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Abstract

We study concurrent programs with non-deterministic choice, loops and a fork-join style of co-
ordination under the lens of combinatorics. As a starting point, we interpret these programs as
combinatorial structures. We propose a framework, based on analytic combinatorics, allowing to
analyse their quantitative aspects such as the average number of execution path induced by the
choice operator, or the proportion of executions of a program with respect to its number of exe-
cution prefixes. Building on this theoretical investigation, we develop efficient algorithms aimed at
the statistical exploration of their state-space. The first algorithm is a uniform random sampler of
bounded executions, providing a good default exploration strategy. The second algorithm is a uni-
form random sampler of execution prefixes of a given bounded length, offering a more fine-grained
generation tool, thus enabling to bias the exploration in a controlled manner. The fundamental
characteristics of these algorithms is that they work on the syntax of the programs and do not
require the explicit construction of the state-space.

Keywords: Concurrency, Non-determinism, Fork-join processes, Loops, uniform random
generation, combinatorics

1. Introduction

Analysing the state-space of concurrent programs is a notoriously difficult task, if only because
of the infamous state explosion problem. Several techniques have been developed to mitigate this
explosion: symbolic encoding of the state-space, partial order reductions, exploiting symmetries,
etc. An alternative approach is to adopt a probabilistic point of view, for example by developing
statistical analysis techniques such as [1]. The basic idea is to generate random executions from
program descriptions, sacrificing exhaustiveness for the sake of tractability. This idea of empowering
formal verification with probabilistic tools has been first presented in [2] where the authors introduce
the notion of Monte-Carlo model-checking. An important question which is raised in the paper is:
how to control the distribution of the sampled objects? There is a crucial difference between
generating an arbitrary execution and generating a controlled random execution according to a
known (typically the uniform) distribution. Only the latter allows to estimate the coverage of the
state-space of a given analysis. Moreover, the uniform distribution plays an important role for that
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matter as it a priori gives the best coverage in the absence of any further information. Our goal in
this paper is to provide such samplers for a class of concurrent programs we specify below.

The starting point of our approach is to find a suitable combinatorial interpretation of the
fundamental constructions of concurrency. In previous work, we have separately studied the com-
binatorial interpretation of parallelism, seen as increasing labellings [3], non-determinism, seen as
partial labellings [4], and synchronisation as constrained labellings. In this paper, we integrate these
various interpretations, and a new interpretation for loops, into a single combinatorial specification,
providing a unified framework for studying these programs using the symbolic method from [5]. This
is a significant leap forward in terms of expressiveness compared to our previous work, because of
the presence of loops, but also because we integrate the non-determinism in a non-trivial language
with synchronisation. Moreover, at the combinatorial level, this integration is not straightforward
and requires to develop a different approach from our previous work, as we explain at the beginning
of Section 3.

The main interest of this framework is that it allows to obtain generating functions describing
the possible executions of a given program, in a systematic way. At the theoretical level, this is
often a suitable starting point for the study of quantitative problems in analytic combinatorics. For
instance, in the present paper, we quantify precisely the number of execution paths induced by the
non-deterministic choice operator in the average case, thus giving a key witness of the expressiveness
of the choice operator. Another example of quantitative results on concurrency obtained via analytic
combinatorics is the study of the typical shape of the state-space of programs, though in a simpler
model, obtained in [3]. In Section 4, we present a similar result for our model, and at a more precise
scale since we describe the state-space of individual programs.

At a more practical level, the framework we develop is also an interesting source of algorithmic
investigation, which is the main concern of this article. The first algorithmic problem we study
is that of counting the number of executions (of bounded length, when in the presence of loops)
of the programs. This is the question one has to answer to quantify the so-called state-explosion
phenomenon, and this is an important building block of our algorithmic toolbox. Unfortunately,
counting executions of concurrent programs is hard in the general case. We show in [6] that, even
for simple programs only allowing barrier synchronisation, counting executions is a #P-complete1

problem. Fork-join parallelism enables a good balance between tractability and expressiveness
by enforcing some structure in the state-space. A second problem is caused by non-determinism
because for each non-deterministic choice we have to select a unique branch of execution. Moreover,
choices can be nested so that the number of possibilities can grow exponentially. Relying on an
efficient encoding of the state-space as generating functions, we manage to count executions without
expanding the choices. Of course counting executions has no direct practical application, but it is an
essential requirement for us to build two complementary and more interesting analysis techniques.
First, we develop a uniform random sampler of executions relying on that counting information. In
the loop-free fragment of our model it is uniform over all executions whereas, in the general case,
it samples uniform executions of a given (bounded) length. Without prior knowledge of the state-
space, the uniform distribution yields the best coverage and thus offers a good default exploration
strategy of the state-space. As a second and alternative approach, we provide a uniform random
sampler of execution prefixes. This algorithm offers an alternative to the uniform generation of

1A problem is in #P if it consists in counting the number of accepting paths of a polynomial-time non-deterministic
Turing machine. It is #P-complete if, in addition, every other problem in #P reduces to it in polynomial time.
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executions giving more flexibility, as it allows one to introduce bias in the generation, while still
maintaining control over the distribution of the sampled objects. A fundamental characteristic of
all the algorithms presented in the present paper is that they work on the syntactic representation
of the programs, thus avoiding the explicit construction of the state-space. This allows to analyse
systems with a large state space.

The outline of the paper is as follows. In Section 2, we present a first version of the program
class of non-deterministic fork-join programs. We introduce the notion of global choice, which
characterises the influence of non-determinism in this class and we provide precise quantitative
results on this notion. We then describe a counting algorithm and a uniform random sampler of
executions for such programs. In Section 3, we extend the model with loops and offer an alternative
approach to random sampling. Finally, in Section 4, we study the execution prefixes of programs
with loops, both from a quantitative and an algorithmic point of view. At the end of each section,
we support all the proposed algorithms with an experimental evaluation of their performance, thus
establishing the tractability of our approach.

Related work

Our study combines viewpoints and techniques from concurrency theory and combinatorics. A
similar line of work exists for the so-called “true concurrency” model (by opposition to the inter-
leaving semantics that we use in our study) based on the trace monoid using heaps combinatorics
(see [7, 8]). To our knowledge these only address the parallelism issue and not non-determinism
per se. In [9], the authors cover the problem of the uniform random generation of words in a
class of synchronised automata. This approach is able to cover a slightly more expressive set of
programs but this comes at the cost of the construction of a product (synchronizing) automaton
of exponential size in the worst case. Another approach, investigated in the context of Monte-
Carlo model-checking, is based on the combinatorics of lassos, which relates to the verification of
temporal-logic properties over potentially infinite executions. In [10], the authors of this method
highlight the importance of uniformity. Later [11] gives a uniform random sampler of lassos, how-
ever relying on the explicit, costly construction of the whole state-space, hence impractical for even
small processes. Finally [12] studies the random generation of executions in a model similar to the
one we cover by extending the framework of Boltzmann sampling. Although Boltzmann samplers
are usually fast, they turn out to be impractical in this context because of the heavy symbolic
computations imposed by the interplay between parallelism and synchronisation.

Compared to [4], which discusses non-determinism without synchronisation, we show here that
the approach hits a wall when introducing loops and requires a new encoding of the state-space
for the non-determinism to be studied in a more expressive language. This paper extends [13]
with, in particular, new quantitative results regarding the typical number of global choices and the
proportion of executions with respect to execution prefixes.

2. A combinatorial interpretation of non-deterministic fork-join programs

The goal of this section is to introduce the combinatorial tools that will be used throughout
the paper and to study a first class of concurrent programs featuring a fork-join programming
style with non-determinism. The interest of this class is that it showcases how different features
of concurrency such as the interleaving semantics of the pure merge operator [3], series-parallel
synchronisation [14] and non-determinism [4] can be integrated and studied in a unified framework.

3



In Section 3, this class will be extended with a loop construction in order to gain more expres-
siveness. This extension has several technical implications on the combinatorial framework at use
here, which will be discussed.

2.1. Non-deterministic Fork-Join processes (without loops)

Definition 1 (Non-deterministic fork-join programs). Given a set of symbols A representing the
“atomic actions” of the language, we define the class of non-deterministic fork-join programs (over
this set A), denoted NFJ as follows:

P,Q ::= P ‖ Q parallel composition
| P ;Q sequential composition
| P +Q non-deterministic choice
| a ∈ A atomic action

It is important to mention now that in the present paper, we will not specify further what
the content of the atomic actions is. We treat them as black boxes and assume all action names
within a term to be different. We also consider programs up to injective relabelling, so that (a ‖ b)
and (d ‖ c) represent the same program. Our focus is set on the order in which these actions can
be fired and scheduled by the different operators of the language. In other words, we study the
control-flow of concurrent programs as an approximation of their behaviour. In all our examples
we use lower-case Roman letters as unique identifiers to distinguish between actions.

We give NFJ an interleaving semantics, which means that an execution is seen as a sequence of
small atomic steps and that the executions of P ‖ Q are all the possible interleavings of an execution

of P and an execution of Q. We start by defining a “step” relation of the form P
a→ P ′ between

two programs and an atomic action describing one small computation step. When P
a→ P ′, we say

that “program P reduces to P ′ by firing a”. The inference rules defining the step relation are given
in Figure 1.

a
a→ 0

(act)
P

a→ P ′

P ‖ Q a→ P ′ ‖ Q
(Lpar)

Q
a→ Q′

P ‖ Q a→ P ‖ Q′
(Rpar)

P
a→ P ′

P ;Q
a→ P ′;Q

(seq)
P

a→ P ′

P +Q
a→ P ′

(Lchoice)
Q

a→ Q′

P +Q
a→ Q′

(Rchoice)

Figure 1: Semantic of NFJ given as a set of inference rules defining a step relation

As a convenience, we allow the program on the right-hand-side of the step relation to be either a
regular NFJ program or a special symbol 0 representing a program that has completed its execution.
We also consider the following rewriting rules allowing to use 0 with the parallel and sequential
composition operators in the conclusions of rules (Lpar), (Rpar) and (seq):

(0;P ) = P

(P ‖ 0) = (0 ‖ P ) = P
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We are now equipped to define the executions of the language as a sequence of steps ending on
the empty program 0.

Definition 2 (Execution). An execution of an NFJ program P0 is a sequence of steps of the

form P0
a1→ P1

a2→ P2 . . .
an−1→ Pn−1

an→ Pn = 0 where for all i, the step Pi−1
a→ Pi is a proof-tree,

that is it contains all the applied rules and not simply its conclusion.
We refer to the set of all possible executions of a program as its state-space.

In the absence of ambiguity, which is the case in this section, a proof-tree can be safely identified
to its conclusion. As an example, an execution of the program P = (a; b) ‖ (c+d) may fire either a, c
or d at the first step. The proof-trees corresponding to these three possible first steps are given
below.

a
a→ 0

(act)

a; b
a→ b

(seq)

(a; b) ‖ (c+ d)
a→ b ‖ (c+ d)

(Lpar)

c
c→ 0

(act)

c+ d
c→ 0

(Lchoice)

(a; b) ‖ (c+ d)
c→ a; b

(Rpar)

d
d→ 0

(act)

c+ d
d→ 0

(Rchoice)

(a; b) ‖ (c+ d)
d→ a; b

(Rpar)

Definition 2 gives a natural semantics to NFJ. However it does not highlight the influence of
non-determinism in the structure of the state-space. It is interesting to separate the application of
the choices from the interleaving semantics of the fork-join core of the language. In order to achieve
this, we use the notion of global choice. Informally, a global choice of a program P is a program
obtained by selecting one of the two alternatives in each sub-term of the form P1 +P2 and removing
the other.

Definition 3 (Global choices). The set of global choices of P , denoted choices(P ) is a set of
choice-free programs obtained from P inductively as follows:

choices(a) = {a}
choices(P +Q) = choices(P ) ∪ choices(Q)

choices(P ‖ Q) = {(P ′ ‖ Q′) | P ′ ∈ choices(P );Q′ ∈ choices(Q)}
choices(P ;Q) = {(P ′;Q′) | P ′ ∈ choices(P );Q′ ∈ choices(Q)}

With this notion at hand, the non-determinism can be untangled from the interleaving semantics
since an execution can now be seen as the combination of a global choice and an execution of this
global choice. The selection of the global choice carries all the non-determinism coming from the
choices of the program whereas the execution of this global choice contains all the expressiveness of
the interleaving semantics. Moreover, it is easy to prove that an execution of a choice-free program
fires every atomic action in the program exactly once. Therefore a global choice containing n atomic
actions only has executions of length n and such an execution can be identified to a labelling of its
actions with integers of J1;nK corresponding to their position in the sequence of steps.
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For instance, the program P = m; (w ‖ ((t+ (c; g)); (s+ n); p)); e models the beverage vending
machine pictured in Figure 2. One of its possible executions corresponds to firing the following
sequence of actions (in this order) m, t, n, w, p, e and the global choice corresponding to this exe-
cution is P ′ = m; (w ‖ (t;n; p)); e. Figure 2 gives a graphical representation of this execution as a
labelling of P ′. In the rest of this section, we will rely on this second point of view on executions
to reason about them. To this end, we now introduce the combinatorial tools that we will need to
model both the class of NFJ programs as a whole, and the set of executions of a given program, as
combinatorial objects. This will enable us to analyse them using tools from analytic combinatorics.

insert
money

heat
water

+

tea coffee

grind beans

+

sugar no sugar

position
goblet

serve

insert
money

heat
water

+

tea coffee

grind beans

+

sugar no sugar

position
goblet

serve

1

4

+

2 c

g

+

s 3

5

6

Figure 2: A simple beverage vending machine modelled by P = m; (w ‖ ((t+ (c; g)); (s+n); p)); e, one of its 4 global
choices and one of the 4 possible labellings of this global choice, representing the firing sequence m, t, n, w, p, e. This
program has 18 executions in total

2.2. The combinatorial toolset part 1: modelling programs

We introduce here the notions of combinatorial class, combinatorial specification, and generating
function. This is a brief introduction as we limit ourselves to the tools that are necessary to tackle
the problems covered in the present article. An in depth presentation of the techniques used here
can be found in [5].

Definition 4 (Combinatorial class). A combinatorial class C is a set of objects equipped with a size
function | · | : C → N such that for all n ∈ N the set Cn = {c ∈ C | |c| = n} of objects of size n of C
is finite.

For example, one combinatorial class of interest for us is the class of all NFJ programs where
the size |P | of a program P is defined as the number of atomic actions it contains, that is:

|(P ‖ Q)| = |(P +Q)| = |(P ;Q)| = |P |+ |Q|
|a| = 1

Table 1 gives the list of all NFJ programs of size at most 3 and their number.
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Table 1: All NFJ programs of size at most 3 and their number

size n all programs of size n #

1 a 1
2 (a+ b), (a ‖ b), (a; b) 3
3 (a+ (b+ c)), (a+ (b ‖ c)), (a+ (b; c)), ((a+ b) + c), ((a ‖ b) + c), ((a; b) + c) 18

(a ‖ (b+ c)), (a ‖ (b ‖ c)), (a ‖ (b; c)), ((a+ b) ‖ c), ((a ‖ b) ‖ c), ((a; b) ‖ c)
(a; (b+ c)), (a; (b ‖ c)), (a; (b; c)), ((a+ b); c), ((a ‖ b); c), ((a; b); c)

Since the number of elements of a given size of a combinatorial class C is finite, it is possible
to define its generating function C(z) as the formal power series C(z) =

∑
n≥0 cnz

n where cn is
the cardinality of Cn, that is the number of objects of size n in C. The reason behind considering
a generating function rather than working on the sequence cn directly is twofold. First, generating
functions behave nicely with respect to high-level operations on combinatorial classes, like the
Cartesian product or the disjoint union. This often allows to obtain recurrence relations on the
sequences — and even sometimes an explicit formula — in a systematic and elegant way with
few manual computations. Second, this enables the use of analytic techniques when this function
converges, allowing to obtain information on the asymptotic behaviour of the sequences via complex
analysis. This approach has been used successfully in a variety of contexts and has been popularised
by the book [5].

As we just mentioned, generating functions behave nicely with respect to some high-level oper-
ations on combinatorial classes. For instance we define the disjoint union C of two classes A and B,
denoted by C = A+ B, as the combinatorial class whose underlying set is the disjoint union of the
elements of A and the elements of B and whose size function | · |C is such that

|c|C =

{
|c|A if c ∈ A
|c|B if c ∈ B

where
| · |A is the size function of A;

| · |B is the size function of B.

It is easy to check that the generating function of C = A+B satisfies the formula C(z) = A(z)+B(z).
Using similar notations, we can also define the Cartesian product C = A× B of two combinatorial
classes A and B where the size of an element (a, b) of C is |(a, b)|C = |a|A + |b|B. Hence, the set Cn
of objects of C of size n is {(a, b) | a ∈ Ai, b ∈ Bj , i+ j = n}. As a consequence the cardinality cn
of Cn is

∑
i+j=n aibj where ai is the cardinality of Ai and bj is the cardinality of Bj . Thus, we

obtain a simple expression for the generating function of C, that is C(z) = A(z) ·B(z).
It follows that if one is able to describe a combinatorial class using only these constructions (and

possibly recursion), then it is straightforward to obtain an equation satisfied by the generating
function of the class. Such a description is called a combinatorial specification. The process of
finding a specification for the system under study and then applying automatic rules to derive its
generating function is called the symbolic method. Table 2 gives a few of the constructions we will
need in this section and their translations in terms of generating functions. The neutral class E is
not useful for this section but will be later in the article.

As an example of application, it is not too difficult to obtain a specification of the class F of NFJ
programs:

F = Z + F × F + F × F + F × F . (1)

This specification makes use of the disjoint union, the Cartesian product and a new construction Z
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Table 2: Some constructions of the symbolic method

C C(z)

Neutral class: one element of size 0 E 1
Atomic class: one element of size 1 Z z
Disjoint union A+ B A(z) +B(z)
Cartesian product A× B A(z)B(z)

called the atomic class. This is the class containing only one element of size one. Here it represents
the atomic actions of the language, indeed the program made of only one action has size one and
there is only one such program (up to relabelling). The other three terms represent the three
other constructions of the language. A program that is not reduced to a single action is either a
parallel composition, a sequential composition or a choice between two programs. Moreover these
three sets are disjoint, hence the disjoint union. Also, note that the equal sign here denotes an
isomorphism rather than an equality, in the sense that there is a bijection between the two sides
of the equality that preserves the size. The equal sign, when used in a specification, will always
denote an isomorphism rather than a strict equality.

From equation (1) and using the transformation rules of the symbolic method recalled in Table 2,

we obtain that the generating function f of NFJ programs satisfies f(z) = z+3f(z)
2
. This equation

can be solved explicitly so that we have a closed formula for f :

f(z) =
1−
√

1− 12z

6
. (2)

This leads us to our first result on the number of NFJ programs.

Theorem 1 (Number of NFJ programs). For n > 0, the number fn of NFJ programs containing

exactly n atomic actions is given by fn = 3n

12n−6

(
2n
n

)
. Moreover we have fn ∼

n→∞
12n−1
√
n3π

.

Proof. Recall that the number fn of programs of size n is the coefficient of degree n in the generating
function f(z), which we denote by [zn]f(z). Moreover we have that

√
1− u = −

∑
n≥0

4−n

2n− 1

(
2n

n

)
un

hence 1−
√

1− 12z =
∑
n≥1

3n

2n− 1

(
2n

n

)
zn

and therefore fn =
3n

12n− 6

(
2n

n

)
.

The equivalent for fn is then obtained by applying Stirling’s formula.

The number of NFJ programs is not interesting as such, but we give it here for two reasons.
First it gives an example of application of the symbolic method which demonstrates how quickly
one can get to a counting formula, and an asymptotic estimation, using this approach. And second,
we need this result as an auxiliary result to prove a more insightful quantitative theorem on the
class of NFJ programs: an NFJ program has, in average, relatively few global choices.
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The natural intuition is that, since a global choice can be any combination of local choices,
the typical number of global choices of a program should grow exponentially with the size of the
program. This intuition is correct, but what is less natural is that the growth rate of the number
of global choices is quite small. In Theorem 2 we prove that the typical number of global choices,
that is their average number over all programs of size n, grows as fast as about 1.11438n.

Theorem 2 (Average number of global choices). The average number of global choices of an NFJ
program of size n has an equivalent of the form A · Bn when n → ∞ where A ≈ 6.89446 and B =

49
27+12

√
2
≈ 1.11438.

The practical implication of this somewhat surprising result is that, for an average program of
reasonably small size, it might be possible to enumerate all global choices because their number is
such a “small” exponential. As an example, the average number of global choices for programs of
size n = 100 is approximatively 348 261.

Proof of Theorem 2. The idea to prove Theorem 2 is to count programs annotated with one of
their global choices. In other words, we consider the combinatorial class G of all the pairs of the
form (P, P ′) where P ′ ∈ choices(P ) and where the size function of G is defined by |(P, P ′)| = |P |.
The number of objects of size n in G is therefore the sum, over all programs of size n, of their number
of global choices. In order to get the average number of global choices given in the statement of
the theorem, it will suffice to divide this quantity by the number of programs of size n obtained in
Theorem 1.

The class G can be specified as follows:

G = Z + G × G + G × G + (G × F + F × G). (3)

And the combinatorial interpretation of the above formula is the following:

• A single action has only one global choice, hence there is only one annotated program (P, P ′)
in G where P = a. This is specified by Z.

• A global choice of P ‖ Q is by definition the parallel composition of a global choice of P and
a global choice of Q. Hence, the set of annotated programs where the outermost constructor
is ‖ is isomorphic to a Cartesian product of G with itself.

• The same reasoning applies to the sequential composition.

• Finally, the most interesting case is that of the choice construction. A global choice of a
program of the form P +Q is either a global choice of P or a global choice of Q. Hence, the
set of pairs of the form (P + Q,R) in G are such that (P,R) ∈ G (or (Q,R) ∈ G) and the
second program Q (or P ) is a regular, non-annotated, NFJ program. Therefore the sub-class
of such terms is isomorphic to G × F + F × G.

From (3) we obtain that the generating function g(z) of annotated programs satisfies the fol-
lowing equation where f is the generating function of regular (non-annotated) NFJ program:

g(z) = z + 2g(z)
2

+ 2g(z)f(z). (4)

9



Again, this equation can be solved explicitly which yields g(z) =
1−2f(z)−

√
∆(z)

4 where ∆(z) =

(1− 2f(z))
2− 8z expands to 1

9

(
5− 84z + 4

√
1− 12z

)
. Obtaining an explicit formula for the num-

ber gn of annotated programs would require to extract the coefficient of degree n in the power series
expansion of g(z), which would be extremely tedious.

Instead we resort to singularity analysis. The function ∆ is well-defined and decreasing in the
interval [0; 1

12 ] and ∆( 1
12 ) = − 2

9 < 0 so there exists a unique ρg in this interval such that ∆(ρg) = 0.

Let u =
√

1− 12ρg, we have that 9∆(ρg) = 5 − 7(1 − u2) + 4u = 0, which we can solve explicitly

and yields u = 3
√

2−2
7 and therefore 12ρg = 27+12

√
2

49 < 1. This allows to write:

g(z) =
1− 2f(z)

4
− h(z)

√
1− z

ρg

where h(z) =

√
∆(z)

(
1− z

ρg

)−1

is analytic in

{
z ∈ C | |z| < 1

12

}
Therefore the transfer theorem from [5, Thm. VI.3 p. 390] applies to g(z) and its n-th coefficient gn
satisfies gn ∼ h(ρg)

2
√
π
n−

3
2 ρ−ng . Furthermore, we have that h(ρg) =

√
−ρg∆′(ρg) which can be com-

puted explicitly. This allows us to conclude the proof since the average number of global choices
over programs of size n is gn/fn ∼ 6h(ρg) · (12ρg)

n
.

2.2.1. The impact of symmetries

Remark: this sub-section questions and refines the result form Theorem 2. It is rather technical and
independent from the rest of the paper. It can thus safely be skipped at the first reading.

A natural question to ask, regarding Theorem 2 and its proof, is “how would commutativity
and associativity affect this result?”. We can indeed see in Table 1 that even for small sizes, many
programs can be obtain from one another by flipping the operands of the parallel or the choice
operator for instance, and it is clear from the semantics of NFJ that doing so does not change the
state-space of programs. It is actually possible to answer this question using similar tools as before,
although the proofs become significantly more technical. In this sub-section we state the analogue
of Theorem 2 in a refined model which takes the aforementioned symmetries into account and we
give the key ideas to prove it. The full details of the proof are given in Appendix A.

We now consider all three constructions of the language to be associative so that for in-
stance (a ‖ (b ‖ c)) = ((a ‖ b) ‖ c), which we will now write (a ‖ b ‖ c). Moreover we consider
the parallel composition operator and the choice operator to be commutative so that (a ‖ (b; c)) =
((b; c) ‖ a) for instance. This has the consequence that there are less NFJ programs of given size
in this model than in the simpler one, and that programs with many symmetries will be given
less importance when computing the average number of global choices. We establish the following
result.

Theorem 3. The average number of global choices for programs with n atomic actions, taken up
to commutativity and associativity is equivalent to A ·Bn when n→∞ where B ≈ 1.11275.

It is extremely common in analytic combinatorics that going from ordered to unordered collec-
tions (in our context: from non-commutativity to commutativity) does not change the form the
result but only the constants appearing in it. So the fact that the average number of global choices
in this new model has the same behaviour is not surprising. However it is interesting that the new
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growth rate of the number of global choices is this close to one we obtained in Theorem 2, and that
it is slightly smaller. It is also possible to approximate the constant A but is extremely tedious and
of little interest.

Taking these symmetries into account in the counting process requires to write new specifications
for the class F of NFJ programs and for the class G of annotated NFJ programs, that is the set of
pairs (P, P ′) where P ∈ F and P ′ is a global choice of P . Associativity is expressed using n-ary
rather than binary operators whereas commutativity requires to introduce two operators that we
have not seen so far, the multi-set operator and an unusual “replication” operator.

Specification of the set of program. Let F denote the class of NFJ programs, taken up to associa-
tivity and commutativity, and let F;, F‖ and F+ denote the sub-classes of F containing programs
whose outermost constructors are respectively a sequence, a parallel composition and a choice.

The class F; for instance contains all programs of the form (P1;P2) for any two programs P1

and P2. But there is an ambiguity issue with this representation when one of P1 or P2 is itself
of the form (P3;P4), because there are at least two possible ways to represent the program. To
circumvent this issue, we “flatten” nested sequence operators and say that an element of F; is of
the form P1;P2; . . . ;Pk where k ≥ 2 and for all 1 ≤ i ≤ k we have Pi 6∈ F;. This yields the
specification F; = Seq≥2(F \ F;) or, equivalently, F; = Seq≥2(Z + F‖ + F+), where Seq≥2(·)
denotes a sequence of at least 2 elements and is formally defined below.

Definition 5. Given a combinatorial class A with no element of size 0, we define the class of
sequences of elements of A as:

Seq(A) =
⋃
j≥0

A×A× · · · × A (j times)

For k ≥ 0, we denote by Seq≥k(A), the restriction of the above union to j ≥ k.

Proposition 1. Let A be a combinatorial class with no element of size 0 and let A(z) denote its
generating function. The generating function of Seq≥k(A) is given by

A(z)
k

1−A(z)

For F+ and F‖ we handle associativity the same way, but this does not solve the commutativity
issue. The idea to express commutativity is to see the operands of a choice (resp. parallel compo-
sition) as a multi-set of programs rather than a sequence since the order in which they are written
does not matter. Note that we do need a multi-set and not a set since two programs that are equal
(up to renaming of the actions) may be used as two branches of a choice or may be composed in
parallel. In combinatorics multi-sets are specified using the MSet(·) operator, defined below, which
allows to write F+ = MSet≥2(F \ F+) for instance. The treatment of this kind of operators relies
on what is known as Pólya theory and is covered by the book [15].

Definition 6. Given a combinatorial class A with no element of size 0, we define the class of multi-
sets of elements of A, denoted by MSet(A), as the quotient of Seq(A) by the following equivalence
relation:

(a1, a2, . . . , ak) ∼ (a′1, a
′
2, . . . , a

′
`)⇔ (k = `) ∧ ∃σ ∈ Sk,∀ 1 ≤ i ≤ k, aσ(i) = a′i

11



where Sk denotes the set of permutations of J1; kK.
The size of an element of MSet(A) is defined as the sum of the sizes of its components (this is

independent of the ordering). Moreover, for k ≥ 0, the class MSet≥k(A) is defined as the sub-class
of MSet(A) whose elements have at least k components, that is MSet≥k(A) = Seq≥k(A)/ ∼.

Proposition 2. Let A be a combinatorial class with no element of size 0 and let A(z) denote its
generating function. The generating function of the multi-set MSet(A) is given by

exp

∑
j≥1

A(zj)

j


Putting together the two constructions introduced above, we get a specification for NFJ ex-

pressing associativity and commutativity.

F = Z + F; + F‖ + F+

F; = Seq≥2(F \ F;)

F‖ = MSet≥2(F \ F‖)
F+ = MSet≥2(F \ F+)

(5)

From this specification, one can derive a system of equations on the generating functions of these
four classes and the singularity analysis of these functions yields the following theorem. Its proof
is detailed in Appendix A.1.

Theorem 4. The asymptotic number fn of NFJ programs, up to associativity and commutativity,
satisfies

fn =
n→∞

γn−
3
2 ρ−n(1 +O(n−1))

where ρ ≈ 0.13793576712500258 and γ ≈ 0.12607642812680533.

The value of ρ−1 ≈ 7.25 here has to be compared with the growth rate 12 which we obtained in
Theorem 1. A heuristic argument which partly explains this value is that each syntactic program
of size n is made of n − 1 binary operators and that about 2

3 of them are choices or parallel
composition. Moreover, it is unlikely that the two operands of a binary operator are isomorphic
so each of these 2

3 (n − 1) commutative operators induce a symmetry. In total this accounts for

about 2
2
3n symmetries. In turns out that 12/2

2
3 ≈ 7.56 which is somewhat close to ρ−1, the rest of

the difference correspond to the associativity and the rough approximations of this argument.

Specification of the set of annotated program. Like in the proof of Theorem 2, in order to count the
average number of global choices of programs of size n, one first counts the number of pairs (P, P ′)
where P is a program of size n and P ′ is one of its global choices. We call such a pair an annotated
program and we define its size as the size of its first component P .

Let G denote the class of annotated programs of size n and let G;, G+ and G‖ denote the classes of
annotated programs whose outermost operator are respectively a sequential composition, a choice
or a parallel composition. The equations defining G, G; and G‖ are straightforward to obtain as
they follow closely their non-annotated counterparts F , F; and F‖:

G = Z + G; + G‖ + G+

G; = Seq≥2(G \ G;)

G‖ = MSet≥2(G \ G‖)
(6)

12



The case of the choice however, requires more work as we need to express the fact that one of the
branches of the choice is executed and the others are not. In order to specify this, we reason on the
executed branch of the choice and on the sub-set of the other branches which are isomorphic to it.
The executed branch (P0, P

′
0) belongs to (G \G+) for the same reason the branches of regular (non-

annotated) choice programs F+ belonged to (F \ F+) in the previous section. Moreover, among
the other branches, k ≥ 0 branches P1, P2, . . . , Pk may be isomorphic to P0, that is to say that all
of the Pi are copies of P0 with different atom names. Although the choice operator is associative in
this section, we have to specify that the program P = P0 + P1 + P2 + · · ·+ Pk has (k + 1) distinct
choices (one of each Pi) according to our specification. One way to achieve this at the specification
level, is to artificially partition the branches of P into two sets. We fix an arbitrary ordering of
the Pi and we distinguish between the Pi that are “before” P0 and those that are “after” P0.
Thus, an annotated choice program in G+ is composed of an annotated branch (P0, P

′
0) ∈ G \ G+, a

possibly empty set of copies of P0 considered to be before P0, a possibly empty set of copies of P0

considered to be after P0 and a possibly empty multi-set of other branches (different from P0). As
a consequence we have:

G+ =
⋃

(P0,P ′0)∈G\G+

MSet({P0})× {(P0, P
′
0)} ×MSet({P0})×MSet(F \ F+ \ {P0}) \ {(P0, P

′
0)} .

Note that the removal of the term {(P0, P
′
0)} on the right captures the fact that a choice term can-

not be reduced to one single branch. Also note that the term MSet({P0})×MSet(F \ F+ \ {P0})
can be simplified to MSet(F \ F+). This can be interpreted by saying that the copies of P0 consid-
ered to be after P0 can be grouped together with the multi-set of other branches (different from P0)
so that it forms one single multi-set of non-annotated programs. Furthermore, the remaining terms
can be simplified too by observing that the j remaining copies of P0 can be grouped together
with (P0, P

′
0) and that the (j + 1)-tuples of the form (P0, P0, . . . , P0, (P0, P

′
0)) ∈ Fj × G have the

same size as the (j + 1)-tuples of the form ((P0, P
′
0), (P0, P

′
0), . . . , (P0, P

′
0)) ∈ Gj+1 and are trivially

in bijection with them. We introduce a “replication” operator which can specify this kind of tuples.

Definition 7. Let A be a combinatorial class with no element of size 0, we define the class of
replicas of elements of A as

Repl(A) =
⋃
j≥1

{
(x, x, . . . , x)
j components

| x ∈ A

}
(7)

Proposition 3. Let A be a combinatorial class with no element of size 0 and let A(z) denote the
generating function of A. The generating function of Repl(A) is given by∑

j≥1

A(zj)

Finally, we can also note that MSet(F \ F+) = F+ + (F \F+) + E from (5). Hence we get the
simpler specification of G+ given by:

G+ = Repl(G \ G+)× (F + E) \ (G \ G) (8)

Here again, the specifications (6) and (8) translate into a system of equations on the generating
functions of G, G+, G;, G‖ and F . The analysis of theses functions lead to Theorem 3 and is detailed
in Appendix A.3.
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This concludes the study of the class NFJ itself and of its number of global choices. The outcome
of this sub-section is that we can still obtain an equivalent the average number of global choices in
programs of size n when programs are considered up to commutativity and associativity. Unsur-
prisingly, this equivalent is of the same form as in the simple case without taking the symmetries
into account, though the constants are different. Although it is more satisfactory to take these
symmetries into account for quantifying the average number of global choices, this result comes at
the expense of a considerably more technical analysis. We now turn to the counting and random
sampling of executions until the end of Section 2.

2.3. The combinatorial toolset part 2: executions as partial increasing labellings

In order to study the set of executions of a program, and in particular in order to count it,
we need to give it a combinatorial interpretation too. As mentioned earlier, the idea is to see
an execution as a labelling of the actions of the programs. Before formalising this approach, we
present a graphical representation of NFJ programs that will help us picture these labellings. This
representation yields graphs similar to those of Figure 2, though with a little more detail so as to
remain generic.

Definition 8 (Control graph). To every NFJ program we associate a control graph with three
kinds of nodes: actions (a), fork-join nodes (◦) and choices nodes (+). The control graph G(P ) of
a program P is inductively defined as follows:

G(a) = a

G(P ‖ Q) =

◦

G(P ) G(Q)

◦

G(P ;Q) =
G(P )

G(Q)

G(P +Q) =

+

G(P ) G(Q)

+

As mentioned above, we can see an execution of an NFJ program as a two-step process. First,
select a global choice, that is select which branch of each choice should be run, and second, label
the actions of this global choice using the integers from J1;nK according to the order in which they
are fired. The integer n is the number of actions in the global choice here. Figure 3 pictures the
same example as in Figure 2 using this representation. In the middle picture, one branch of each +
node has been selected and the other has been discarded (coloured in light grey). In the rightmost
picture, the remaining actions of the graph have been labelled such that, whenever there is an edge
between two actions, the action on the upper end of the edge has a smaller label than the action
at the bottom. We call this an increasing labelling of the graph since every path from the top of
the graph to the bottom is increasingly labelled.

The key idea to study the executions of NFJ programs is to see the set of possible executions
of a single program as its own combinatorial class. To this end we will need a labelled variant
of the formalism presented above. Informally, a labelled combinatorial class is a special case of
combinatorial class in which the size n of an object corresponds to a number of “atoms” in the
object (typically graph nodes or tree nodes) and where each of these atoms are assigned a unique
label from the set J1;nK. A typical example of labelled class is the set of permutations which can
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Figure 3: Two-step decomposition of an execution of program P = m; (w ‖ ((t+ (c; g)); (s+ n); p)); e
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be seen as a linear arrangement of n atoms labelled from 1 to n. In our case, the labelled class of
interest is that of the executions of a program, which are seen as a labelled global choice.

More formally, labelled combinatorial classes can be seen as sets of pairs of a regular “unlabelled”
object and a permutation representing a labelling.

Definition 9 (Labelled combinatorial class). Let S =
⋃
n≥0 Sn denote the set of all finite permu-

tations. A combinatorial class C is a labelled combinatorial class if it is of the form C ⊆ C × S
for some set C and if for all element (c, σ) of C the size |(c, σ)| of the element is the unique n such
that σ ∈ Sn.

As for unlabelled classes, the study of such a class can be made more systematic when one
is able to specify it. There exists several operators of the symbolic method which are specific to
labelled classes, in addition to those presented in Table 2. Here we will only need two, the labelled
product and the ordered product. The labelled product (denoted by ?) of two objects is defined
as the set of all possible interleavings of their respective labellings. Formally, we first defined the
labelled product of two objects:

(a, σa) ? (b, σb) = {((a, b), σ) | σ is an interleaving of σa and σb}

that is


σ ∈ S|a|+|b|

∀i, j ≤ |a|, σ(i) < σ(j)⇔ σa(i) < σa(j)

∀i, j > |a|, σ(i) < σ(j)⇔ σb(i) < σb(j)

Said differently, the restriction of σ to J1; |a|K is a labelling of a using a subset of the labels J1; |a|+|b|K.
Similarly, the restriction of σ to J1 + |a|; |a| + |b|K is the labelling of b using the remaining labels.
The labelled product of two classes is then defined as a union over all possible pairs:

A ? B =
⋃

a∈A,b∈B

a ? b
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Although the definition is a bit technical, it captures a natural idea in the context of concurrency
since it mimics the interleaving semantics of the parallel composition operator. As an example,
consider two programs P and Q and two possible executions of these programs eP and eQ. Since
the rules Lpar and Rpar commute in the semantics given at the beginning of this section, it is easy
to see that any interleaving of eP and eQ is a valid execution of P ‖ Q and that any execution
of P ‖ Q is the interleaving of some executions of P and Q. Hence, if P and Q denote the set of all
possible executions of P and Q, seen as labelled objects, then P ?Q is the set of possible executions
of P ‖ Q.

The ordered product A F B of two labelled classes A and B has a simpler definition, although it
is less common. Unlike the labelled product, it does not appear in [5]. Resources on this operator
and its unlabelled counterpart can be found in [16]. It is defined by

A F B =

{
((a, b), σ) | (a, σa) ∈ A, (b, σb) ∈ B, σ(i) =

{
σa(i) if i ≤ |a|
σb(i− |a|) + |a| otherwise

}
.

The ordered product simply shifts the labelling σb of its second component b so that it does not
overlap with the labelling σa of its first component a. More eloquently, in an ordered product, the
first component always has the smallest labels and the second component has the largest. In the
context of concurrency, this captures the semantics of the sequential composition operator.

In fact, all the constructions of the NFJ language can be mapped to one of the combinatorial
constructions we have seen so far. Hence, we can define a combinatorial specification of the set
of the executions of any program P by induction on the syntax. However, in order to add more
information in the specification, which will become useful later for random generation, we introduce
a last notion, markers. A marker is a combinatorial class that contains only one object of size 0 and
which purpose is only to distinguish one position in the objects or one subset of the objects (e.g.
those that contains the markers by opposition to those that do not). For instance, if we consider
again two NFJ programs P and Q and their respective sets of possible executions P and Q, the set
of the executions of (P + Q) can be specified by Y` ? P + Yr ?Q where Y` (resp. Yr) is a marker
class marking the executions of (P +Q) taking the P branch (resp. the Q branch). In a sense this
is a more precise specification than P +Q since it carries more information.

The function S mapping a program to the specification of its executions is inductively defined
in Table 3. As a convenience, we assume that all the choices in the program are given a unique
identifier i (this is pictured by +i in all the formulas) so that we can assign them two marker
classes Yi,` and Yi,r marking respectively the executions taking their left branch and their right
branch.

The generating functions given in the third column of Table 3 is the generating function of
the executions of the program. It is actually a function of several variables: the main variable z
counting the number of atoms in the program and the marker variables (yi,`, yi,r, . . . ) marking the
different choices. It generalises the generating functions with one variable introduced above so that
if ~y is a product of yi,` and yi,r variables (where each variable may appear at most once), then the
coefficient in front of zn~y in the series is the number of execution of size n of the program such that
for all i, yi,` (resp. yi,r) appears in ~y if and only if the left (resp. right) branch of choice number i is
taken. In short, the markers encode the local choices while the atomic class Z encodes the number
of actions of the execution.

The operation denoted by P (z) }Q(z) is called the coloured product and is introduced in [16].
The symbol } originally denotes an operation on combinatorial specification and we overload it
here to denote an operation on generating functions.
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Table 3: Recursive combinatorial specification of the set of executions of a program and its corresponding generating
function

Language construction Specification Generating function
P S(P ) P (z)

a Z z
P ‖ Q S(P ) ? S(Q) P (z) }Q(z)
P ;Q S(P ) F S(Q) P (z)Q(z)
P +i Q Yi,` × S(P ) + Yi,r × S(Q) yi,`P (z) + yi,rQ(z)

where
∑
n≥0 anz

n }
∑
n≥0 bnz

n =
∑
n≥0

∑n
k=0

(
n
k

)
akbn−kz

n.

Remark 1. The reader familiar with combinatorics might find it odd that we use ordinary gener-
ating functions (OGF) rather than exponential ones (EGF) which are generally more suitable for
labelled classes. The reason behind this choice is that we are actually facing operators from both
worlds here. The ordered product F expresses in the labelled terms an operation which behaves
better in the unlabelled world, and it indeed gives a nice formula in terms of OGF but not in terms
of EGF. On the other hand the labelled product ? is intrinsically labelled and behaves well only in
terms of EGF. Since there is no obvious choice here between the two, we opt for ordinary generating
functions for implementation reasons. They require integer arithmetic whereas EGFs would require
to deal with rational numbers, which would be less efficient in practice.

The generating function P (z) of S(P ) captures insightful counting information about the pro-
gram. For instance, the total number of executions of P is obtained by substituting 1 for every
variable in P (z). Finer-grained information can also be obtained. For example, given an integer i,
the generating function of the subset of the execution of P taking the left branch at choice i is
obtained by substituting 1 for yi,` and 0 for yi,r. The number of such executions can then be
obtained by substituting 1 for the remaining variables.

As an example, for the beverage vending machine P = m; (w ‖ ((t +1 (c; g)); (s +2 n); p)); e,
whose control graph is pictured in Figure 3, we get the specification S(P ) = Z F (Z ? ((Y1,` ?Z +
Y1,r ? (Z F Z)) F (Y2,` ? Z + Y2,r ? Z) F Z)) F Z. From this specification we get the following
generating function by applying the rules of the symbolic method described in Table 3: P (z) =
4y1,`(y2,`+y2,r)z

6 +5y1,r(y2,`+y2,r)z
7. The number of executions taking the left branch of choice 1,

that is choosing tea over coffee, is obtained by substituting 0 for y1,r and 1 for all the remaining
variables. This yields 8 whereas the number of executions taking the right branch of choice is 10.
This tiny example already shows that sampling executions by choosing one branch of each choice
with probability 1

2 and scheduling the rest of the actions introduces some bias in the generation.
While this bias is harmless on such a small example, it can be dramatic in terms of coverage for
larger programs as we demonstrate in Section 4.

2.4. Statistical analysis

We now tackle the problem of exploring the state-space of a given process through random
generation. To this end we describe a uniform sampler of executions which relies on the counting
information contained in the generating function of the program. Our random sampler thus requires
the computation of this function as a pre-processing step, which can be done in polynomial time
and space. We thus do not need to need the explicit, costly construction of the state-space.
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2.4.1. Preprocessing: the generating function of executions

As explained in the previous section, the symbolic method gives a systematic way of computing
the generating function of the class S(P ) of the executions of a program P . However, some care
must be taken on the memory representation of this function. Fortunately for us, since the state-
space is finite, the generating function of the executions of a program is a polynomial and not an
infinite power series, but it has multiple variables encoding the different local choices. We also saw
in Theorem 2 that this number of global choices was exponential so fully expanding the generating
function of S(P ) would yield an exponential number of terms which constrains us to seek a more
compact representation.

A more suitable representation is to only expand on the z variable, that is we represent the
generating function of S(P ) as a dense polynomial in z whose coefficients are arithmetic expressions
stored as trees sharing some common sub-structures. More precisely, an arithmetic expression is
a binary tree whose internal nodes store a flag indicating whether the node corresponds to an
addition or a multiplication, and whose leaves are either a pair of the form (i, s) indicating a yi,s
variable or an integer. Moreover, the implementation of these coefficients must use hash-consing
(see [17]). That is to say that when an expression (resulting from previous computations) is used
several times, it should not by copied but referenced by a pointer. Note that this is different
from optimal compaction where common sub-terms are systematically compacted. Finally, the
generating function of S(P ) is stored as an array of such coefficients such that the coefficient at
position i is the coefficient of degree i in z. An example of such a polynomial is pictured in Figure 4.

0 0 0 0

×

y2,`

0

×

y2,r+

y1,r

3

×

2 y1,`

Figure 4: The compact tree-based memory representation of y2,`(2y1,` + y1,r)z3 + y2,r(2y1,` + y1,r)z4 + 3z7. Note
that the common sub-term (2y1,` + y1,r) is shared by two expressions.

A straightforward application of the symbolic method leads to Algorithm 1 for computing the
generating function of the executions of a program. In the algorithm, the multiplications and
additions of two coefficients are implemented as the allocation of a new tree node whose two children
are the two operands.

The coloured product } used in the parallel composition case can be implemented similarly to
the “text-book” polynomial multiplication using the formula given in the algorithm. Note how-
ever that computing each binomial coefficient individually incurs a non-negligible costs since they
require big-integer arithmetic and cannot be obtained in constant time. This cost can be reduced
significantly by re-using the value of the last-computed binomial coefficient at each iteration step
using the formula

(
n
k+1

)
=
(
n
k

)
n−k
k+1 . The whole procedure is presented in Algorithm 2 and the trick

used to compute the binomial coefficient faster is at line 7. This technique allows to lower the cost
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Algorithm 1 Computation of the generating function of the executions of an NFJ program

Input: An NFJ program P
Output: The generating function of S(P )

function gfun(P )
if P = a then return z
else if P = (Q ‖ R) then return gfun (Q) } gfun (R)
else if P = (Q;R) then return gfun (Q) · gfun (R)
else if P = (Q+i R) then return yi,`gfun(Q) + yi,rgfun(R)

where
∑
n≥0 anz

n }
∑
n≥0 bnz

n =
∑
n≥0

∑n
k=0

(
n
k

)
akbn−kz

n.

of computing one binomial coefficient to only one multiplication and one division of a big integer
by a small integer fitting in a machine word.

Algorithm 2 Computation of the coloured product of two polynomials

Input: Two polynomials P and Q of respective degrees dP and dQ
Output: The coloured product of P and Q

1: function }(P,Q)
2: R ← array of length dP + dQ + 1
3: for n from 0 to dP + dQ + 1 do
4: b ← 1
5: c ← P [0] ·Q[n]
6: for k from 1 to n do . Invariant: upon entering the loop b =

(
n
k−1

)
7: b ← b · (n− k + 1)/k
8: c ← c+ P [k] ·Q[n− k] · b
9: R[n] ← c

10: return R

Theorem 5 (Complexity of Algorithm 1). Algorithm 1 can be implemented in complexity O(|P |2)
in terms of memory allocations and arithmetic operations on big integers, where |P | denotes the
number of atomic actions in P .

Proof. For all programs P , let C(P ) denote the number of arithmetic operations on coefficients
performed by gfun(P ). All the binary operators of NFJ have a cost that is at most of the order
of one polynomial multiplication. Moreover, note that the degree of the generating function of P
(which, recall, is a polynomial) is at most |P |. Hence, there exists a constant α ≥ 1 such that for
all P,Q we have C(P ;Q), C(P +Q), C(P ‖ Q) ≤ 2α|P ||Q|+ C(P ) + C(Q).

We prove by induction on the syntax of programs that C(P ) ≤ α|P |2. This is trivially true
when P = a and if • denotes any of the three other operators, we have C(P • Q) ≤ 2α|P ||Q| +
α(|P |2 + |Q|2) ≤ α(|P |+ |Q|)2

= α|P •Q|2.
Note that it is crucial to use hash-consing for this results to hold. Said differently, one arithmetic

operation on expressions must only consist in the allocation of a new tree node and must not perform
any deep copy.
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2.5. Random sampling of executions

Our random sampling algorithm builds on ideas from the so-called recursive method, which is
due to Nijenhuis and Wilf [18]. We use a two-step process to generate uniform executions. First,
we select one of the global choices of the program with probabilities depending on the number of
labellings of each global choice. Second, once a global choice has been selected, we draw one of the
possible labellings of this choice uniformly at random. In other words, at the first step we bias our
generation of a global choice so that the overall process remains uniform in terms of executions.

In order to sample a global choice, we first choose the size of the choice to be sampled. To
this end, recall that the coefficient of degree k of the generating function encodes all executions of
length k and that they correspond to global choices of size k. Besides, the coefficient of degree k of
the generating function can be seen as the generating function of the size-k executions of the pro-
gram. Thus, substituting 1 for every variable occurring in it yields the total number of size-k execu-
tions. The size of the global choice to be sampled must therefore be chosen with a probability propor-
tional to the full evaluation of its corresponding coefficient. This is implemented in Algorithm 3. For
example, for the beverage vending machine, we have P (z) = 4y1,`(y2,`+y2,r)z

6 +5y1,r(y2,`+y2,r)z
7

which has two coefficients. Substituting 1 for all y variables yields P (z) = 8z6 + 10z7, which tells
us that the global choice to be sampled must have size 6 with probability 8

8+10 = 4
9 and size 7 with

probability 5
9 .

Algorithm 3 Random sampling of a coefficient of the generating function of P

Input: The generating function P (z) of the executions of a program P
function sample size(P (z))

for c · zd ∈ P (z) do
Wd ← eval coeff (c)

m← rand unif ([1;
∑
Wd])

d← the minimum index d s.t. m ≤
∑
d′≤dWd′

return d

Now, recall that a coefficient is an arithmetic expression encoded as a tree whose internal nodes
are sums (+) or products (×). Once a coefficient has been selected, we traverse this coefficient
recursively, from top to bottom and, select only one child of each sum node we encounter, and
collect y variables along the way. The idea is to construct a global choice from these y variables
since each one of them encodes a local choice. More precisely, at each sum node e1 + e2 in the
traversal, we compute the total number of executions, e1(1) and e2(1), encoded by both terms and

we choose the term i (for i ∈ {1, 2}) with probability ei(1)
e1(1)+e2(1) . Conversely, at each product node

we traverse recursively both children since they contribute to two “parts” of the same executions
whereas the children of a sum node contribute to two disjoint sets of executions. In the end, the
set of y variables that we have seen in the process are interpreted as follows: yi,` corresponds to
choosing the left branch of choice i and yi,r corresponds to choosing the right branch. This is
described in more detail in Algorithm 4 which returns a list of y variables.

The function eval coeff used in both Algorithms 3 and 4 fully evaluates a expression by
substituting 1 for all its variables. It is given in Algorithm 5 for the sake of completeness.

Finally, once the local choices returned by Algorithm 4 are applied to the program, that is to
say that all the unused branches are removed, there remains to sample a uniform execution of the
remaining choice-free program. This has been covered in [14] which proposes, in particular, an
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Algorithm 4 Random sampling of a global choice of a given size

Input: An arithmetic expression e
Output: A list of local choices

function sample choice(e)
if e = e1 + e2 then

p1 ← eval coeff (e1)
p2 ← eval coeff (e2)
if Bernoulli ( p1

p1+p2
) then return sample choice (e1)

else return sample choice (e2)

else if e = e1 × e2 then return concat (sample choice (e1), sample choice (e2))
else if e = yi,s then return [yi,s]
else if e = e′/n then return sample choice (e′)
else if e = n then return [] . empty list

Algorithm 5 Full evaluation of an expression

Input: An arithmetic expression e encoded as a tree
Output: An integer

function eval coeff(e)
if e = e1 + e2 then return eval coeff (e1) + eval coeff (e2)
else if e = e1 × e2 then return eval coeff (e1) · eval coeff (e2)
else if e = yi,s then return 1
else if e = n then return n

algorithm that is optimal in terms of random bits. We do not recall this algorithm here. The
complete procedure for sampling a uniform execution in P is given in Algorithm 6. Naturally, the
pre-processing step at line 2 must only by done once if one wishes to sample several executions for
the same program.

Algorithm 6 Full procedure for the uniform sampling of executions in NFJ

Input: an NFJ program P
Output: a uniform execution of P

1: function sample exec(P )
2: P (z) ← gfun (P )
3: k ← sample size (P (z))
4: e ← the coefficient of degree k of P (z)
5: ~y ← sample choice (e)
6: P ′ ← apply the global choice ~y to P
7: return sample choicefree (P ′) . See [14] for sample choicefree

If we set aside the complexity of the pre-processing step, which has already been covered in
Theorem 5, most of the remaining cost of the generation is hidden in the sample size and sam-
ple choice functions. First, these functions need to evaluate the coefficients of the generating
functions. Since these evaluations, as well as the evaluations of some of their sub-terms, are to
be re-used later in the generation process, they must be cached using a dynamic programming
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approach. This implies that the memory layout presented in Figure 4 should be adapted to reserve
some space for one big-integer in each tree node. Second, these functions need to traverse a whole
coefficient and to draw Bernoulli random variables. Since the evaluation and caching part must
only be done once too, it can be performed during the pre-processing step. Moreover, each node
of each coefficient incurs one arithmetic operation on big integers, so the complexity of this part
of the algorithm in terms of arithmetic operations is of the same order as the space complexity of
Algorithm 1. In addition, the traversal of a coefficient requires a similar number of memory accesses
and a linear number of calls to the generator of Bernoulli variables. Theorem 6 summarises these
remarks and is the main result of this section.

Theorem 6 (complexity of the random sampling algorithm). Sampling uniform random executions
of a program P requires:

• a pre-processing step of complexity O(|P |2) in terms of memory allocations and arithmetic
operations on big integers;

• the generation of a linear number of Bernoulli variables and O(|P |2) memory accesses.

Moreover, all the big integers at play here are bounded by |P |! so their binary size is bounded
by |P | log2 |P |.

Proof. The complexity of the pre-processing and of the random generation have already been dis-
cussed and only the binary size of the integers remains to prove. All the integers we manipulate
in the algorithms are bounded by the maximum possible number of executions of a program. A
straightforward induction shows that for any programs P and Q, the total number of executions
of (P ;Q) and of (P + Q) is upper-bounded by the total number of executions of (P ‖ Q). Hence,
the maximum possible number of executions of a program of size n is obtained when the program
is made only of atomic actions and parallel compositions, which corresponds to n!.

2.6. Experimental study

In order to assess experimentally the efficiency of our method, we put into use the algorithms
presented here and demonstrate that they can handle systems with a significantly large state space.
We generated a few NFJ programs at random using a Boltzmann random generator. All the
polynomial operations and coefficients were implemented in OCaml.

Note that we did not optimize our code for efficiency nor ran extensive benchmarking, hence
the numbers we give should be taken as a rough estimate of the performance of our algorithms.
For the sake of reproducibility, the source code of our experiments is available in the companion
repository2at https://gitlab.com/ParComb/libnfj.

Table 4 reports the runtime of the preprocessing phase (Algorithm 1), the runtime of the random
sampler (Algorithm 6) and the number of executions of various programs. For the runtime of the
counting algorithm, every measurement was performed 7 times and we reported the median of
these 7 values. For the random sampler, every measure was performed 101 times and for each one
we report the median of these values as well as the interquartile range (IQR)3, which gives an idea

2All the benchmarks were run on a standard laptop with an Intel Core i7-8665U and 32G of RAM running
Ubuntu 20.10 with kernel version 5.8.0-48-generic. We used OCaml version 4.08.1 and GMP version 6.2.0.

3The interquartile range of a set of measures is the difference between the third and the first quartiles. Compared
with the value of the median, it gives a rough estimate of the dispersion of the measures.
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Table 4: Quick benchmark of the counting and random sampling functions of executions for loop-free programs

size # executions mem. size gfun UnifExec IQR

100 1.168 · 2108 65.30K 0.000091s 0.010ms 0.001ms
200 1.956 · 2199 235.12K 0.000245s 0.022ms 0.001ms
500 1.249 · 2645 2.21M 0.004563s 0.091ms 0.007ms

1000 1.012 · 2903 5.92M 0.011524s 0.135ms 0.008ms
2000 1.354 · 22381 50.40M 0.076030s 0.429ms 0.093ms
3000 1.682 · 26331 591.75M 0.987996s 1.562ms 0.309ms
5000 1.464 · 210085 1.92G 2.959532s 3.239ms 0.413ms

of the dispersion of the measures. We use these metrics rather than the mean and the variance to
reduce the importance of extremal values and give a precise idea of what runtime the user should
expect when running our sampler. The time reported is the CPU time. The state-space column
indicates the total number of executions. Finally, the mem. size column reports the amount of
memory occupied by the generating function of executions computed by gfun.

3. Extending the model with loops

This section is devoted to extending our model with loops. This is a significant improvement in
terms of expressiveness, but has major implications on the state-space of programs.

First, programs may now have an infinite number of executions, and as a consequence, there is
no uniform distributions over their executions any more. To circumvent this issue, we turn to the
uniform generation of executions of a given length n where n is given as an input of the problem.
Such a sampler can also be used, in conjunction with a particular procedure to select a length at
random according to some particular distribution, for instance to sample uniform executions of
length at most n.

A second, more significant, consequence of adding loops is that it interacts with the non-
deterministic choices, as a choice may occur inside a loop and thus may be duplicated multiple
times as we unroll the loop. Thus, the notion of global choice we have defined in the previous
section, allowing us to decide of all the choices at once and then executing the rest of the program,
does not extend well in the presence of loops. In a way, by introducing loops, we trade the clean
separation we had between the non-determinism and the interleaving semantics of NFJ for more
expressiveness.

As a consequence, we must take another approach to random sampling in this section. We will
use the structure of the program to guide the generation rather than the structure contained in a
multi-variate generating function as before.

3.1. Non-deterministic fork-join processes with loops

We start by extending the model from the previous section with a loop construction expressing
that a program may be executed any number of times. Also, the empty program 0 used in the
semantics of Section 2 as a convenience, is now usable in the syntax. The complete updated
grammar of NFJ terms is given below. Note that only the two last lines are new.
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P,Q ::= P ‖ Q parallel composition
| P ;Q sequential composition
| P +Q non-deterministic choice
| a ∈ A atomic action
| P ? loop
| 0 empty program

As in the previous section, programs are considered up to alpha-equivalence and atomic actions
are assumed to occur only once within a term. Again, since we only model the control-graphs of
concurrent processes, the loop construction expresses that the body of the loop may be executed
any number of times but does not state under which condition we exit the loop. Informally, the
loop P ? may have either zero iteration, in which case it behaves as 0, or at least one, in which
case it behaves as (P ;P ?). We introduce the empty program in the grammar here, not only as
a convenience, but also because it provides a slight gain of expressiveness, as it allows to write
program such as (0 + P ) which express optional computations.

The semantics of programs must be updated to express the behaviour of loops. We first define
a nullable predicate which indicates whether a program may terminate without firing any action.
We can start the next iteration of a loop only if the current iteration is nullable.

nullable(P ‖ Q) = nullable(P ) ∧ nullable(Q)

nullable(P ;Q) = nullable(P ) ∧ nullable(Q)

nullable(P +Q) = nullable(P ) ∨ nullable(Q)

nullable(0) = >
nullable(a) = ⊥
nullable(P ?) = >

The reduction relation P
a→ P ′ introduced in the first section is then extended to loops. Note

that we also need to modify the reduction rule for the sequential composition. Since we now have
non-empty programs which may terminate without firing any action (the nullable programs), we
now want to allow the right-hand-side of a sequence to start its execution whenever the left-hand-
side is nullable. The full new list of reduction rules is given below in Figure 5.

P
a→ P ′

P ‖ Q a→ P ′ ‖ Q
(Lpar)

Q
a→ Q′

P ‖ Q a→ P ‖ Q′
(Rpar)

P
a→ P ′

P ;Q
a→ P ′;Q

(Lseq)

nullable(P ) Q
a→ Q′

P ;Q
a→ Q′

(Rseq)
P

a→ P ′

P +Q
a→ P ′

(Lchoice)
Q

a→ Q′

P +Q
a→ Q′

(Rchoice)

a
a→ 0

(act)
P

a→ P ′

P ?
a→ P ′;P ?

(loop)

Figure 5: Semantic of NFJ with loops

We call “execution step” a proof-tree built from the above rules and we define an execution as
a sequence of such steps leading to a nullable term.
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Definition 10 (Execution). An execution of an NFJ program P0 is a sequence of steps of the

form P0
a1→ P1

a2→ P2 . . .
an→ Pn, such that nullable(Pn) holds, and where for all i, Pi−1

ai→ Pi is a
proof-tree, that is it contains all the applied rules and not simply its conclusion.

We refer to the set of all possible executions of a program as its state-space.

As an example the program a?? has two executions of length 2, both firing a twice. One
corresponds to the case where the outer loop is only unrolled once (i.e. the (loop) rule is only
applied once) but the inner loop twice. The other corresponds to the case where the outer loop is
unrolled twice and the two occurrences of the inner loop once. The first step of both executions is
the same and is depicted below:

a
a→ 0

(act)

a?
a→ 0; a?

(loop)

a??
a→ (0; a?); a??

(loop)

Then the second step of the two executions are the following. On the left, the inner loop fires a
second a while, on right, the first iteration of the inner loop terminates (we apply the (Rseq) rule
at the top level) and a second iteration of the outer loop starts.

nullable(0)

a
a→ 0

(act)

a?
a→ 0; a?

(loop)

0; a?
a→ 0; a?

(Rseq)

(0; a?); a??
a→ (0; a?); a??

(Lseq)
nullable(0; a?)

a
a→ 0

(act)

a?
a→ 0; a?

(loop)

a??
a→ (0; a?); a??

(loop)

(0; a?); a??
a→ (0; a?); a??

(Rseq)

We will take the following program as a running example for the rest of the section: P0 =
((a+ (b ‖ c))? ‖ (d+ 0))

?
; (e+ (f ‖ g)). This program has one length-1 execution firing only e and

four length-2 executions respectively firing fg, gf , ae and de.

3.2. Combinatorial interpretation

From a combinatorial point of view, the introduction of loops in the language has two levels of
implication.

Syntax. At the syntactic level first, it is still possible to interpret the set of NFJ programs as
a combinatorial class but this requires to choose a more adequate notion of size. Recall that a
combinatorial class is given by a set of objects and a size function such that there is a finite number
objects of size n for all integer n. The number of actions contained in a program is not eligible
as a size function since there is an infinite number of (syntactic) programs with one action, for
instance a, a?, a??, etc. A more adequate notion of size is the number of constructors used to build
a program, that is

|P ;Q|c = |P +Q|c = |P ‖ Q|c = 1 + |P |c + |Q|c
|P ?|c = 1 + |P |c
|a|c = |0|c = 1.

(9)
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We use the notation |P |c to denote this new size function in order to avoid confusion with the
number of atoms of a program |P |. Using, this size function, the class F of NFJ programs can be
specified by

F = Z × F × F
+ Z × F × F
+ Z × F × F
+ Z
+ Z × F
+ Z.

(10)

Two differences must be noted compared to Section 2. First, the size function is different so that
both the atomic action and the empty program have size 1 (hence the two Z), and each constructor
“costs” one Z since they are counted in the size. The second different is that we have to more
terms, one for the empty program Z, and one for loop terms Z × F . From this specification, we
get that the generating function f of NFJ programs satisfies f(z) = z(2 + f(z) + 3f(z)

2
). This

equation can be solved explicitly and we get

f(z) =
1− z −

√
(1− z)2 − 24z2

6z
(11)

By studying the behaviour of this function near its main singularity ρ = (1 + 2
√

6)
−1

, we can obtain
the asymptotic number of program of size n using the transfer theorem from [5]. See the proof of
Theorem 1 in the previous section for a similar but more detailed proof. This leads to the following
result.

Theorem 7. The number of NFJ programs (with loops) of size n is equivalent to Cn−
3
2 ρ−n

when n→∞, where ρ−1 = 1 + 2
√

6 ≈ 5.898979 and C =
1

18
√
π

√
4 +

√
2/3 ≈ 0.068789.

This can be compared with Theorem 1 using the property that a binary tree with n leaves
has n − 1 internal nodes. This implies that if a program is built only using the constructors from
the previous section and has n atomic actions, then it is made of 2n−1 constructors. Thus, when n
denotes the number of constructors, the exponential factor in Theorem 1 becomes

√
12
n

(for odd
values of n) and

√
12 ≈ 3.464 < 5.899.

Executions. As in the previous section, we define a specification S(P ) of the class of the executions
of a program P . Some differences must be noted with the previous section. First, we need a new
operator, the ordered set operator, modelling a sequence of increasingly labelled objects, which
expresses the semantics of the loop. Like the ordered product F , this is an uncommon operator,
which has been studied in [16]. Another difference is that the presence of the loop and the empty
program makes possible for non-trivial programs to have the empty execution as a valid execution.
Although this seems innocuous, it forces us to handle carefully some special cases in our specification
to avoid counting the same execution twice. Finally, the generating function of the executions
of S(P ) which we refer to as the generating function of the executions of P is not a polynomial any
more, but is an infinite (but convergent) formal power series. The recursive definition of S(P ) and
its generating function are given in Table 5. A detailed explanation of the different constructions
is given below.
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Table 5: Simplified recursive combinatorial specification of the set of executions of a program and its corresponding
generating function

Language construction Specification Generating function
P S(P ) P (z)

0 E 1
a Z z
P ‖ Q S(P ) ? S(Q) P (z) }Q(z)
P ;Q S(P ) F S(Q) P (z)Q(z)
P +Q when nullable(P ) ∧ nullable(Q) S(P ) + (S(Q) \ E) P (z) +Q(z)− 1
P +Q otherwise S(P ) + S(Q) P (z) +Q(z)

P ? when nullable(P ) Set
F

(S(P ) \ E) (1− (P (z)− 1))
−1

P ? otherwise Set
F

(S(P )) (1− P (z))
−1

where
∑
n≥0 anz

n }
∑
n≥0 bnz

n =
∑
n≥0

∑n
k=0

(
n
k

)
akbn−kz

n.

The empty program 0 and the atomic action a have only one execution, of length 0 and 1
respectively. This is modelled combinatorially by the neutral class E — the class containing only
one element of size 0 — and the atom class Z — the class with only one element of size 1.

As before, the executions of P ‖ Q are made of any interleaving of one execution of P and one
execution of Q. For instance if P = a+ (b; c) and Q = d?, then P admits for instance an execution
firing b and then c (denoted by bc for short) and Q admits an execution firing two ds (denoted by dd
for short). Then all the 6 possible interleavings of these executions are executions of P ‖ Q: bcdd,
bdcd, bddc, dbcd, dbdc and ddbc (again, we only denote the executions by their firing sequences for
conciseness). Although the interpretation of these interleavings using increasing labellings is less
obvious than is the previous section, the notion at play here is still well captured by the labelled
product of combinatorics, denoted by ?.

The executions of P ;Q are given by an execution of P followed by an execution of Q. So for
instance, using the same example programs P and Q as above, bcdd is an execution of (P ;Q) but
not dbcd. So they can be seen as a pair of an execution of P and an execution of Q, which is still
expressed using the ordered product F .

The set of executions of P + Q is the union of the executions of P and Q. Moreover this
union is “almost” disjoint in the sense that the only execution that these programs may have in
common is the empty execution, hence the two cases in the definition. Combinatorially, the fact
that nullable(P ) holds corresponds to the fact that the class of its executions contains one object
of size 0, the empty execution. It is in fact important that we can express this in terms of disjoint
unions because they fit in the framework of analytic combinatorics whereas arbitrary unions are
more difficult to handle4.

Finally, the executions of P ? are sequences of executions of P or, equivalently, sequences of
non-empty executions of P . This second formulation leads to a non-ambiguous specification as the
unique class P ′ satisfying P ′ = E + P+ F P ′, where P+ denotes the non-empty executions of P .

4Grammar descriptions involving non-disjoint unions are referred to as “ambiguous” and lack most of the benefits,
if not all, of the symbolic method, essentially because some objects may be counted multiple times when applying
the method.
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This implicitly defined class P ′ is denoted Set
F

(P+) and is called the sequence of P+. Once again
we must distinguish whether nullable(P ) holds or not in the definition of P+ to avoid ambiguities
and thus double-counting.

The S function described above maps each program to a combinatorial specification of its
executions. As an example, for our example program P0 introduced above, we have S(P0) =
Set

F
(Set

F
(Z + (Z ? Z)) ? (Z + E) \ E) F (Z + (Z ? Z)). The generating function of the ex-

ecutions of a program, i.e. of the class S(P ), constitutes a condensed summary of the counting
information of its state space. Our uniform random sampler of executions for NFJ programs with
loops will use the generating function of each sub-term of P to generate an execution of P .

Before diving into the description of our random sampler, we want to give another example
of application of analytic combinatorics, by showing how a few manipulations on polynomials can
lead to interesting algorithmic applications and precise quantitative results. We already showed
in Theorems 1 and 2 how to get the asymptotic number of programs and the average number of
global choices of loop-free programs using this kind of techniques. Here, we study the generating
function P0(z) of the example program P0 given above, which we recall here for convenience: P0 =
[(a+ (b ‖ c))? ‖ (d+ 0)]

?
; [e + (f ‖ g)]. Let P0(z) =

∑
n≥0 pnz

n denote the expansion in power
series of the generating function of S(P0) and recall that its n-th coefficient pn is the number of
executions of P0 of length n. By applying the rules from Table 5 we obtain that:

P0(z) = [(1− z − 2z2)
−1

} (z + 1)]
−1
· [z + 2z2]

=
(2z + 1)(2z − 1)

2
(z + 1)

2
z

1− 4z − 4z2 + 6z3 + 8z4

The second line of the above formula is obtained by applying the calculus rule5 z } A(z) =

z d(zA(z))
dz . From this formula we derive two applications. First, from the denominator of this

rational expression we deduce that for all n > 6 we have pn − 4pn−1 − 4pn−2 + 6pn−3 + 8pn−4 = 0.
The obtained recurrence formula can be used to compute the number of executions of length n of P0

in linear time. On the analytic side, P0(z) being a rational function, we can do a partial fraction
decomposition to obtain P0(z) as a sum of four terms of the form Ci(1− zρ−1

i ) (plus a polynomial).
Each of these terms expands as

∑
n≥0 Ciρ

−n
i zn, hence the number of executions of P0 of length n

satisfies pn = C · ρ−n · (1 + o(1)) for some constants C and ρ and with an exponentially small error
term hidden in the o(1). In this case we have ρ ≈ 0.221987, C ≈ 0.146871 and the error term is of
the order of 0.327950n. Table 6 compares the values of pn — computed using the aforementioned
linear algorithm — and of the proposed approximation for a few values of n. One can see that
already for small values of n, the relative error of this approximation is rather low.

3.3. Statistical analysis algorithms

We now study the problem of exploring the state-space of a given program through random
generation. In the presence of loops, programs can have an infinite number of executions and there
is thus no uniform distribution over executions. However, programs still have a finite number of
executions of a given length, so we propose a uniform sampler of executions of fixed length. This
sampler can be used to target executions of specific length n or in, conjunction with a procedure to

5This is the only “non-standard” computation rule we use in this example. All the rest is usual polynomial
manipulations. General rules for computing A(z) }B(z) are beyond the scope of this article.
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Table 6: Value of pn, of its approximation C · ρ−n and of the relative error |pn − C · ρ−n|/pn for small values of n

n 6 7 8 9 10 11 . . . 30

pn 1226 5528 24904 112196 505424 2276832 . . . 5985551205783341568
approx 1227 5529 24907 112199 505429 2276839 . . . 5985551205783353055
rel. err. 8.16e-4 1.81e-4 1.2e-4 2.67e-5 9.89e-6 3.07e-6 . . . 1.92e-15

sample a size, to sample a uniform execution of length bounded by n for instance. In Section 4, we
will see an alternative approach for exploring the state-space, based on the generation of execution
prefixes.

3.3.1. Preprocessing: the generating function of executions

As explained above, the symbolic method gives a systematic way of computing the generating
function of the class of the executions of a program P from its specification S(P ). The computations
rules are given in Table 5. Since we are in presence of infinite spate-spaces, these generating functions
are not polynomials any more and become (convergent) formal power series. For the algorithms
to remain practical, we only compute the (n + 1) first terms of these series, hence allowing us to
sample uniform executions of length k for all k ≤ n. Algorithm 7 implements the computation of
the n first terms of the generating functions of all sub-terms of a program. The resulting (partial)
generating functions must be stored in the tree representation of the program.

Algorithm 7 Computation of the generating function of the executions of an NFJ program, and
all its sub-terms, up to degree n

Input: An NFJ program P and a positive integer n.
Output: The first n+ 1 terms of the generating function of P

function gfun(P, n)
if P = 0 then return 1
else if P = a then return z
else if P = Q ‖ R then return gfun (Q,n) } gfun (R,n) mod zn+1

else if P = Q;R then return gfun (Q,n) · gfun (R,n) mod zn+1

else if P = Q+R then
q(z)← gfun (Q,n), r(z)← gfun (R,n)
return q(z) + r(z)− q(0)r(0)

else if P = Q? then
q(z)← gfun (Q,n)

return (1− (q(z)− q(0)))
−1

mod zn+1

The coloured product } used in the parallel composition case can be implemented using the
“naive” algorithm as in the previous section. There is a more efficient approach here though, because
we are using integer coefficients rather than expressions. The idea is to use the combinatorial
Laplace and Borel transforms to express this operation as a regular product. This is achieved by
the formula A}B = L(B(A) · B(B)), where the Borel transform B is defined by B(

∑
n≥0 anz

n) =∑
n≥0

an
n! z

n and the Laplace transform L is defined by L(
∑
n≥0 anz

n) =
∑
n≥0 n!anz

n. More on
the coloured product, the Borel and Laplace transform and their applications can be found in [16].
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To be implemented efficiently using only integer rather than rational arithmetic, the coefficients
of the result of the Borel transform should share n! as a common denominator where n is the
degree of the polynomial and the division by n! should be postponed to the last moment. So
if A(z) =

∑n
k=0 akz

k and B(z) =
∑m
k=0 bkz

k, then

B(A) =
1

n!

n∑
k=0

n!

k!
akz

k =
1

n!
Ã(z) B(B) =

1

m!

m∑
k=0

m!

k!
bkz

k =
1

m!
B̃(z)

and

A(z) }B(z) =
1

n!m!
L(Ã(z) · B̃(z)).

Thus, the coloured product can be implemented as in Algorithm 8 where the polynomial multiplica-
tion at line 13 is where most of the computational cost lies. The advantage of this approach is that
it leaves the choice of the polynomial multiplication algorithm open and we can thus benefit from
existing fine-tuned implementations of the algorithms from the literatures. The FLINT library [19]
for instance provides such algorithms.

Algorithm 8 Fast implementation of the coloured product for integer polynomials

Input: Two integer polynomials A(z) and B(z) of respective degrees n and m and stored as arrays
of integers

Output: The coloured product A(z) }B(z) of A and B
function colprod(A,B)

Ã, B̃ ← copies of A and B
f ← 1

for k from n down to 1 do
Ã[k] ← Ã[k] · f
f ← f · k

Ã[0] ← Ã[0] · f
g ← 1

for k from m down to 1 do
B̃[k] ← B̃[k] · g
g ← g · k

B̃[0] ← B̃[0] · g
R ← Ã · B̃

for k from 0 to m+ n do R[k]← R[k]/(f · g)

return R

The computation of (1− (q(z)− q(0)))
−1

at the last line of Algorithm 7 can be carried out
efficiently using the so-called Newton method (see [20, p. 259] and [21] for instance). The algorithm
consists in computing the sequence Si+1(z) ← Si(z) + Si(z) · ((q(z) − q(0)) · Si(z) − (Si(z) −
1)), starting fvom S0(z) = 1, and until the (n + 1) first coefficients of Si(z) are the same as

those of (1− (q(z)− q(0)))
−1

. The intuition behind this formula comes from the field of numerical
analysis where the Newton method is used to get fast-converging approximations of real constants.

The key feature of this approximation scheme is that the error term, that is the difference
between Si(z) and its limit (1− (q(z)− q(0)))

−1
, is squared at each iteration. As a consequence,

the number of correct terms, in Si(z) doubles at each iteration and only a logarithmic number of
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iterations of the formula is necessary to compute the (n + 1) first terms of the solution. To make

this argument more formal, let q̃(z) = q(z)− q(0), let S(z) = (1− q̃(z))−1
and let Ei(z) denote the

error term of Si(z), that is Ei(z) = S(z)− Si(z). By observing that S(z) = 1 + q̃(z)S(z), we have
that

Si+1(z) = Si(z) + Si(z)(Si(z)q̃(z)− (Si(z)− 1))

= Si(z) + Si(z)(S(z)− 1− Ei(z)q̃(z)− S(z) + 1 + Ei(z))

= S(z)− Ei(z) + (S(z)− Ei(z))Ei(z)(1− q̃(z))

= S(z)− (1− q̃(z))Ei(z)2

hence Ei+1 = (1− q̃(z))Ei(z)2

Since E0(0) = 0, we have that the first term of the expansion of E0(z) is zero and by induction
the 2i first terms of Ei(z) are zero. As a consequence, the 2i first terms of Si(z) are the same as
the 2i first terms of S(z). Algorithm 9 implements this scheme. Note that in the formula at line 5,
it is only necessary to compute the two products up to degree 2i.

Algorithm 9 Computing the n+1 first terms of the quasi inverse of a polynomial using the Newton
method
Input: A polynomial q(z)

Output: The n+ 1 first terms of (1− q(z) + q(0))
−1

as a polynomial of degree n
1: function qinv(q)
2: S(z) ← 1
3: i ← 1
4: while i < n+ 1 do
5: S(z) ← S(z) + S(z)(S(z)(q(z)− q(0))− (S(z)− 1))
6: i ← 2i
7: return S(z)

Assume we have a so-called multiplication function M : N→ N, that is a function such that

• the number of arithmetic operations that are necessary to compute the product of two integer
polynomials of degree at most n is at most M(n);

• for all n1, n2 ∈ N we have M(n1) +M(n2) ≤M(n).

It is generally accepted that such a function exists [22]. The following lemma expresses the com-
plexity of Algorithm 9 as a function of M(n).

Lemma 1. Algorithm 9 can be implemented to compute the quasi-inverse (1− (q(z)− q(0)))
−1

of q(z) in O(M(n)) arithmetic operations on integers.

Proof. At each iteration of the loop, two multiplication of polynomials of degree 2i are performed
(the terms of higher degrees can be safely ignored). Thus, the total cost of the multiplications
is 2M(n)+2M(n/2)+2M(n/4)+2M(n/8) · · · ≤ 2M(2n) = O(M(n)). The additions only contribute
to a lower order term.
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Theorem 8. Let P be an NFJ program and let |P |c denote its syntactic size as defined in (9).
Algorithm 7 can be implemented to compute the first n coefficients of the generating function of the
executions of P in O(|P |cM(n)) operations on big integers, where M(n) is the complexity of the
multiplication of two polynomials of degrees at most n.

Proof. The proof of Theorem 8 follows from the above discussion: each constructor incurs one
polynomial operation among addition, multiplication, coloured product and quasi-inverse and all
of them can be carried out in O(M(n)).

An important question which complements Theorem 8 is that of the cost of one arithmetic
operation. Since this cost is a function of the binary size of the integers, this can be reformulated
into: what is the size of the integers at play? Theorem 9 gives an upper bound on these coefficients.
This upper bound is expressed using the height of a program, that is its maximum number of nested
operators, which is recursively defined by

h(a) = h(0) = 0

h(P ‖ Q) = h(P +Q) = h(P ;Q) = 1 + max(h(P ), h(Q))

h(P ?) = 1 + h(P ).

Theorem 9. Let P be an NFJ program and let n ≥ 0. The number pn of length-n executions of P
is at most 2h(P )n and its binary size dlog2(pn)e is thus bounded by h(P )n.

Proof. This upper bound can be proven by induction on P .

• It is trivially true for the base cases P = 0 and P = a.

• The number of length-n executions of (P ;Q) is upper-bounded by the number of length-n
executions of (P ‖ Q), which is itself bounded, by induction hypothesis, by

n∑
k=0

(
n

k

)
2h(P )k+h(Q)(n−k) = (n+ 1)2max(h(P ),h(Q))n ≤ 2(1+max(h(P ),h(Q)))n.

• For n ≥ 1, the number of length-n executions of (P +Q) is bounded by induction by 2h(P )n+
2h(Q)n ≤ 2h(P+Q)n.

• Finally, if pi denote the number of executions of length i of P , then the number of executions
of P ? is given by

n∑
k=1

∑
i1,i2,...,ik>0

i1+i2+···+ik=n

pi1pi2 · · · pik ≤
n∑
k=1

∑
i1,i2,...,ik>0

i1+i2+···+ik=n

2h(P )(i1+i2+···+ik)

=

n∑
k=1

∑
i1,i2,...,ik>0

i1+i2+···+ik=n

2h(P )n

= 2h(P )n · 2n−1 ≤ 2h(P?)n
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To give a rough idea of the performance that can be achieved by Algorithm 7, we computed the
generating function of P0 up to degree n = 10000 — and thus its number of executions of length k
for all k ≤ 10000 — in less that 4s on a standard PC. A more detailed benchmark of Algorithm 7
is given in Section 3.4.

3.3.2. Random sampling of executions

In order to sample a uniform execution directly from the syntax of the program, we use the
so-called “recursive method”, as introduced in [23] and integrated into the analytic combinatorics
framework in [24]. It operates in a similar fashion to the symbolic method, that is by induction
on the specification, by combining the random samplers of the sub-structures with simple rules
depending on the grammar construction. For the sake of clarity we represent executions as sequences
of atomic actions in the presentation of the algorithm. This encoding does not contain all the
information that defines an execution, typically it does not reflect in which iteration of a loop an
atomic action is fired for instance. However it makes the presentation clearer and the algorithm
can be easily adapted to a more faithful encoding. Our uniform random sampler of executions is
described in Algorithm 10 and the detailed explanations about the different constructions are given
below.

Algorithm 10 Uniform random sampler of executions of given length

Input: A program P and an integer n such that P has length n executions.
Output: A list of atomic actions representing an execution

1: function UnifExec(P, n)
2: if n = 0 then return the empty execution
3: else if P = a then return a
4: else if P = Q+R then
5: if Bernoulli ( qn

qn+rn
) then return UnifExec (Q,n)

6: else return UnifExec (R,n)

7: else if P = Q ‖ R then
8: draw k ∈ J0;nK with probability

(
n
k

)
qkrn−k/pn

9: return shuffle (UnifExec (Q, k), UnifExec (R,n− k))
10: else if P = Q;R then
11: draw k ∈ J0;nK with probability qkrn−k/pn
12: return concat (UnifExec (Q, k), UnifExec (R,n− k))
13: else if P = Q? then
14: draw k ∈ J1;nK with probability qkpn−k/pn
15: return concat (UnifExec (Q, k), UnifExec (P, n− k))

The lower case letters pn, qk, rn−k etc. indicate the number of executions of length n, k, n − k of
programs P , Q and R.

Choice. The simplest rule of the recursive method is that of the disjoint union used at line 4
of Algorithm 10. If qn and rn denote the number of length-n executions of Q and R, then a
uniform random length-n execution of P = Q + R is a uniform length-n execution of Q with
probability qn/(qn + rn) and a uniform length-n execution of R otherwise. One way to draw the
Bernoulli variable is to draw a uniform random big integer x in J0; qn + rnJ and to return true if
and only if x < qn. As an example, consider the programs Q = (a+ (b ‖ c)) and R = d?. We count
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that Q has two executions of length two: bc and cb and R has only one: dd. Hence, to sample a
length-2 execution in (Q + R), one must perform a recursive call on Q with probability 2/3 and
on R with probability 1/3.

Parallel composition. The other rules build on top of the disjoint union case. For instance, the set
of length-n executions of P = Q ‖ R can be seen as Q0 ?Rn +Q1 ?Rn−1 + · · ·+Qn ?R0 where Qk
(resp. Rk) denotes the set of length-k executions of Q (resp. R). By generalising the previous rule
to disjoint unions of (n + 1) terms, and using the fact that the number of elements of Qk ?Rn−k
is qkrn−k

(
n
k

)
, one can select in which one of these terms to sample by drawing a random variable

which is k with probability qkrn−k
(
n
k

)
/pn. Then it remains to sample a uniform element of Qk,

a uniform element of Rn−k and a uniform shuffling of their labellings among the
(
n
k

)
possibilities.

This is described at line 7 of Algorithm 10. We do not detail the implementation of the shuffling
function here, an optimal algorithm in terms of random bits consumption, can be found in [14]. As
an example, consider the same programs as above: Q = (a + (b ‖ c)) and R = d?. The number of
length-3 executions of (Q ‖ R) is 1 ·1 ·

(
3
1

)
+2 ·1 ·

(
3
1

)
= 9 using the decomposition Q1 ?R2 +Q2 ?R1.

Say k = 1 is selected (with probability 1/3), then the recursive calls to (Q, 1) and (R, 2) necessarily
return a and dd and the shuffle procedure must choose a shuffling uniformly between add, dad
and dda.

Sequential composition. The case of the sequential composition is similar (see line 10 of Algo-
rithm 10). We use the same kind of decomposition, using the Cartesian product × in place of the
labelled product ?. This has the consequence of removing the binomial coefficient in the formula
for the generation of the k random variable. Once k is selected, we generate an execution of Qk,
an execution of Rn−k and we concatenate the two.

Loop. Finally, the case of the loop is a slight adaptation of the case of the sequential composition
using the fact that the executions of Q? are the executions of (0 +Q;Q?). However, care must be
taken to avoid issues related to double-counting. More specifically, when sampling an execution
of (Q;Q?) we must not choose an execution of length 0 for the left-hand-side Q. This is related to
the same reason we had to specify the executions of Q? as all the sequences of non-empty executions
of Q. This is presented at line 13 of Algorithm 10, note that k > 0. As an example, for sampling
a length-3 execution in (a+ (b; c))

?
, one may select k = 1 with probability 2/3, which yields abc

or aaa depending on the recursive call to (Q?, 2) or k = 2, with probability 1/3, which yields bca.

Generation of random variables. We did not give details on how to generate the random variable k
for the parallel, sequential and loop case. In has been showed in [24, 25, 26] that good performance
can be achieved by using the so-called boustrophedonic order. For instance, in the case of the
sequential composition P = (Q;R), the idea is to generate a random integer x in the interval J0; pnJ
and to find the minimum number ` such that the sum of ` terms q0rn + qnr0 + q1rn−1 + qn−1r1 +
q2rn−2 + · · · (taken in this particular order) is greater than x. Then k is such that the last term
of this sum is qkrn−k. The key idea of this algorithm is that the worst case of this algorithm
corresponds to choosing k close to n/2 which yields a divide and conquer scheme.

Theorem 10. Using the boustrophedonic order, the complexity of the random generation of an
execution of length n in P in terms of arithmetic operations on big integers is O(n·min(ln(n), h(P )))
where h(P ) refers to the height of P .
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Contrary to the classical context of random generation that we have in analytic combinatorics
(like in [24, 26, 25]), the grammar enumerating the executions to be sampled is not a constant but
rather a parameter of the problem. Hence its size cannot be considered constant and the complexity
analysis needs to be carefully crafted to take this variable into account.

Proof. The O(n ln(n)) bound follows from Theorem 11 of [24]. We obtain the other bound by
refining the result of Theorem 12 from [25].

The combinatorial classes we are considering are built from the ?,×,+ and Seq(·) operators
without recursion, they hence fall under the scope of iterative classes for which Molinero proved
a linear complexity in n. However the proof given in [25] does not give an explicit bound for
the multiplicative constants, which actually depends on the size of the grammar and which we
cannot consider constant in our context. Let C(P, n) denote the cost of UnifExec(P, n) in terms
of arithmetic operations on big integers. We show that C(P, n) ≤ αnh(P ) by induction for some
constant α to be specified later.

• The base cases have a constant cost.

• The case of the choice only incurs a constant number c of arithmetic operations in addition to
the cost of the recursive calls. Hence C(Q+R,n) is bounded by c+αmax(C(Q,n), C(R,n)) ≤
c+αnmax(h(Q), h(R)) = c+αn(h(Q+R)−1) by induction. Thus, if α ≥ c, then C(Q+R,n) ≤
αnh(Q+R).

• The parallel composition case incurs a number of arithmetic operations of the form c′ ·
min(k, n − k) where k is the random variable generated using the boustrophedonic order
technique. Hence C(Q ‖ R,n) is bounded by c′min(k, n− k) +C(Q, k) +C(R,n− k) and by
induction by c′min(k, n− k) +αkh(Q) +α(n− k)h(R) ≤ αnh(Q ‖ R) + c′min(k, n− k)−αn.
The last term on the right is bounded by 0 if α ≥ c′.

• Sequential composition is treated using the same argument as for parallel composition.

• Finally, the loop must be handled by reasoning “globally” on the total number of unrollings.
Say the loop Q? is unrolled r times. Then its cost is bounded by c′

∑r
i=1 min(ki, ki+1 + · · ·+

kr)+
∑r+1
i=1 C(Q, ki). The first sum is bounded by c′n and the second is bounded by induction

by
∑r+1
i=1 αkih(Q) which simplified to αnh(Q). Hence, reusing the bound α ≥ c′ and the fact

that h(Q?) = 1 + h(Q), we get C(Q?, n) ≤ αnh(Q?) which terminates the proof.

3.4. Experimental study

In order to assess experimentally the efficiency of our method, we put into use the algorithms
presented here and demonstrate that they can handle systems with a significantly large state space.
We generated a few NFJ programs at random using a Boltzmann random generator. In its basic
form, the Boltzmann sampler would generate a high number of loops and a large number of sub-
terms of the form P +0 in the programs which we believe is not realistic so we tuned it using [27] so
that the number of both types of nodes represent only 10% of the size of the program in expectation.
We rely on the FLINT library (Fast Library for number theory [19]) to carry all the computations
on polynomials except for the coloured product and the quasi-inversion using Newton iteration
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which we implemented ourselves. The former was not provided natively by the library and the
latter was feasible using FLINT’s primitives but slow compared to the Newton method.

Note that besides the choice of the algorithms, we did not optimize our code for efficiency nor
ran extensive benchmarking, hence the numbers we give should be taken as a rough estimate of the
performance of our algorithms. For the sake of reproducibility, the source code of our experiments
is available on the companion repository6at https://gitlab.com/ParComb/libnfj.

Table 7 reports the runtime of the preprocessing phase (Algorithm 7), the runtime of the random
sampler (Algorithm 10) and the number of executions of length n of various programs of various
values of n. For the runtime of the counting algorithm, every measurement was performed 7
times and we reported the median of these 7 values. For the random sampler, every measure
was performed 101 times and for each one we report the median of these values as well as the
interquartile range (IQR)7, which gives an idea of the dispersion of the measures. We use these
metrics rather than the mean and the variance to reduce the importance of extremal values and
give a precise idea of what runtime the user should expect when running our sampler. The time
reported is the CPU time as measured by C’s clock function. The state-space column indicates
the number of executions of length n. Finally, the mem. size column reports the amount of memory
occupied by the generating functions of executions computed by gfun.

size len # executions mem. size gfun UnifExec IQR

100 500 1.370 · 21119 898.98K 0.015s 0.241ms 0.020ms
100 1000 1.690 · 22234 3.32M 0.053s 0.521ms 0.059ms
500 500 1.071 · 21589 2.84M 0.087s 0.359ms 0.069ms
500 1000 1.093 · 23102 10.38M 0.538s 1.094ms 0.133ms

1000 500 1.096 · 22374 8.75M 0.289s 0.496ms 0.068ms
1000 1000 1.579 · 24756 33.19M 1.645s 1.842ms 0.177ms
2000 500 1.336 · 22273 10.42M 0.355s 0.914ms 0.293ms
2000 1000 1.551 · 24624 39.20M 1.890s 1.119ms 0.128ms

Table 7: Quick benchmark of the counting and random sampling functions of executions

4. Execution prefixes generation

In this section, we describe a complementary tool to explore the state-space of a program: a
uniform random sampler of execution prefixes. Execution prefixes offer a more fine-grained tool to
explore the state-spaces as a sampler of prefixes can be combined with other tools or with custom
heuristics to bias the random generation toward regions of interest of the state space. We see this
algorithm as a building block to construct exploration strategies and the fact that it is uniform
over prefixes of a given length implies that is still gives control over the distribution of the sampled
values.

6All the benchmarks were run on a standard laptop with an Intel Core i7-8665U and 32G of RAM running
Ubuntu 20.10 with kernel version 5.8.0-48-generic. We used FLINT version 2.6.3-2 and GMP version 6.2.0

7The interquartile range of a set of measures is the difference between the third and the first quartiles. Compared
with the value of the median, it gives a rough estimate of the dispersion of the measures.

36

https://gitlab.com/ParComb/libnfj


Note that sampling a uniform prefix of a given length is different from sampling a uniform
execution of larger length and truncating it. For instance, the program P = a? + (b+ c)

?
has

three execution prefixes of length 1, namely a, b and c but the probability that an execution of
length n has a as a prefix is only 1/(1+2n). The prefix a will thus statistically never appear among
executions of large length. This trivial example illustrates that in order to achieve a good coverage
on the set of prefixes of a given length of a program, a dedicated sampler is necessary. At the end
of this section we will compare our sampler experimentally to another classical random sampling
technique, called isotropic sampling, and used for instance in [10].

We start by defining formally the notion of prefix. Then we apply the methodology that we
have developed in the previous sections to tackle the problem of the uniform generation of prefixes:
specify the objects to be sampled, count them and use the counting information to sample. We also
show a quantitative result on the number of prefixes of a program and its relation to the number
of full executions.

Definition 11 (execution prefixes). An execution prefix of an NFJ program P is any, possibly

empty, sequence of executions steps starting from P of the form P
a1⇒ P1

a2⇒ P2 · · ·
an⇒ Pn. Note

that Pn is not necessarily nullable here.

4.1. Specification of the prefixes
As for the uniform random generation of execution in the previous sections, we start by re-

formulating the problem into combinatorial terms. Just like we have described a combinatorial
specification S(P ) of the class of the executions of a program P , we describe here how to compute
a combinatorial specification Sp(P ) of the class of the execution prefixes of P . Interestingly, this
specification can be seen as the specification of the executions of a new program pref(P ) whose
full executions are in bijections with the execution prefixes of P . More eloquently, for each pro-
gram P , we can define a new program pref(P ) such that Sp(P ) = S(pref(P )). The recursive rules
used to compute pref(P ) as well as Sp(P ) and its generating function are given in Table 8. The
combinatorial interpretation of each rule is detailed below.

Program Prefix program Specification Generating function
P pref(P ) Sp(P ) P̄ (z)

0 0 E 1
a 0 + a E + Z 1 + z
P ‖ Q pref(P ) ‖ pref(Q) Sp(P ) ? Sp(Q) P̄ (z) } Q̄(z)
P +Q pref(P ) + pref(Q) Sp(P ) + (Sp(Q) \ E) P̄ (z) + Q̄(z)− 1
P ;Q pref(P ) + (P ; pref(Q)) Sp(P ) + S(P ) F (Sp(Q) \ E) P̄ (z) + P (z)(Q̄(z)− 1)

P ? P ?; pref(P ) E + S(P ?) F (Sp(P ) \ E) 1 + P̄ (z)−1
1−(P (z)−P (0))

Table 8: Recursive rules for the computation of (1) the program pref(P ) whose executions are in bijection with the
execution prefixes of P , (2) the specification Sp(P ) of the execution prefixes of P and (3) its generating function P̄ (z)

First of all, remark that our definition of execution prefixes includes the empty prefix, having
zero execution steps, as well as all the full executions of the program. So for all P , we must
have E ⊂ Sp(P ) and S(P ) ⊂ Sp(P ).

For instance, the program a consisting of only one atomic action has two execution prefixes,
the empty prefix and the prefix firing a. Hence, its set of prefixes is modelled by E +Z which also
corresponds to the executions of the program 0 +a. The empty program only has the empty prefix.
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Another simple case is that of the parallel composition. The execution prefixes of P ‖ Q
are exactly all the possible interleavings of a prefix of P and a prefix of Q. Hence, its set of
prefixes is Sp(P ) ? Sp(Q) which corresponds to the executions of pref(P ) ‖ pref(Q). Similarly,
the prefixes of P + Q are simply the union of the respective prefixes of P and Q. Moreover, the
intersection of these two sets always contains exactly one element, the empty prefix. Hence the
prefixes of P + Q are unambiguously specified by Sp(P ) + (Sp(Q) \ E), which corresponds to the
executions of pref(P ) + pref(Q). Recall that combinatorial specifications need to be unambiguous
for the symbolic method, that is the set of rules dictating how to compute the generating function
of Sp(P ), to apply.

The case of the sequential composition is more interesting. We distinguish between the prefixes
of executions of P ;Q which only fire actions from P , and those which have fired at least one action
from Q. Said differently, the former correspond to the prefixes which always use the (Lseq) rule
of the semantics to P ;Q and the latter correspond to those which use the (Rseq) rule at some
point. The prefixes firing only actions from P are specified by Sp(P ) and the ones firing at least
one element from Q are made of a full execution of P followed by a non-empty prefix from Q, that
is S(P ) F (Sp(Q) \ E). Note that it is necessary to only consider non-empty prefixes of Q in this
second case, so as to ensure that the two specifications do not overlap. The program pref(P ) +
(P ; pref(Q)) has the same executions.

Finally, the case of the loop is a generalisation of the above reasoning. All the prefixes of P ?,
at the exception of the empty prefix, are made of any sequence of full non-empty executions of P ,
corresponding to full iterations of the loop, followed by a non-empty prefix of P , corresponding to
the last, possibly partial, iteration. Note that a sequence of non-empty executions of P is actually
an execution of P ?.

With this specification at hand, we can derive two kinds of results on the set of execution prefixes
of a program. First, we show that the number of execution prefixes of length n of a program is of
the same order as its number of executions of length n (provided it has at least one such execution).
This means that prefixes are, in average, shared by many executions. Second, on the algorithmic
side, we describe a uniform random sampler of execution prefixes in the same fashion as the random
sampler of execution of Section 3.

4.2. Quantitative analysis

The number of execution prefixes of length n of a program is trivially lower-bounded by its
number of executions of length n. A natural question to ask is how many more prefixes than
executions a program has. In this sub-section we quantify the number of prefixes of programs
precisely and we prove that, in most cases, the number of prefixes of length n of a program is
asymptotically of the same order as its number of executions of length n. We describe the different
possible configurations.

The results of this section build on the following technical result, which states that the generating
functions of the executions and of the prefixes have the same asymptotic behaviour.

Theorem 11. Let P be an NFJ program containing at least one loop. Let P (z) denote its generating
function of executions and let P̄ (z) denote its generating function of execution prefixes. We have
that P (z) and P̄ (z) have the same radius of convergence 0 < ρ ≤ 1. Furthermore, there exist three

constants C̄ ≥ C > 0 and α ∈ N∗ such that near ρ we have P (z) ∼ C
(ρ−z)α and P̄ (z) ∼ C̄

(ρ−z)α .

Note that a program has an infinite number of executions if and only if it contains at least
one loop (the pattern 0? being forbidden). We thus only reason on programs having an infinite
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state-space here. Since the generating function P (z) (resp. P̄ (z)) is rational, its coefficients can
by written as a linear combination of geometric terms of the form rn, with polynomial coefficients,
where r is a pole of P (z) (resp. P̄ (z)).

[zn]P (z) =

k∑
i=1

pi(n)rni deg(pi) = degree of the pole ri in P (z)

[zn]P̄ (z) =
∑̀
i=1

p̄i(n)r̄ni deg(p̄i) = degree of the pole r̄i in P̄ (z)

From Theorem 11, we also know that the dominant terms in both sequences are of the same
order nα−1ρ−n. So the behaviour of the number of executions and and the number of prefixes of
length n should be of the order of nα−1ρ−n. But, because these functions might have several poles
of modulus ρ, there might be periodic compensations in these sequences.

For instance, the program P = (a ‖ b)? only has executions of even length so that its number of

executions is pn = 1{2|n}
√

2
n
. However, its number of prefixes is p̄n = 1{2|n}

√
2
n

+21{2|n−1}
√

2
n−1

,
which is thus of the order of pn only for even value of n. A precise description of the possible
behaviours of such sequences is given in [5, Theorem V.3] but we only focus on a corollary here,
which is more insightful in our context.

Corollary 1. Let P be an NFJ program with an infinite state-space (thus with at least one loop),
let Pn denote its number of executions of length at most n and let P̄n denote its number of executions
prefixes of length at most n. There exist a constant λ > 0 such that we have Pn ≤ P̄n ≤ λPn.
Moreover, if α and ρ denote the constants from Theorem 11, we have that Pn = θ(nα−1ρ−n) if ρ > 1
and Pn = θ(nα) otherwise.

Considering the number of executions of length at most n has advantage of mitigating the
periodic effects described above and thus describes more faithfully the growth rate of the state-
space. This corollary establishes that, in the sense given above, a program has roughly the same
number of execution prefixes as it has executions.

The rest of the sub-section is dedicated to the proof of Theorem 11. The proof of Theorem 11
is done by induction on the syntax of the program and is actually straightforward, except for the
case of the coloured product, for which we must establish some analytical properties. Lemma 2
gives a calculus formula for the coloured product of a polynomial with any function and Lemmas 4
and 3 gives formulas for computing the coloured product of any two rational functions. We only
characterise the properties of the coloured product over rational functions here since the generating
function of the executions and the prefixes of an NFJ program are necessarily rational.

Lemma 2. Let A(z) =
∑
n≥0 anz

n be a formal power series and k ∈ N, we have zk } A(z) =
zk

k!
dk

dzk
(zkA(z)), which holds both formally and analytically in the domain of convergence of A.

Proof. By definition we have zk}A(z) =
∑
n≥0 an

(
n+k
k

)
zn+k. Moreover, we have that dk

dzk
(zn+k) =

(n+ k)(n+ k − 1) · · · (n+ 1)zn =
(
n+k
k

)
k!zn, hence the result of the lemma.

Using Lemma 2, we obtain that if A is a rational function, then zk } A(z) has the same poles
as A and these poles have the same degree as in A, incremented by k. In Lemmas 4 and 3 below
we give two formulas allowing to compute the product of any two rational functions.
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Lemma 3. Let a be a complex number, we have that (1 + az)
k }

1

1− az
=

1

(1− az)k+1
.

Before going over the proof of this lemma, observe that this formula has a combinatorial in-
terpretation, in terms of rational languages, when a is an integer. Let Σ be an alphabet with a
letters and let Σ1,Σ2, . . . ,Σk be k distinct copies of Σ. The left-hand-side of the equality given in
the lemma is the generating function of the rational language L1 obtained as the shuffle of (ε +
Σ1).(ε + Σ2) . . . (ε + Σk) with Σ?. The right-hand-side of this equality is the generating function
of the language L2 = Σ?1.Σ

?
2 . . .Σ

?
k.Σ

?. The equality of the generating functions is explained by
the following bijection between the two languages. A word w in L1 can be uniquely decomposed
as w = wi1ui1wi2ui2 · · ·wi`ui`w′ where 0 ≤ ` ≤ k, wi1 , . . . , wi` , w

′ ∈ Σ? and uij ∈ Σij for all j.
Since Σij is a copy of Σ, wij can be mapped to a unique word w′ij in Σij and thus w can be mapped

to a unique word w′i1ui1w
′
i2
ui2 · · ·w′i`ui`w

′ in L2. Furthermore, all the words of L2 can be obtained
in such a way.

The general case is given by a computational proof.

of Lemma 3. By definition we have

(1 + az)
k }

1

1− az
=
∑
n≥0

n∑
j=0

(
n

j

)(
k

j

)
ajan−jzn =

∑
n≥0

( n∑
j=0

(
n

j

)(
k

k − j

))
(az)

n

And by Vandermonde’s identity
∑n
j=0

(
n
j

)(
k
k−j
)

=
(
n+k
k

)
, which yields

∑
n≥0

( n∑
j=0

(
n

j

)(
k

k − j

))
(az)

n
=
∑
n≥0

(
n+ k

k

)
(az)

n
=

(
1

1− az

)k+1

Lemma 3 allows to decompose a pole of any degree as a polynomial and a simple pole. We need
one last identity allowing to compute the coloured product of two simple poles.

Lemma 4. Let a and b be two complex numbers, we have
1

1− az
}

1

1− bz
=

1

1− (a+ b)z
.

Again, this identity has a simple combinatorial interpretation when the numbers a and b are
positive integers. In this case, consider two disjoint alphabets Σ and Σ′ of respective cardinality a
and b. The left-hand-side of this equality is the generating function of the shuffle of the languages Σ?

and Σ′? and the right-hand-side is the generating function of the language (Σ ∪ Σ′)
?
, both languages

being trivially equal. The proof in the general case is computational.

Proof of Lemma 4. We have by definition

1

1− az
}

1

1− bz
=
∑
n≥0

n∑
k=0

(
n

k

)
akbn−kzn =

∑
n≥0

(a+ b)
n
zn =

1

1− (a+ b)z

Note that, in particular, 1
1−az }

1
1+az = 1.
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Using the identities presented above, one can compute the coloured product of any two poles as
follows: (

1

1− az

)k
}

(
1

1− bz

)`
=
(

(1 + az)
k−1 } (1 + bz)

`−1
)
}

1

1− (a+ b)z

=

k+`−1∑
j=1

λk,`,j(a, b)

(1− (a+ b)z)
j

(12)

where the λk,`,j(a, b) are computable coefficients, in particular, λk,`,k+`−1(a, b) = ak−1b`−1

(a+b)k+`−2

(
k+`−2
k−1

)
.

More generally, using the partial fraction decomposition of two rational functions, one can
compute their coloured product using (12). This shows that rational functions are stable by coloured
product, thus proving that the generating function of the executions and the generating function
of the prefixes of a program are rational.

In the particular case where both functions are generating functions, this also gives us that,
if their respective dominant singularities are ρ1 and ρ2 of degrees α1 and α2, then the dominant

singularity of their coloured product is (ρ−1
1 + ρ−1

2 )
−1

and is of degree α1 +α2−1. We will use this
fact in the proof of Theorem 11.

Proof of Theorem 11. We prove by induction that, if P is an NFJ program with an infinite state-
space, then its generating function of executions P (z) and its generating function of prefixes P̄ (z)
have the same radius of convergence ρ and satisfy P̄ (z) ∼ λP (z), for some constant λ > 0, when z →
ρ. Recall that P (z) and P̄ (z) are rational.

Parallel composition. If P = (Q ‖ R) and P has an infinite state-space, then at least one of Q
or R has an infinite state-space too. Assume, without loss of generality, that this is the case for Q.
Then, by induction hypothesis, Q(z) and Q̄(z) have the same radius of convergence ρ1 and we

have Q̄(z) ∼ λ1Q(z) ∼ C̄1

(1−z/ρ1)α1 , for some positive constants λ1, C̄1 and α1 when z → ρ1.

• If R has a finite state-space, it is easy to see that R(z) and R̄(z) are polynomials and that
they have the same degree k. Then, using Lemma 2, one can prove that P has the same poles
as Q with the same degrees increased by k. Thus, the radius of convergence of P (z) and P̄ (z)

is ρ1 and near ρ1 we have P̄ (z) ∼ λP (z) ∼ C̄
(1−z/ρ1)α1+k for some positive constants λ and C̄.

• If R has an infinite state-space too, then by induction hypothesis R(z) and R̄(z) have the

same radius of convergence ρ2 and we have near ρ2 R̄(z) ∼ λ2R(z) ∼ C̄2

(1−z/ρ2)α2 for some

positive constants λ2, C̄2 and α2. By using Lemma 4 and Lemma 3 to compute the partial
fraction decomposition of P (z) and P̄ (z), we can show that they have the same radius of

convergence ρ = (ρ−1
1 + ρ−1

2 )
−1

and that near ρ we have P̄ (z) = λ1λ2P (z) ∼ C̄
(1−z/ρ)α1+α2−1

for some computable constant C̄.

Non-deterministic choice. If P = (Q+R) and P has an infinite state-space, then at least one
of Q or R have an infinite state-space too. Similarly as before, we assume without loss of generality
that this is the case for Q and we apply the induction hypothesis to Q with the same notations.

• First consider the case where either R has a finite state-space, or R has an infinite state-space
but with ρ2 > ρ1 or with ρ1 = ρ2 and α2 < α1. In this case of the radius of convergence of P̄ (z)
and P (z) is ρ1 and near ρ1 we have P̄ (z) ∼ Q̄(z) ∼ λQ(z) ∼ λP (z) since R(z) = o(Q(z)).
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• The symmetric case is similar by commutativity, so it only remains to handle the case

where ρ1 = ρ2 and α1 = α2. In this case we have P̄ (z) ∼ C̄1+C̄2

(1−z/ρ1)α1 and P (z) ∼ λ−1
1 C̄1+λ−1

2 C̄2

(1−z/ρ1)α1 ,

which allows to conclude.

Sequential composition. If P = (Q;R) and P has an infinite state-space, then at least one of Q
and R have an infinite state-space too. We have that P̄ (z) = Q̄(z) + Q(z)(R̄(z) − 1) and P (z) =
Q(z)R(z). Again, we use the same notations as above.

• We first consider the case where Q has an infinite state-space and either the state-space of R is
finite or is infinite but is such that ρ2 > ρ1. Thus, the dominant singularity of P (z) and P̄ (z)
is ρ1 and when z → ρ1 we have P̄ (z) ∼ (λ1 + R̄(ρ1) − 1)Q(z) and P (z) ∼ R(ρ1)Q(z). As a

consequence P̄ (z) ∼ λ1+R̄(ρ1)−1
R(ρ1) P (z).

• In the symmetric case, that is either the state-space of Q is finite or is infinite but such
that ρ1 > ρ2, we have that the radius of convergence of P̄ (z) and P (z) is ρ2. Besides, near ρ2

we have P̄ (z) ∼ Q(ρ2)R̄(z) ∼ Q(ρ2)λ2R(z) and P (z) ∼ Q(ρ2)R(z). Thus P̄ (z) ∼ λ2P (z).

• Finally, if both Q and R have an infinite state-space and ρ1 = ρ2, then the radius of con-
vergence of P (z) and P̄ (z) is ρ1 and near ρ1 we have P̄ (z) ∼ Q(z)R̄(z) ∼ Q(z)λ2R(z) ∼

λ−1
1 C̄2C̄1

(1−z/ρ1)α1+α2
and P (z) ∼ Q(z)R(z), which allows to conclude.

Loops. If P = Q?, then we have P (z) = (1− (Q(z)−Q(0)))
−1

and there is a unique ρ > 0 such
that Q(ρ) − Q(0) = 1. If Q has an infinite state-space, then we have that ρ is smaller than the
radius of convergence of Q(z) (and Q̄(z), by induction hypothesis). In a neighbourhood of ρ we

have Q(z)−Q(0) = 1− (ρ− z)Q′(ρ) + o(ρ− z)2
, with Q′(ρ) > 0, and thus P (z) ∼ Q′(ρ)−1

ρ−z . Finally,

observe that P̄ (z) = 1 + P (z)(Q̄(z)− 1) ∼ P (z)(Q̄(ρ)− 1) near ρ.

Base cases. There is nothing to prove for P = 0 or P = a. Informally, the “real” base cases of
this induction, that is the cases where P has an infinite state-space but all its sub-terms have a
finite one, is the case where P = Q? and Q 6= 0 contains no loop.

4.3. Uniform random sampling of prefixes

We now tackle the problem of sampling a uniform prefix of a given length n, of a given program.
We first describe in Algorithm 11 how to compute the generating functions of the prefixes of all the
sub-terms of a given NFJ program recursively. As for the generating function of the executions, the
algorithm must store each resulting generating function in its corresponding AST node. Moreover,
we assume that Algorithm 7 has already been called on a program P before running Algorithm 7 on
it, so that the generating functions of the executions of the necessary sub-terms of P are available.

Random sampling is then straightforward, the methodology is the same as in the previous
section. Algorithm 12 describes a uniform random sampler of prefixes based on the generating
functions of prefixes computed in Algorithm 11.

The complexity analysis of Algorithm 12 is the same as that of Algorithm 6 in the previous
section, and arrives to the same conclusion. We do not repeat it here.
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Algorithm 11 Computation of the generating function of the prefixes of a program up to degree n.

function prefGfun(P, n)
if P = 0 then return 1
else if P = a then return 1 + z
else if P = Q+R then return prefGfun (Q,n) + prefGfun (R,n)− 1
else if P = Q ‖ R then return prefGfun (Q,n) } prefGfun (R,n)
else if P = Q;R then

q(z) ← gfun (Q,n) . should have been pre-computed
return prefGfun (Q, n) + q(z) · (prefGfun (R,n)− 1)

else if P = Q? then
p(z) ← gfun (P, n) . should have been pre-computed

return 1 + p(z) · (prefGfun (Q,n)− 1)

Algorithm 12 Uniform random sampling of prefixes of a given length

Input: An NFJ program P and a length n
Output: A uniform prefix of execution of P of length n

function UnifPref(P, n)
if n = 0 then return the empty prefix
else if P = a then return a
else if P = Q+R then

if Bernoulli ( q̄n
q̄n+r̄n

) then return UnifPref (Q,n)

else return UnifPref (R,n)

else if P = Q ‖ R then
draw k ∈ J0;nK with probability

(
n
k

)
q̄kr̄n−k/p̄n

return shuffle (UnifPref (Q, k), UnifPref (R,n− k))
else if P = Q;R then

if Bernoulli ( q̄np̄n ) then return UnifPref (Q,n)
else

draw k ∈ J0;nK with probability qkr̄n−k/(pn − q̄n)
return concat (UnifExec (Q, k), UnifPref (R,n− k))

else if P = Q? then
draw k ∈ J0;n− 1K with probability pkq̄n−k/pn
return concat (UnifExec (P, k), UnifPref (Q,n− k))
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Table 9: Quick benchmark of the counting and random sampling functions of execution prefixes

|P |c n # prefixes mem. size prefGfun UnifPrefix IQR

100 500 1.841 · 21128 1.77M 0.025s 0.250ms 0.013ms
100 1000 1.123 · 22244 6.67M 0.087s 0.635ms 0.662ms
500 500 1.640 · 21611 5.75M 0.173s 0.372ms 0.024ms
500 1000 1.034 · 23124 20.90M 1.002s 1.098ms 0.069ms

1000 500 1.047 · 22462 17.84M 0.563s 0.526ms 0.041ms
1000 1000 1.523 · 24844 67.14M 3.223s 1.962ms 0.191ms
2000 500 1.685 · 22381 21.43M 0.673s 0.475ms 0.047ms
2000 1000 1.098 · 24732 79.98M 3.630s 1.155ms 0.038ms

4.4. Experimental study

4.4.1. Performance evaluation

In order to assess experimentally the efficiency of our method, we put into use the algorithms
presented here and demonstrate that they can handle systems with a significantly large state space.
We generated a few NFJ programs as described in Section 3.4 and conducted a similar experiment
on the same machine. We quickly recall the main points of our setup below.

Table 9 reports the runtime of the preprocessing phase (Algorithm 11), the runtime of the
random sampler (Algorithm 12) and the number of prefixes of length n for various programs and
various values of n. Here again, for the runtime of the counting algorithm, every measurement was
performed 7 times and we reported the median of these 7 values. For the random sampler, every
measure was performed 101 times and for each one we report the median of these values as well as
the interquartile range (IQR)8, which gives an idea of the dispersion of the measures. We use these
metrics rather than the mean and the variance to reduce the importance of extreme values and
give a precise idea of what runtime the user should expect when running our sampler. The time
reported is the CPU time as measured by C’s clock function. The state-space column indicates
the number of prefixes of length n. The mem. size column reports the amount of memory occupied
by the generating functions of the executions and that of the executions prefixes. Recall that both
generating functions are necessary for the random sampling routine.

The take-away of this experiment is that (1) the preprocessing phase can be carried out for
systems with a state-space of size ≈ 218000 in a time of the order of the minute and that (2) once
this is done, sampling a uniform prefix in this set is a matter of a few milliseconds.

4.4.2. Prefix covering

We present another experimentation here that highlights the importance of the uniform distri-
bution for the purpose of state-space exploration. The problem is the following. We consider given
an NFJ program and we sample random prefixes of a given length n of this program using two
different algorithms:

• our random sampler which is globally uniform among all prefixes of length n;

8The interquartile range of a set of measures is the difference between the third and the first quartiles. Compared
with the value of the median, it gives a rough estimate of the dispersion of the measures.
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• a more “naive” sampler that repeatedly generates one execution step uniformly at random
among the legal steps, until we get a length n prefix. This strategy is called locally uniform
or isotropic.

The question is: in average, how many random prefixes must be generated in order to discover
a given proportion of the possible prefixes? This question actually falls under the scope of the
Coupon Collector Problem, which is treated in depth in [28]. Table 10 gives numerical answers for
both exploration strategies for a random NFJ program of size 25 and for a target coverage of 20%
of the possible prefixes.

Prefix length 1 2 3 4 5
# prefixes 11 18 30 60 128

Isotropic 2.1 4.45 11.17 35.09 1.28 · 1014

Uniform 2.1 3.18 6.57 13.26 27.69

Gain 0% 40% 70% 165% 4.61 · 1014%

Table 10: Expected number of prefixes to be sampled to discover 20% of the prefixes of a random program of size 25
with either the isotropic or the uniform method

Expectedly the uniform strategy is faster but what is interesting to see is that the speed-up
compared to the isotropic method grows extremely fast. The more the state-space grows, the more
the uniform approach is unavoidable.

Unfortunately, the formula given in [28] for the isotropic case involves the costly computation
of power-sets which makes it impractical to give values for larger programs and prefix lengths.
However, these small-size results already establish a clear difference between the two methods. It
would be interesting to have theoretical bounds to quantify this explosion or to investigate more
efficient ways to compute these values but this falls out of the scope of this article.

Conclusion

In this article, we have presented a framework, based on combinatorial specifications and on
analytic combinatorics, allowing to study a class of concurrent programs with non-determinism,
loops, and a fork-join style of synchronisation. Using this framework, we obtained two types of
results. First, on the analytical side, we established quantitative properties of fork-join programs,
related to their number of global choices (in the loop-free fragment) and on their typical number of
executions prefixes. Second, and more importantly, we described efficient uniform random samplers
of executions and execution prefixes allowing the explore the state-space of programs without ex-
plicitly constructing it. These algorithms thus provide a tractable way to tackle the state explosion
problem.

We believe there are two logical directions to go from there. First, although we have made a
significant step forward in terms of expressiveness in this article, work remains to be done to be able
to model real-life programs. A direction we wish to explore is to relax the kind of synchronisation
we allow to drift away from the fork-join model and handle a larger class of programs. As a second
step, we wish to apply the techniques described here and implement a statistical model checker
relying on uniform random generation.
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sitat Politècnica de Catalunya (Oct 2005).

[26] C. Mart́ınez, X. Molinero, An experimental study of unranking algorithms, in: C. C. Ribeiro,
S. L. Martins (Eds.), Experimental and Efficient Algorithms, Springer Berlin Heidelberg,
Berlin, Heidelberg, 2004, pp. 326–340.

[27] M. Bendkowski, O. Bodini, S. Dovgal, Polynomial tuning of multiparametric combinatorial
samplers, in: 2018 Proceedings of the Fifteenth Workshop on Analytic Algorithmics and Com-
binatorics (ANALCO), SIAM, 2018, pp. 92–106.

[28] P. Flajolet, D. Gardy, L. Thimonier, Birthday Paradox, Coupon Collectors, Caching Algo-
rithms and Self-Organizing Search, D. A. Math. 39 (3) (1992) 207–229.

[29] M. Drmota, Random Trees: An Interplay between Combinatorics and Probability, Springer-
Verlag, 2009.

47

http://flintlib.org


Appendix A. Breaking symmetries

This appendix contains the proof details of Theorem 3 from Section 2.

Appendix A.1. Asymptotic enumeration

We follow here a similar proof to that of Theorem 2. That is we explicit the behaviour of
the generating function f(z) of NFJ programs near its dominant singularity and we deduce the
number of programs using the transfer theorem from [5, Thm. VI.3 p. 390]. There is a major
difference from Section 2 here though, which is that we do not look for an explicit solution to the
functional equations. Instead we use complex analysis to describe the behaviour of the solution
near its dominant singularity which is actually enough to get precise asymptotic results.

The translation of specification (5) in terms of generating functions yields the following system
by the symbolic method. Note that by symmetry, F+ and F‖ have the same number of elements of
each size so their respective generating functions f‖ and f+ are equal and we only use the former.

f(z) = z + f;(z) + 2f‖(z)

f;(z) =
1

1− (f(z)− f;(z))
− 1− (f(z)− f;(z))

f‖(z) = exp

∑
j≥1

f(zj)− f‖(zj)
j

− 1− (f(z)− f‖(z))

To simplify this system, we first observe that f; can be expressed as a function of f only, more

precisely f;(z) = f(z)
2
(1 + f(z))

−1
. Hence f; has the same radius of convergence as f . For f‖

however no such simplification is possible and we resort to a classical argument for this kind of
operators. First note that f and f‖ have the same radius of convergence ρ and that ρ < 1. This

can be proved for instance by observing that Z×F; ⊂ F‖ and (Z + F‖)
2 ⊂ F‖ and by enumerating

the programs belonging to the subset of F described by F ′; = Z × F ′; and F‖ = (Z + F;)
2
. As

a consequence, we have that for all j > 1, the radius of convergence of f(zj) (and thus f‖) is at
least

√
ρ > ρ. Hence, the exponential in the above formula can be split in two:

f‖(z) = ef(z)−f‖(z) expζ1(z)−1− (f(z)− f‖(z))

where ζ1(z) =
∑
j≥2

f(zj)− f‖(zj)
j

is analytic in {z | |z| < √ρ}.

As a consequence, we get that f‖(z) = ln 1
1+f(z) +f(z)+ζ1(z) and finally f(z) = ζ2(z)+φ(f(z))

where φ is the analytic function defined below and ζ2(z) = z+ 2ζ1(z). Note that φ has no terms of
degree 0 and 1, this will be important in the following.

φ(u) =
u2

1 + u
+ 2 ln

1

1 + u
+ u =

∑
n≥2

(−1)
n

(
1 +

2

n

)
un

In order to get the asymptotic behaviour of f near its singularity, we first study the functional
equation y(x) = x+ φ(y(x)) which admits a unique analytic solution in a neighbourhood of 0. By
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unicity of the solution, we get that f(z) = y(ζ2(z)) and that the radius of convergence ρ of f is the
unique z > 0 such that ζ2(z) is equal to the radius of convergence of y.

We solve the equation y = x + φ(y) by applying the Theorem 2.19 from [29] after a simple
change of variable so that it fits the hypotheses of the Theorem. Note that we actually need the
weaker version of the theorem exposed in Remark 2.20 from the same book because our function φ
has negative coefficients in its expansion. By introducing ỹ = y

x−1 we can reformulate the equation
as in:

ỹ =
1

x
φ(x(1 + ỹ)) = F (x, ỹ) (A.1)

The hypotheses of the Remark 2.20 of [29] apply to this equation. In particular we find that x0 =

y0 − φ(y0) and ỹ0 = φ(y0)
x0

where y0 =
√

3−1
2 is the unique solution of ∂ỹF (x, ỹ) = 1 on the positive

real axis. Hence, by [29] there exists a unique solution ỹ to this equation, it is analytic for |x| < x0

and furthermore there exists two functions h̃1 and h̃2 which are analytic around x = x0 and such
that locally around x = x0 we have:

ỹ(x) = h̃1(x)− h̃2(x)

√
1− x

x0

besides, h̃1(x0) = ỹ0 and h̃2(x0) =

√
2x0∂xF (x0, ỹ0)

∂ỹ2F (x0,ỹ0)
=

√
2(y0φ′(y0)− φ(y0))

x2
0φ
′′(y0)

.

As a consequence f is analytic in |ζ2(z)| < x0, its dominant singularity ρ is the unique z > 0 such
that ζ2(z) = x0 and there exists two analytic functions h1 and h2 such that locally around z = ρ
we have

f(z) = h1(z)− h2(z)

√
1− z

ρ
(A.2)

= y0 − x0h̃2(x0)

√
ρζ ′2(ρ)

x0

√
1− z

ρ
+O(ρ− x). (A.3)

Finally, the transfer theorem (see [5, Thm. VI.3 p. 390]) allows us to deduce the asymptotic
behaviour of the sequence fn, counting the number of NFJ programs of size n, when n tends to the
infinity.

Appendix A.2. Numerical estimation of the constants

Some arguments exposed above are not constructive. In particular the constant ρ is defined as
the solution of an equation involving f(zj) and f‖(z

j) for all j ≥ 2, for which we have no expression.
In addition, the value of γ depends on the value of ρ and ζ ′2(ρ), this function being implicitly defined.
It is however possible to numerically evaluate these constants with extremely good precision using
a method explained in [5, Section VII.5], which we detail in this section.

The method is actually based on a simple idea. One start by computing the first terms of the

expansion in power series of f and f‖ up to some degree m, this yields two polynomials f [m] and f
[m]
‖

of degree m. Then one uses this expansion to approximate ζ2 by ζ
[m]
2 (z) = z+2

∑m
j=2 j

−1(f [m](zj)−
f

[m]
‖ (zj)) and we solve numerically the equation ζ

[m]
2 (z) = x0 = ln

(
2+
√

3
2

)
− 3
√

3−5
2 . Note that the

function ζ
[m]
2 in increasing on the positive real axis so the equation ζ [m](z) = x0 can be numerically
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solved by dichotomy. Finally, we let m grow until the approximation stabilises. Since the solution ρ

of ζ2(z) = x0 lies inside the disc of convergence of ζ2, the approximation of ζ2(z) by ζ
[m]
2 (z) converges

quickly and the approximation of ρ is extremely precise even for small values of m.
There is one subtlety though in the computation of the first terms of the expansion of f‖ and f;.

We did not give a formula for computing the first terms of MSet(A) given the first terms of A.
The usual approach to obtain such a relation is to exploit the formula for the derivative of the
generating function of MSet(A) which has a more convenient expression. In our case, we want to
the first terms of f‖(z) = exp(f(z)− f‖(z) + ζ1(z))− 1− (f(z)− f‖(z)) whose derivative is:

f ′‖ = (f ′ − f ′‖ + ζ ′1) exp(f − f‖ + ζ1)− (f ′ − f ′‖)
= (f ′ − f ′‖ + ζ ′1)(f + 1)− (f ′ − f ′‖)
= (f ′ − f ′‖ + ζ ′1) · f + ζ ′1

with ζ ′1(z) =
∑
j≥2

zj−1(f ′(zj)− f ′‖(z
j))

One can then obtain a recurrence relation for the coefficient of degree n of f ′‖ by extracting

the term of degree n from both sides of the last equality. Since f(0) = 0 and since the sum starts
at j = 2 in ζ ′1, only coefficients of f ′ and f ′‖ of degree less than n appear on the right-hand-side of
the relation.

Getting a recurrence relation to compute the n-th term of f; is more straightforward as there
is no exponential to deal with. One can for instance use the following formula (note that both
operands of the product are null at 0):

f;(z) = f(z)(f(z)− f;(z))

Using the approach described above, one quickly gets a good approximation of ρ and ζ ′2(ρ), this
second value being necessary to compute γ. As a rough indication of the speed of convergence of this
approximation scheme, with our implementation using double precision floats, the sequence m 7→
ρ[m] is stationary after m = 16 as we hit the limit of representatble numbers.

Appendix A.3. Counting global choices

In terms of generating functions, the specifications (6) and (8) of the annotated NFJ programs
translate into the following system of equations. Note that the equations satisfied by g; and g‖ are
similar to the equations satisfied by f; and f‖ so we do not repeat the explanations.

g(z) = z + g;(z) + g‖(z) + g+(z)

g;(z) =
g(z)− g;(z)

1− (g(z)− g;(z))
=

g(z)
2

1 + g(z)

g‖(z) = exp

∑
j≥1

(g − g‖)(zj)
j

− 1− (g − g‖)(z) = g(z) + ln
1

1 + g(z)
+
∑
j≥2

(g − g‖)(zj)
j

g+(z) =

∑
j≥1

g(zj)− g+(zj)

 (1 + f(z))− (g(z)− g+(z))
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Let ρg denote the radius of convergence of g. Each program has at least one global choice so
there is at least as many element of size n in G as in F and thus ρg ≤ ρ. Using the same argument
as above, one can show that g(zj) is analytic in a disc of radius larger than ρg whenever j ≥ 2.

Hence, the rightmost term in the expression of g‖, which we denote by ζ3(z) =
∑
j≥2

(g−g‖)(zj)
j , is

analytic in a disc of radius larger than ρg. For the same reasons, ζ4(z) =
∑
j≥2 g(zj) − g+(zj) is

analytic in the same disc and we can write g+ = ζ4 + f
1+f g.

Finally, by merging all equations together, we get

g(z) = ζ5(z) + (1 + f(z))ψ(g(z))

with ψ(z) =
z2

1 + z
+ z + ln

1

1 + z
=
∑
n≥2

n+ 1

n
(−z)n

and ζ5(z) = (1 + f(z))(z + ζ3(z) + ζ4(z)).

As for f , the key to get the precise behaviour of g near its main singularity, and therefore to get
an approximation scheme for ρg, is to show that the functional equation y = y(x, u) = x + uψ(y)
has a unique solution, which we are able to describe, and to conclude by unicity that g(z) =
y(ζ5(z), 1 + f(z)). To this end, we use an extension of Theorem 2.21 from [29]. This requires to
apply the simple change of variables ỹ = y−x

ux and ũ = u
1+f(ρg) so that the equation fulfils the

requirements of the theorem (except for the non-negativity of the coefficients of ψ). The equation
then becomes:

ỹ = F (x, ỹ, ũ) =
1

x
ψ(x(u1ũỹ + 1)) where u1 = 1 + f(ρg). (A.4)

Remark 2.20 from [29] (which is related to Theorem 2.19 in the book) can actually be adapted
to Theorem 2.21. So in order to prove the existence of an analytic continuation of “square-root”
type for the unique solution of (A.4), it is enough to show that there exists a pair (x1, ỹ1) in the
domain of convergence of F such that

ỹ1 = F (x1, ỹ1, 1)

1 = ∂ỹF (x1, ỹ1, 1)

0 6= ∂xF (x1, ỹ1, 1)

0 6= ∂2
ỹF (x1, ỹ1, 1)

In our case, we have ∂ỹF (x, ỹ, ũ) = u1ũψ
′(x(u1ũỹ + 1)) and ψ′(z) = 2 − 1

1+z −
1

(1+z)2
. First

we solve uψ′(z) = 1 which yields a unique positive solution y1(u) = 2√
1+4(2−u−1)−1

− 1 which is a

decreasing function of u and thus satisfies y1(1) > y1(u) ≥ y1(u1) ≥ y1(1 + f(ρ)) for 1 < u ≤ u1.

Note that we have y1(1) =
√

5−1
2 ≈ 0.618 and y1(1 + f(ρ)) = y1( 1+

√
3

2 ) ≈ 0.366.
Thus, a solution (x1, ỹ1) of the above system necessarily satisfies x1(u1ỹ1 + 1) = y1(u1). Then

we solve ỹ1 = F (x1, ỹ1, ũ) by injecting the later equality in the definition of F which yields x1(u) =
y1(u)−uψ(y1(u)) in the general case and thus x1 = y1−u1ψ(y1(u1)). The two non-nullity conditions

are then easily checked since ∂xF (x1, y1, 1) = (u1x1)
−1

and ∂2
yF (x1, y1, 1) = x1u

2
1ψ
′′(y1(u1)) > 0.

We thus obtain that equation (A.4) has a unique solution ỹ which is analytic near x = 0
and u = 1. Furthermore, this functions admits a representation of the following form near x = x1

and u = 1 where h̃3 and h̃4 are analytic functions:

ỹ(x, ũ) = h̃3(x, ũ)− h̃4(x, ũ)

√
1− x

x1(u1ũ)
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From the unicity of the solution, we get that g(z) = y(ζ5(z), 1+f(z)) and thus, for some analytic
functions h3(z) and h4(z), we have:

g(z) = h3(z)− h4(z)

√
1− ζ5(z)

x1(1 + f(z))
(A.5)

The singularity ρg of g is thus the minimum positive real number in [0; ρ] such that ζ5(z) =
x1(1 + f(z)). Numerically we get that ρg ≈ 0.12 < ρ so in a neighbourhood of ρg we have

g(z) = h3(z)− h5(z)

√
1− z

ρg

where h5(z) = h4(z)

√(
1− ζ5(z)

x1(1 + f(z))

)(
1− z

ρg

)−1

is analytic near ρg.

As a consequence, the number gn of annotated programs is equivalent to γn−
3
2 ρ−ng for some con-

stant γg > 0. The numerical evaluation of the constants ρg and γg is similar to the evaluation of ρ
and γ so it is not repeated here. Numerically, we get ρg ≈ 0.122854753.
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