods section. Note

that, when inferring the reward, it did not matter if we assumed that the constraint included

the population averaged firing rate or the average firing rate for each neuron individually,

since after optimisation all neurons had the same mean firing rate. In Fig 2E we rescaled and

shifted the inferred reward to have the same mean and variance as the true reward.

We used the inferred reward to predict how neural tuning curves should adapt when we

alter the stimulus statistics (Fig 2F, upper) or remove a cell (Fig 2F, lower). For Fig 2F (upper),

we altered the stimulus statistics by setting p(x0 = 1|x = −1) = 0.01 and p(x0 = −1|x = 1) = 0.03.

For Fig 2C (lower), we removed one cell from the network. In both cases, we manually

adjusted λ to keep the average coding cost constant.

Efficient coding. We considered a stimulus consisting ofm = 7 binary variables, xi = −1/

1. The stimulus had Markov dynamics, with each unit updated asynchronously. The stimulus

dynamics were given by:

p x0jxð Þ ¼
1

m

Xm

i¼1

ð1þ eJ
Pm
j¼1

xjÞ
� 1
d x0

=i; x
� �

; ð48Þ

where J = 1.5 is a coupling constant. A ‘relevant’ variable, y(x) was equal to 1 if 4 or more

inputs equalled 1, and equal to -1 otherwise.

We optimised a network of n = 7 neurons to efficiently code the relevant variable y(x),

using the algorithm described in the main text. For Fig 4B and 4C we set λ = 0.167. For Fig 4D

we varied λ between 0.1 and 0.5. For Fig 4E we altered the stimulus statistics so that,

p x0jxð Þ ¼
1

m

Xm

i¼1

ð1þ eJ0þJ
Pm
j¼1

xjÞ
� 1
d x0

=i; x
� �

; ð49Þ

where J0 was a bias term that we varied between 0 and 0.4. For each value of J0 we adjust λ so

as to keep the average coding cost constant.

PLOS ONE Inferring the function performed by a recurrent neural network

PLOS ONE | https://doi.org/10.1371/journal.pone.0248940 April 15, 2021 21 / 25

https://doi.org/10.1371/journal.pone.0248940

Pairwise coupled network. We considered a network of 12 neurons arranged in a ring.

We defined a reward function that was equal to 1 if exactly 4 adjacent neurons were active,

and 0 otherwise. We defined the coding cost as described in the previous section, to penalise

deviations from the population averaged mean firing rate.

We approximated the value function by a quadratic function,

vðσÞ ¼
X

i;j6¼i

Jijsisj þ
X

i

hisi: ð50Þ

We optimised the parameters of this value function using the algorithm described previ-

ously, in the Methods section entitled ‘Approximate method for larger networks’, with λ =

0.05. We used batches of nbatch = 40 samples, and updated the target parameters after every

nepoch = 100 batches.

Concretely, substituting in the quadratic value function described above into Eq 43, we

obtain the following updates for the network couplings:

Jij Jij �
Z

nbatch

Xnbatch

l¼1

sisj vϕ σ lð Þ � v̂�ϕ σlð Þ
� �

ð51Þ

hi hi �
Z

nbatch

Xnbatch

l¼1

si vϕ σ lð Þ � v̂�ϕ σlð Þ
� �

; ð52Þ

where,

v̂ϕ σð Þ ¼ r σð Þ þ l
Xn

i¼1

log
X

si

p sið Þe
1
nlv σ=i ;sið Þ: ð53Þ

We inferred the reward function from the inferred network couplings, J and h as described

in the Methods section entitled ‘Approximate methods for larger networks’. As described pre-

viously, this problem is only well-posed if we assume a low-d parametric form for the reward

function, or add additional assumptions. We therefore considered several different sets of

assumptions. For our initial ‘sparse model’, we set up a linear programming problem in which

we minimised l1 = ∑σ r(σ), under the constraint that the reward was always greater than 0

while satisfying the optimality criterion given by Eq 47. For the ‘pairwise model’ we assumed

that r = ∑i,j Wij σi σj. We fitted the parameters, Wij, so as to minimise the squared difference

between the left and right hand side of Eq 47. Finally, for the ‘global model’ we assumed that

r = ∑j δj,mWj, wherem is the total number of active neurons and δij is the kronecker-delta.

Parameters,Wj were fitted to the data as for the pairwise model.

Finally, for the simulations shown in Fig 5, panels B-D, we ran the optimisation with λ =

0.1, 0.01 and 0.1, respectively. For panel 3C we removed connections between neurons sepa-

rated by a distance of 3 or more on the ring. For panel 3D we forced two of the neurons to be

continuously active.

Acknowledgments

The authors would like to thank Ulisse Ferrari for useful discussions and feedback.

Author Contributions

Conceptualization: Matthew Chalk, Gasper Tkacik, Olivier Marre.

Investigation: Matthew Chalk.

PLOS ONE Inferring the function performed by a recurrent neural network

PLOS ONE | https://doi.org/10.1371/journal.pone.0248940 April 15, 2021 22 / 25

https://doi.org/10.1371/journal.pone.0248940

Methodology: Matthew Chalk.

Visualization: Matthew Chalk, Gasper Tkacik, Olivier Marre.

Writing – original draft: Matthew Chalk.

Writing – review & editing: Gasper Tkacik, Olivier Marre.

References
1. Yang GR, Joglekar MR, Song HF, Newsome WT, Wang XJ. (2019). Task representations in neural net-

works trained to perform many cognitive tasks. Nat Neurosci, 22: 297–306 https://doi.org/10.1038/

s41593-018-0310-2 PMID: 30643294

2. Heeger DJ (2017) Theory of cortical function. Proc Natl Acad Sci USA 114: 1773–1782 https://doi.org/

10.1073/pnas.1619788114 PMID: 28167793

3. Sussillo D, Abbott LF (2009) Generating coherent patterns of activity from chaotic neural networks.

Neuron 63: 544–557. https://doi.org/10.1016/j.neuron.2009.07.018 PMID: 19709635

4. Gütig R (2016) Spiking neurons can discover predictive features by aggregate–label learning. Science

351(6277): aab4113 https://doi.org/10.1126/science.aab4113 PMID: 26941324

5. Hopfield JJ (1982) Neural networks and physical systems with emergent collective computational abili-

ties. Proc Natl Acad Sci USA 79: 2554–2558 https://doi.org/10.1073/pnas.79.8.2554 PMID: 6953413

6. Körding K (2007) Decision theory: what should the nervous system do?. Science 318: 606–610 https://

doi.org/10.1126/science.1142998 PMID: 17962554

7. Boerlin M, Machens CK, Denève S (2013) Predictive coding of dynamical variables in balanced spiking

networks. PLoS Comp Bio 9 e1003258. https://doi.org/10.1371/journal.pcbi.1003258 PMID: 24244113

8. Simoncelli EP, Olshausen BA (2001) Natural image statistics and neural representation. Ann Rev Neu-

rosci 24: 1193–1216 https://doi.org/10.1146/annurev.neuro.24.1.1193 PMID: 11520932

9. Tkačik G, Prentice JS, Balasubramanian V, Schneidman E (2010) Optimal population coding by noisy

spiking neurons. Proc Natl Acad Sci USA 107: 14419–14424. https://doi.org/10.1073/pnas.

1004906107 PMID: 20660781

10. Chalk M, Marre O, Tkačik G (2018) Toward a unified theory of efficient, predictive, and sparse coding.

Proc Natl Acad Sci USA 115: 186–191. https://doi.org/10.1073/pnas.1711114115 PMID: 29259111

11. Barlow HB (1961) Possible principles underlying the transformations of sensory messages. Sensory

Communication, ed Rosenblith WA (MIT Press, Cambridge, MA), pp 217–234

12. Field DJ (1994) What is the goal of sensory coding?. Neural Comput 6: 559–601. https://doi.org/10.

1162/neco.1994.6.4.559

13. Gjorgjieva J, Sompolinsky H, Meister M (2014) Benefits of pathway splitting in sensory coding. J Neu-

rosci 34: 12127–12144. https://doi.org/10.1523/JNEUROSCI.1032-14.2014 PMID: 25186757

14. Williams RJ. (1992) Simple statistical gradient-following algorithms for connectionist reinforcement

learning. Machine learning 8: 229–256. https://doi.org/10.1007/BF00992696

15. Baxter J & Bartlett PL (2000) Reinforcement learning in POMDP’s via direct gradient. ICML pp 41–48.

16. Sutton RS, Barto AG (2018) Reinforcement learning: An introduction. MIT press.

17. Todorov E (2008) General duality between optimal control and estimation. Proc of the 47th IEEE Con-

ference on Decision and Control 4286–4292

18. Schulman J, Chen X, Abbeel P (2017) Equivalence between policy gradients and soft Q-learning. arXiv:

1704.06440

19. Haarnoja T, Tang H, Abbeel P, Levine S (2017). Reinforcement learning with deep energy-based poli-

cies. Proc 34th International Conf on Machine Learning 70: 1352–1361

20. Tiomkin S, Tishby N (2017). A Unified Bellman Equation for Causal Information and Value in Markov

Decision Processes. arXiv: 1703.01585.

21. Bartlett PL & Baxter J (2019). Hebbian synaptic modifications in spiking neurons that learn. arXiv:

1911.07247 MLA

22. Ng AY, Russell SJ (2000) Algorithms for inverse reinforcement learning. Proc of the 17th International

Con on Machine Learning pp. 663–670

23. Rothkopf CA, Dimitrakakis C (2011) Preference elicitation and inverse reinforcement learning. In. Joint

European conference on machine learning and knowledge discovery in databases Springer pp. 34–48.

PLOS ONE Inferring the function performed by a recurrent neural network

PLOS ONE | https://doi.org/10.1371/journal.pone.0248940 April 15, 2021 23 / 25

https://doi.org/10.1038/s41593-018-0310-2
https://doi.org/10.1038/s41593-018-0310-2
http://www.ncbi.nlm.nih.gov/pubmed/30643294
https://doi.org/10.1073/pnas.1619788114
https://doi.org/10.1073/pnas.1619788114
http://www.ncbi.nlm.nih.gov/pubmed/28167793
https://doi.org/10.1016/j.neuron.2009.07.018
http://www.ncbi.nlm.nih.gov/pubmed/19709635
https://doi.org/10.1126/science.aab4113
http://www.ncbi.nlm.nih.gov/pubmed/26941324
https://doi.org/10.1073/pnas.79.8.2554
http://www.ncbi.nlm.nih.gov/pubmed/6953413
https://doi.org/10.1126/science.1142998
https://doi.org/10.1126/science.1142998
http://www.ncbi.nlm.nih.gov/pubmed/17962554
https://doi.org/10.1371/journal.pcbi.1003258
http://www.ncbi.nlm.nih.gov/pubmed/24244113
https://doi.org/10.1146/annurev.neuro.24.1.1193
http://www.ncbi.nlm.nih.gov/pubmed/11520932
https://doi.org/10.1073/pnas.1004906107
https://doi.org/10.1073/pnas.1004906107
http://www.ncbi.nlm.nih.gov/pubmed/20660781
https://doi.org/10.1073/pnas.1711114115
http://www.ncbi.nlm.nih.gov/pubmed/29259111
https://doi.org/10.1162/neco.1994.6.4.559
https://doi.org/10.1162/neco.1994.6.4.559
https://doi.org/10.1523/JNEUROSCI.1032-14.2014
http://www.ncbi.nlm.nih.gov/pubmed/25186757
https://doi.org/10.1007/BF00992696
https://doi.org/10.1371/journal.pone.0248940

24. Herman M, Gindele T, Wagner J, Schmitt F, Burgard W (2016) Inverse reinforcement learning with

simultaneous estimation of rewards and dynamics. Artificial Intelligence and Statistics 102–110

25. Wu Z, Schrater P, Pitkow X (2018) Inverse POMDP: Inferring What You Think from What You Do.

arXiv: 1805.09864.

26. Reddy S, Dragan AD, Levine S (2018) Where Do You Think You’re Going?: Inferring Beliefs about

Dynamics from Behavior. arXiv: 1805.08010.

27. Berger T. Rate Distortion Theory. (1971) Englewood Clis.

28. Bialek W, van Steveninck RRDR, Tishby N (2006) Efficient representation as a design principle for neu-

ral coding and computation. IEEE international symposium on information theory 659–663

29. Mahadevan S. (1996). Average reward reinforcement learning: Foundations, algorithms, and empirical

results. Machine learning 22: 159–195. https://doi.org/10.1023/A:1018064306595

30. Tkačik G, Marre O, Amodei D, Schneidman E, Bialek W, Berry MJ (2014) Searching for collective

behavior in a large network of sensory neurons. PLoS Comp Bio 10: e1003408. https://doi.org/10.

1371/journal.pcbi.1003408

31. Schneidman E, Berry MJ, Segev R, Bialek W (2006) Weak pairwise correlations imply strongly corre-

lated network states in a neural population. Nature 440: 1007–1012 https://doi.org/10.1038/

nature04701 PMID: 16625187

32. Ben-Yishai R, Bar-Or RL, Sompolinsky H (1995) Theory of orientation tuning in visual cortex. Proc Natl

Acad Sci, 92: 3844–3848 https://doi.org/10.1073/pnas.92.9.3844 PMID: 7731993

33. Zhang K (1996) Representation of spatial orientation by the intrinsic dynamics of the head-direction cell

ensemble: a theory. J Neurosci 16: 2112–2126. https://doi.org/10.1523/JNEUROSCI.16-06-02112.

1996 PMID: 8604055

34. Kim SS, Rouault H, Druckmann S, Jayaraman V (2017) Ring attractor dynamics in the Drosophila cen-

tral brain. Science 356: 849–853. https://doi.org/10.1126/science.aal4835 PMID: 28473639

35. Pillow JW, Shlens J, Paninski L, Sher A, Litke AM, Chichilnisky EJ, et al (2008) Spatio-temporal correla-

tions and visual signalling in a complete neuronal population. Nature 454: 995–999 https://doi.org/10.

1038/nature07140 PMID: 18650810

36. McIntosh L, Maheswaranathan N, Nayebi A, Ganguli S, Baccus S (2016) Deep learning models of the

retinal response to natural scenes. Adv Neur Inf Proc Sys 29: 1369–1377 PMID: 28729779

37. Cunningham JP, Yu BM (2014) Dimensionality reduction for large-scale neural recordings. Nat Neu-

rosci 17: 1500–1509 https://doi.org/10.1038/nn.3776 PMID: 25151264

38. Rubin A, Sheintuch L, Brande-Eilat N, Pinchasof O, Rechavi Y, Geva N, et al (2019) Revealing neural

correlates of behavior without behavioral measurements. bioRxiv: 540195

39. Chaudhuri R, Gercek B, Pandey B, Peyrache A, Fiete I (2019) The population dynamics of a canonical

cognitive circuit. bioRxiv: 516021

40. Goddard E, Klein C, Solomon SG, Hogendoorn H, Carlson TA (2018) Interpreting the dimensions of

neural feature representations revealed by dimensionality reduction. NeuroImage 180: 41–67 https://

doi.org/10.1016/j.neuroimage.2017.06.068 PMID: 28663068

41. Sharpee T, Rust NT, Bialek W (2003) Maximally informative dimensions: analyzing neural responses to

natural signals. Adv Neur Inf Proc Sys 277–284

42. Niv Y (2009) Reinforcement learning in the brain. J Mathemat Psychol 53: 139–154 https://doi.org/10.

1016/j.jmp.2008.12.005

43. Dayan P, Niv Y (2008) Reinforcement learning: the good, the bad and the ugly. Curr Op Neurobio 18:

185–196. https://doi.org/10.1016/j.conb.2008.08.003 PMID: 18708140

44. Daw ND, Doya K (2006) The computational neurobiology of learning and reward. Curr Op Neurobio 16:

199–204. https://doi.org/10.1016/j.conb.2006.03.006 PMID: 16563737

45. Zhang K, Yang Z, & Başar T (2019) Multi-agent reinforcement learning: A selective overview of theories

and algorithms. arXiv: 1911.10635.

46. Laurent GJ, Matignon L, Fort-Piat L (2011) The world of independent learners is not Markovian. Int J of

Knowledge-based and Intelligent Engineering Systems, 15(1): 55–64. https://doi.org/10.3233/KES-

2010-0206

47. Fairhall AL, Geoffrey DL, William B, de Ruyter van Steveninck RR. (2001) Efficiency and ambiguity in

an adaptive neural code. Nature 412: 787. https://doi.org/10.1038/35090500 PMID: 11518957

48. Benucci A, Saleem AB, Carandini M. (2013). Adaptation maintains population homeostasis in primary

visual cortex. Nat Neurosci 16: 724. https://doi.org/10.1038/nn.3382 PMID: 23603708

49. Li N, Kayvon D, Karel S, and Shaul D. (2016) Robust neuronal dynamics in premotor cortex during

motor planning. Nature. 532: 459. https://doi.org/10.1038/nature17643 PMID: 27074502

PLOS ONE Inferring the function performed by a recurrent neural network

PLOS ONE | https://doi.org/10.1371/journal.pone.0248940 April 15, 2021 24 / 25

https://doi.org/10.1023/A:1018064306595
https://doi.org/10.1371/journal.pcbi.1003408
https://doi.org/10.1371/journal.pcbi.1003408
https://doi.org/10.1038/nature04701
https://doi.org/10.1038/nature04701
http://www.ncbi.nlm.nih.gov/pubmed/16625187
https://doi.org/10.1073/pnas.92.9.3844
http://www.ncbi.nlm.nih.gov/pubmed/7731993
https://doi.org/10.1523/JNEUROSCI.16-06-02112.1996
https://doi.org/10.1523/JNEUROSCI.16-06-02112.1996
http://www.ncbi.nlm.nih.gov/pubmed/8604055
https://doi.org/10.1126/science.aal4835
http://www.ncbi.nlm.nih.gov/pubmed/28473639
https://doi.org/10.1038/nature07140
https://doi.org/10.1038/nature07140
http://www.ncbi.nlm.nih.gov/pubmed/18650810
http://www.ncbi.nlm.nih.gov/pubmed/28729779
https://doi.org/10.1038/nn.3776
http://www.ncbi.nlm.nih.gov/pubmed/25151264
https://doi.org/10.1016/j.neuroimage.2017.06.068
https://doi.org/10.1016/j.neuroimage.2017.06.068
http://www.ncbi.nlm.nih.gov/pubmed/28663068
https://doi.org/10.1016/j.jmp.2008.12.005
https://doi.org/10.1016/j.jmp.2008.12.005
https://doi.org/10.1016/j.conb.2008.08.003
http://www.ncbi.nlm.nih.gov/pubmed/18708140
https://doi.org/10.1016/j.conb.2006.03.006
http://www.ncbi.nlm.nih.gov/pubmed/16563737
https://doi.org/10.3233/KES-2010-0206
https://doi.org/10.3233/KES-2010-0206
https://doi.org/10.1038/35090500
http://www.ncbi.nlm.nih.gov/pubmed/11518957
https://doi.org/10.1038/nn.3382
http://www.ncbi.nlm.nih.gov/pubmed/23603708
https://doi.org/10.1038/nature17643
http://www.ncbi.nlm.nih.gov/pubmed/27074502
https://doi.org/10.1371/journal.pone.0248940

50. Mlynarski W, Hledik M, Sokolowski TR, Tkacik G (2019). Statistical analysis and optimality of biological

systems. bioRxiv: 848374.

51. Aenugu S, Abhishek S, Sasikiran Y, Hananel H, Thomas PS, Kozma R. (2019) Reinforcement learning

with spiking coagents. arXiv: 1910.06489

PLOS ONE Inferring the function performed by a recurrent neural network

PLOS ONE | https://doi.org/10.1371/journal.pone.0248940 April 15, 2021 25 / 25

https://doi.org/10.1371/journal.pone.0248940

