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Abstract

Satellite passive microwave observations from 1.4 to 36 GHz al-
ready showed sensitivity to vegetation parameters, primarily through
the calculations of the Vegetation Optical Depth (VOD) at individual
window frequencies, separately. Here we evaluate the synergy of this
frequency range for vegetation characterization, through the estima-
tion of two vegetation parameters, its foliage and the photosynthesis
activity as described by the Normalized Difference Vegetation Index
(NDVI), and its woody components and carbon stock as described
by the Above Ground Carbon (AGC), using different combinations of
channels in the considered frequency range. Neural network retrievals
are trained on these two vegetation parameters (NDVI and AGC), for
several microwave channel combinations, including the future Coper-
nicus Imaging Microwave Radiometer (CIMR) that will observe simul-
taneously in window channels from 1.4 to 36 GHz, for the first time.
This methodology avoids the use of any assumptions in the complex in-
teraction between the surface (vegetation and soil) and the radiation,
as well as any ancillary observations, to propose a genuine and ob-
jective evaluation of the information content of the passive microwave
frequencies for vegetation characterization. Our analysis quantifies the
synergy of the microwave frequencies from 1.4 to 36 GHz, and shows
the expected potential of the CIMR instrument for the monitoring of
vegetation parameters in tropical environments, as compared to cur-
rent instruments. It also confirms that the 1.4 GHz observations have
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a high sensitivity to AGC, as compared to the other single frequencies
up to 36 GHz, at least under tropical environments.

1 Introduction

Vegetation distribution and its dynamics strongly affect the Earth water, en-
ergy, and carbon cycles, through complex biogeophysical and biogeochemical
processes, at intricate time and spatial scales [Bonan, 2015]. Vegetation cov-
ers ∼20% of the globe, and large scale monitoring of its parameters is critical,
to evaluate its response to anthropogenic pressure and climate changes.

Satellite observations provide a unique possibility to monitor the vegeta-
tion distribution and dynamics at global scales on a regular basis. Vegetation
monitoring from satellites has been primarily based on visible-infrared ob-
servations, with the Normalized Difference Vegetation Index (NDVI) being
one of the most popular satellite-derived environmental parameters, avail-
able for ∼4 decades with kilometric spatial resolution (see [Tucker, 1979] for
pioneering work). NDVI is calculated from the difference in the reflectances
of green vegetation between red and near-infrared wavelengths and is repre-
sentative of the amount of photosynthetically active chlorophyll components
of the vegetation. Different parameters such as the Leaf Area Index (LAI)
or the Fraction of Absorbed Photosynthetically Active Radiation (FAPAR)
have been calculated using similar observations to characterize the green
elements of the vegetation. However, NDVI being derived from visible and
infrared observations, it is not available, or is at least contaminated, under
cloudy conditions. In addition, it tends to saturate for dense vegetation
such as tropical forests, as it is only representative of the top layer of the
vegetation. Nevertheless, the visible-infrared observations (along with all its
derived vegetation metrics) remain a very valuable source of information for
vegetation studies, at local to global scales, for multiple applications (e.g.,
agriculture, weather prediction, climate monitoring).

Microwave satellite remote sensing offers complementary information on
the vegetation [Chukhlantsev, 2006]. First, it is partly insensitive to clouds
and it can sense within or below the vegetation canopy with lower frequen-
cies having a greater penetration depth. Second, microwave observations are
primarily sensitive to the water presence in the vegetation. Water strongly
affects the dielectric properties of the media, modifying the attenuation,
emission, and scattering of vegetation and soil at microwave frequencies
[Ulaby et al., 1981, Ulaby and Long, 2015]. As a consequence, contrarily
to visible-infrared information, the microwave observations should be rep-
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resentative of both photosynthetic and non-photosynthetic above ground
biomass, including trunk and branches. With increasing attenuation in the
vegetation with increasing frequencies, it is expected that over a dense forest
the lower microwave frequencies provide more information about the woody
parts of the vegetation, whereas the higher microwave frequencies mostly
sense the foliage in the canopy. Early works from [Choudhury et al., 1987,
Paloscia and Pampaloni, 1988] showed evidence of a relationship between
the passive microwave observations and the vegetation at large scales, fol-
lowed by more quantitative assessments of vegetation properties (e.g., the
vegetation biomass in [Wigneron et al., 1995], the vegetation water content
in [Njoku and Li, 1999], or the vegetation phenology in [Shi et al., 2008]).
The Vegetation Optical Depth (VOD) calculated from passive microwave ob-
servations (e.g., [Owe et al., 2001, Liu et al., 2011, Jones et al., 2011, Konings et al., 2016,
Fernandez-Moran et al., 2017, Wigneron et al., 2021]) is typically based on
the zeroth-order solution of the soil-vegetation radiative transfer equation
(the tau-omega model), and it integrates the vegetation water content and
structural effects. Several methods have been developed to calculate the
VOD, using multi-polarizations, multi-angles, and/or multi-temporal obser-
vations depending on the possibilities offered by the instrument, with the
help of ancillary data such as soil roughness, land surface temperature, and
land cover classification (this later parameter possibly derived from NDVI-
related products). See the review by [Frappart et al., 2020]. Recent de-
velopments in VOD calculation tend to limit the contribution of ancillary
information for noise reduction, but still use some necessary external inputs
[Fernandez-Moran et al., 2017, Wigneron et al., 2021]. Vegetation biomass
estimation from microwaves assumes that the vegetation water content to
which microwaves are sensitive is tightly linked to the biomass of the plant
and to its carbon content, especially at low microwave frequencies that pen-
etrate deep in the vegetation with less influence of green non-woody plant
components [Liu et al., 2011, Brandt et al., 2018, Fan et al., 2019]. Bench-
mark forest carbon stocks have been mapped from the combination of in situ
inventories and satellite data from lidar, from visible/infrared images, and
from active microwave observations [Saatchi et al., 2011]. Significant corre-
lation has been evidenced between the VOD at 1.4 GHz and large scale inven-
tories of above ground carbon (for instance from [Saatchi et al., 2011]) and
this relationship has been exploited to reveal recent carbon losses in African
drylands [Brandt et al., 2018], or to quantify the inter-annual dynamics of
the total tropical forest carbon [Fan et al., 2019]. VODs at higher frequen-
cies have also been explored. For instance, [Jones et al., 2011, Jones et al., 2014]
showed the sensitivity of the VOD at 10 and 18 GHz to the vegetation phe-
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nology, overcoming limitations affecting satellite optical-infrared observa-
tions. Currently, the Soil Moisture and Ocean Salinity (SMOS) and the Soil
Moisture Active Passive (SMAP) missions provide satellite observations at
1.4 GHz (L band), and measurements from 6 to 36 GHz (C, X, Ku, and Ka
bands) are available from the Advanced Microwave Scanning Radiometer-2
(AMSR2).

The relative merit of passive microwave observations at different frequen-
cies and their potential complementarity for vegetation characterization have
been raised in several studies, from satellite observations (e.g., between 6 and
18 GHz [Njoku and Li, 1999], between 19 and 85 GHz [Prigent et al., 2001])
or from ground-based measurements (e.g., between 1.4 and 90 GHz [Calvet et al., 2010]).
More recently, [Chaparro et al., 2019] compared the sensitivity of the VOD
between 1.4 and 10 GHz to above ground carbon, as measured from airborne
lidar in South American forests: although they showed that the 1.4 GHz
band observations have a good potential for the quantification of the car-
bon stocks, they indicated the synergy of multi-frequency observations for
an improved monitoring. [Baur et al., 2019] also analyzed VODs from 1.4
to 10 GHz, in an attempt to quantify the absorption and scattering losses
as a function of vegetation type, and as a function of frequency. Their
results showed that the VODs at 6 and 10 GHz are mostly sensitive to
the leaf phenology, whereas the 1.4 GHz VOD variations are dominated by
changes in the water content of stems and woody parts. [Li et al., 2021]
inter-compared VOD at different frequencies, and showed that they have
complementary capabilities in monitoring vegetation. All these studies sug-
gest that the combined use of multiple microwave frequencies should allow
new insights into the vegetation functioning.

The Copernicus Imaging Microwave Radiometer (CIMR) mission is cur-
rently being implemented by the European Space Agency (ESA) as a High
Priority Expansion Mission. It partly inherits from previous studies con-
ducted at ESA for the Multifrequency Imaging Microwave Radiometer (MIMR)
[Bernard et al., 1990]. CIMR is a conically scanning microwave radiome-
ter imager in a sun-synchronous polar orbit that will provide, for the first
time, simultaneous measurements at 1.4, 6.9, 10.65, 18.7, and 36.5 GHz
[Kilic et al., 2018]. With its large deployable ∼8 m antenna, it will have
a spatial resolution of ∼55 km at 1.4 GHz, ∼15 km at 6 and 10 GHz,
and ∼5 km at 18 and 36GHz. For an extensive description of the mis-
sion, see https://cimr.eu/sites/cimr.met.no/files/documents/CIMR-MRD-
v2.0-20190305-ISSUED0.pdf. The potential synergy of the CIMR frequen-
cies for the characterization of vegetation is expected, but still needs to be
quantified at large scales.
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Analyzing the synergy of the CIMR frequencies for vegetation charac-
terization could be based on radiative transfer model simulations between
1.4 and 36 GHz, using a set of vegetation and soil input parameters. That
would suppose the existence of a reliable and consistent radiative transfer
model from 1.4 to 36 GHz, along with representative and coherent vegeta-
tion and soil parameters, at least at regional scales. [Njoku and Li, 1999]
insisted on the difficulty to model the interaction between the microwave ra-
diation and the land surface, due to the large number of factors that affect
the emission and scattering processes (soil and vegetation numerous phys-
ical properties, surface temperature, atmosphere), to the non-linearity and
complexity of the processes, to the spatial heterogeneity of the surface prop-
erties, and to the lack of in situ measurements with coincident observations
to constrain the problem. Despite significant efforts in radiative transfer
model developments, primarily at 1.4 GHz in the framework of SMOS and
SMAP (e.g., [Ferrazzoli et al., 2002, Wigneron et al., 2007]), a recent eval-
uation of state-of-the-art radiative transfer models at 1.4 GHz at ECMWF
still shows discrepancies with satellite observations [de Rosnay et al., 2020].
At higher frequencies, the simulation results are not expected to be bet-
ter: insuring a consistent agreement between radiative transfer simulations
and observations over a large frequency range is usually very challenging,
as most models are partly based on ad hoc parameterization for specific
instrument observing conditions (such as frequency, polarization, incidence
angle). As discussed in [Baur et al., 2019], the retrieval of VOD from ra-
diative transfer modeling often relies upon the assumption that several pa-
rameters, such as the effective physical temperature, the soil moisture at the
penetration depth, or the effective surface roughness, are independent of the
frequency, which is questionable when calculating the VODs at different fre-
quencies, especially with the intent of comparing their potential. Exploiting
the direct relationship between the satellite brightness temperatures and the
geophysical variables is another solution that already proved efficient. For
exemple for the estimation of soil moisture from passive microwave obser-
vations, a statistical neural network inverse model can be trained on coinci-
dent satellite observations and soil moisture model outputs at global scale
[Aires et al., 2005, Kolassa et al., 2013]. This methodology is currently ap-
plied at ECMWF for near-real time operational estimation of soil moisture
with SMOS [Rodriguez-Fernandez et al., 2019].

Here we propose an objective and direct analysis of the sensitivity of
existing close-to-CIMR passive microwave observations from 1.4 to 36 GHz
to the vegetation information over the Tropics. It consists in studying the
direct statistical relationships between the satellite observations and veg-
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etation parameters, without relying on characterizing the vegetation and
soil response by radiative transfer modeling. It involves an attempt to
retrieve two complementary vegetation parameters from existing close-to-
CIMR multi-frequency microwave observations, the first vegetation param-
eter mostly related to the foliage and the photosynthesis activity of the
chlorophyll (NDVI), and the second vegetation parameter representative of
the woody components and its carbon stock (the Above Ground Carbon
(AGC) quantity estimated from [Saatchi et al., 2011]). Notice that at this
stage, the goal is not to develop an optimal retrieval method, but to analyze
the information content of the multi-frequency observations for vegetation
characterization and to quantify their potential synergies.

The passive microwave satellite observations and the vegetation related
datasets are presented in Section 1. The methodology is described in Section
2. The results are discussed in Section 3, first with a general analysis of the
sensitivity of the passive microwave data to the vegetation parameters, and
then with the inversion of the vegetation parameters with multi-frequency
passive microwaves and the quantification of the frequency synergy. Section
4 concludes this study.

2 Data

A large dataset of passive microwave satellite observations has been col-
lected, along with spatially and temporally coincident vegetation related
parameters, derived from visible-infrared satellite observations (NDVI) and
from maps of the Above Ground Biomass (AGB). Data have been system-
atically averaged over a 0.25◦x0.25◦ regular grid. All data with daily or
sub-daily variations have also been averaged on a 8-day period, following the
temporal pattern selected by MODIS products. Data are prepared for 2015.
With SMAP data starting in April, the analysis covers April to December
2015. The surface waters have been filtered out, following the monthly mean
surface water extent at 0.25◦ resolution, available from the Global Inunda-
tion Extent from Multi-Satellite version 2 (GIEMS2) [Prigent et al., 2020].

One key vegetation-related data set (the AGB reference map from [Saatchi et al., 2011])
is essentially available over the tropical area. As a consequence, this first
analysis concentrates on the tropical region, from 22◦S to 22◦N. It never-
theless includes a large variety of environments, from semi-arid vegetation
to tropical forests.
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2.1 Satellite passive microwaves

The passive microwave signals over vegetated land surfaces are the complex
result of soil properties (e.g., humidity, roughness), vegetation characteris-
tics (e.g., fractional coverage within the field-of-view, water content, foliage
structure), surface temperature (Ts), and atmospheric contribution. The
atmospheric contribution (water vapor, clouds, and rain) decreases with
decreasing frequencies, with rather limited contribution at 10 GHz and be-
low. The presence of vegetation generally increases the surface emissivity,
especially the horizontal polarization, and it tends to depolarize the soil con-
tribution that can be rather specular. To reduce the impact of the surface
temperature in the microwave signatures, MicroWave Indices (MWI) have
been used very early [Choudhury et al., 1987]. Here, we calculated it as:
MWI=100* (TBV-TBH)/(TBV+TBH), where TBV and TBH are, respec-
tively, the brightness temperatures at vertical and horizontal polarizations.
A factor 100 is used in this study as the (TBV-TBH)/(TBV+TBH) ra-
tio is usually lower than 0.05 over vegetation. Neglecting the atmospheric
contribution, the microwave brightness temperature TB can be written as
TB=emissivity*Ts, and MWI then corresponds to the ratio of the emissivity
polarization difference normalized by its sum.

In this study, we used passive microwave observations between 1.4 and
36 GHz. Only passive microwave observations at night or early morning are
used, to further reduce the impact of the Ts diurnal variations. We are fully
aware that passive microwaves are not only sensitive to the vegetation prop-
erties, and that the variability of many other parameters affects the variables
(such as the soil moisture or roughness, especially at low frequency under
sparse vegetation). MWI (as well as the emissivity polarization difference)
is expected to decrease with vegetation density increase; over bare soils,
it increases with soil moistures increase and decreases with soil roughness
increase [Ulaby and Long, 2015].

2.1.1 The 1.4 GHz observations (L band)

The SMAP satellite, launched at the end of January 2015 by NASA, is
equipped with a real aperture antenna of 6 m to observe the Earth surface
at 1.4 GHz with a fixed 40◦ incidence angle and a native spatial resolution
of 36 km x 47 km [Entekhabi et al., 2014]. We use the L1B 36 km L-band
brightness temperature at vertical and horizontal polarizations from SMAP
(https://nsidc.org/data/SPL1BTB/versions/4, [Piepmeier et al., 2018]).
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2.1.2 The 6 to 36 GHz observations (C, X, Ku, and Ka bands)

AMSR2, on board the Japanese JAXA GCOM-W1 mission, provides obser-
vations at frequencies between 6 and 89 GHz, in both vertical and horizontal
polarizations, with an incidence angle of 55◦. We explored the frequencies
that are common to the CIMR project, i.e., the 6, 10, 18, and 36 GHz
channels, with respective spatial resolutions of 48, 33, 18, and 9 km. The
other channels are more affected by the atmosphere (at 23.8 and 89.0 GHz)
or are rather redundant to already selected channels (i.e., at 7.3 GHz).
The top of the atmosphere TBs are extracted from the JAXA data center
(https://suzaku.eorc.jaxa.jp/GCOM W/index.html). The level L3 product
is used [Maeda et al., 2016], already projected on a 0.25◦x0.25◦ regular grid.

2.2 Vegetation-related datasets

2.2.1 MODIS vegetation indices

MODIS vegetation indices are derived from 16-day composites of reflectances
in the red, near-infrared, and blue wavelengths. Two major vegetation in-
dices are provided from the atmospherically-corrected reflectances: NDVI,
calculated as the difference of the red (645 nm) and near-infrared (858 nm)
reflectances over their sum, and the Enhanced Vegetation Index (EVI) that
also uses the reflectances in the blue (469 nm), to minimize canopy back-
ground variations and maintain sensitivity over dense vegetation conditions.
See for instance [Huete et al., 2002] and the very abundant NDVI and EVI
literature. MODIS instruments from both Terra and Aqua satellites are
combined to permit a higher temporal resolution product, especially in ar-
eas strongly affected by cloud coverage.

Here, the MOD13C1 (from Terra) and MYD13C1 (from Aqua) L3 prod-
ucts are both used (https://lpdaac.usgs.gov/products/mod13c1v006/), to
provide vegetation estimates every 8 days (16-day composites produced al-
ternatively every 8 days from the two satellites). The initial 0.05◦ grid
(∼5 km) are aggregated to the 0.25◦x0.25◦ regular grid in this study, for
comparison with the other data.

2.2.2 Above Ground Carbon stock

A reference map of total forest biomass in the tropical region has been
produced by [Saatchi et al., 2011], based on field measurements, Geoscience
Laser Altimeter System (GLAS) LIDAR data, and spatial imagery from
visible-infrared and active microwave data. A large collection of calibra-
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tion plots (∼500) in coincidence with GLAS measurements is first analyzed,
and the result is spatially extrapolated with MODIS, SRTM (Shuttle Radar
Topography Mission), and QuikSCAT images. The benchmark map illus-
trates regional patterns at 1 km spatial resolution and provides methodolog-
ically comparable estimates of biomass, representative of circa 2000. Once
the total biomass is estimated, it is commonly admitted that the carbon
stock corresponds to 50% of the total biomass (e.g., [Saatchi et al., 2011,
Brandt et al., 2018]). [Brown and Lugo, 1982] presents significant results,
and some discussion is proposed in [Elias and Potvin, 2003] for instance.
Here, we will also adopt the 50% coefficient to convert the biomass into
carbon stock.

For comparison purposes, the [Avitabile et al., 2016] biomass map at
1 km spatial resolution is also tested in this study. It was obtained by
merging in situ data from forest plots, with the [Saatchi et al., 2011] and the
[Baccini et al., 2012] maps, using machine-learning techniques. The merged
dataset is representative of the 2000-2010 period.

2.2.3 Land cover dataset

GlobCover is an ESA initiative providing land cover maps derived from the
300 m MERIS sensor on board the ENVISAT satellite mission. It contains 22
land cover classes and is representative of December 2004 - June 2006. This
land cover classification is adopted in this study: the initial high resolution
product is aggregated onto the 0.25◦x0.25◦ regular grid, by selecting the
dominant land cover type.

3 Method

Contrarily to methods using radiative transfer modeling, a purely statistical
analysis of the passive microwave observations was conducted, with no a pri-
ori assumptions about vegetation or soil characteristics that could interfere
or bias the results.

First, the direct relationship between the passive microwave observations
from 1.4 to 36 GHz and the two vegetation parameters (NDVI and AGC)
were studied. The spatial correlations were analyzed, over the Tropics, for a
given time of the year (June). Maps of the temporal correlations between the
variables were then calculated over the full period covered by the dataset,
over the same region. The variations of the microwave observations were
also studied, per vegetation types and for different seasons.
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Then, we analyzed the synergy of the multi-frequency microwave obser-
vations by testing a statistical retrieval of two complementary vegetation
parameters, one representative of the foliage (NDVI) and one related to
the carbon stock (AGC), for different combinations of the microwave fre-
quencies. To conduct the retrieval tests, we propose an inversion method
based on the direct statistical relationships between the satellite observa-
tions and the vegetation parameters to estimate, using artificial neural net-
works (NN). Compared to multilinear regressions, the NN can account for
complex and non-linear relationships between the variables while maintain-
ing the algorithm simple and quick to run. NN regressions have been suc-
cessfully applied to many remote sensing problems (e.g., [Aires et al., 2001,
Jimenez et al., 2009, Rodriguez-Fernandez et al., 2019]). Multi Layered Per-
ceptron (MLP) models [Rumelhart et al., 1986] were adopted. A NN is de-
fined by the number of input neurons (the satellite information used for the
retrieval), the number of outputs (the vegetation parameter to estimate) and
the number of neurons in a hidden layer to control the complexity of the
NN model. The MLP weights are assigned by a Marquardt-Levenberg back-
propagation algorithm [Hagan and Menhaj, 1994], with a validation method
to monitor the evolution of the training error and avoid overfitting to the
training data set. For each retrieval test, corresponding to a frequency com-
bination and one of the two vegetation parameter, a new MLP of one input
layer, one hidden layer with a sigmoidal activation function, and one output
layer with a linear function was trained. The number of inputs depended
upon the frequency selection. For each passive microwave frequency, two in-
puts are selected: the MWI and the TBH, as experiments demonstrated that
the addition of the TBH to the MWI systematically improved the results.

Tests showed that one hidden layer with a sufficiently large number of
neurons was sufficient. For a given output (NDVI or AGC), the NNs cor-
responding to the different frequency combinations were all trained on the
same dataset, to insure fair comparisons. It corresponds to a subset of the
initial dataset (one 8-day averaged period per season over a 9 month initial
8-day averaged dataset, i.e., ∼12% of the initial dataset), over the Tropical
continental area (from 22◦S to 22◦N). Different training datasets were tested
(more than one 8-day average per month, and changing the months), with
very similar results. For NDVI, time coincident NDVI and passive microwave
observations are considered. However, AGC from [Saatchi et al., 2011] be-
ing a static reference, the NNs to reproduce AGC are always trained on the
same AGC values, regardless of the time period.

The retrievals were then tested on the original data set, excluding the
data used to train the NNs. Two metrics assessed the quality of the re-
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trievals: the coefficient of determination R2 (the square of the linear corre-
lation coefficient R), and the Root Mean Square Error (RMSE) calculated
from the difference between the retrieved value and the truth. Note that
the systematic error (or bias) is expected to be 0 over the full dataset, by
construction of the NNs, and as a consequence, RMSE is very close to the
random error for this dataset. Comparisons of the metrics for the retrievals
using the different frequency combinations made it possible to quantify the
synergy between the frequencies.

4 Results

4.1 Large Scale Correlation Analysis

Figure 1 presents images of MWI at 1.4 GHz from SMAP, and at 6 and
18 GHz from AMSR2 over the Tropics, for June 2015, along with corre-
sponding the MODIS NDVI image. The static AGC [Saatchi et al., 2011] is
also shown. MWI at 1.4 GHz shows a larger dynamical range than MWI at 6
or 18 GHz. This is particularly clear in the transition zone from the Sahara
deserts southward to the equatorial forest in Africa or in South America,
from the east to the west coast, along latitudes around 10◦S. The tropical
forest around the equator in Africa, indicated by high NDVI and high AGC,
is well delineated at 1.4 GHz, with low MWI showing spatial patterns similar
to NDVI and AGC.

To characterize the relationship between the passive microwave observa-
tions and the vegetation parameters, the density plots of selected pairs of
variables are presented in Figure2, along with the corresponding coefficient
of determination (R2), first with NDVI, second with AGC, for the region (the
Tropics) and month (June) displayed in Figure 1. The relationship between
NDVI and EVI is also presented as well as the link between AGC from
[Saatchi et al., 2011] and from [Avitabile et al., 2016]. Deserts (following
the GlobCover classification) and surface waters (following a monthly cli-
matology calculated from [Prigent et al., 2020]) are excluded from the anal-
ysis. R2 between MWI and NDVI increases between 1.4 and 6 GHz, but
then decreases from 6 to 18 GHz (with similar results at 18 and 36 GHz, not
shown). Note that the scatterplot of MWI at 1.4 GHz versus NDVI presents
two branches for the same high values of MWI: even with rather high den-
sity of green vegetation (rather high NDVI), observations at 1.4 GHz can
detect the soil moisture and can present high polarization differences (high
MWI). R2 between MWI and AGC strongly decreases from 1.4 to 6 GHz
and keeps decreasing to 18 GHz, with similar R2 at 18 and 36 GHz (not
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Figure 1: From top to bottom: the MicroWave Index (MWI) at 1.4 GHz (cal-
culated from SMAP), at 6 and 18 GHz (calculated from AMSR2), the Nor-
malized Difference Vegetation Index (NDVI) from MODIS, and the Above
Ground Carbon (AGC) in Mg/ha from [Saatchi et al., 2011], for the Tropics,
averaged over June 2015 for MWI and NDVI.
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shown). The scatterplot of NDVI versus AGC shows that for low AGCs
(<50 Mg/ha), the NDVI dynamics can be significant (from 0.1 to 0.8). This
is likely representative of the photosynthesis activity of chlorophyll in rather
low vegetation with limited trees (limited carbon content). For high NDVI
(>0.75), AGC presents a rather large range of values that are expected to
characterize a variety of dense forest areas with varying carbon contents.
NDVI and EVI are strongly correlated (R2=0.85) but the amplitude of
variation for EVI is clearly smaller than for NDVI. Contrarily to what is
sometimes shown, EVI here tends to saturate over very dense vegetation
and rarely exceeds 0.5 even over tropical forests. We checked that the cor-
relation coefficient is always smaller between MWI and EVI than between
MWI and NDVI. [Saatchi et al., 2011] used NDVI and not EVI to interpo-
late the biomass information among in situ AGB estimates to produce their
benchmark biomass map, as well as several other studies related to dense
vegetation (e.g., [Brandt et al., 2018]). Our analysis here also tends to favor
NDVI versus EVI, for the characterization of dense forests.

The previous analysis focused on the spatial correlations between the
different variables for a given time of the year (June). The temporal cor-
relations between NDVI and MWIs are presented in Figure 3 (statistical
significance is tested, and pixels with p<0.05 are not displayed). It is calcu-
lated over April to December 2015, with SMAP not available before. The
temporal correlations between NDVI and MWI at 1.4 GHz are dominantly
positive, except in regions of very dense forests around the equator (where
the correlation is negative or not statistically significant). For most lo-
cations, when NDVI increases, i.e., the ’green’ vegetation grows, MWI at
1.4 GHz also increases, i.e., the emissivity polarization difference increases.
’Green’ vegetation increases with available soil moisture for plant growth
and correlation between NDVI and MWI is expected. The opposite prevails
at 6 GHz and at higher frequencies (not shown), where negative correlations
between NDVI and MWI time series are observed. The temporal correla-
tions between MWI at 1.4 and 6 GHz are nevertheless mostly positive. The
difference in behavior between 1.4 GHz and higher frequencies with respect
to NDVI indicates some complementarity between the passive microwave fre-
quencies that could be exploited, to better characterize the vegetation. The
physical interpretation of these behaviors in the passive microwaves is due
to different extinction in the vegetation as a function of frequency, related
to both attenuation and scattering by the vegetation elements containing
water. As already stressed by [Baur et al., 2019] or [Momen et al., 2017],
the extinction is not only due to the absorption by the water in the vege-
tation, but also to the scattering of the microwave radiation by the canopy
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Figure 2: Density plots of MWI at 1.4, 6, and 18 GHz and vegetation related
variables (NDVI, EVI, and AGC), calculated over the Tropics, for June 2015,
as a function of NDVI (MODIS) for the two top rows, and as a function of
AGC [Saatchi et al., 2011] for the two bottom rows. The colors indicate the
number of pixels per bin. The coefficient of determination (R2) is indicated.
Deserts and surface water pixels are excluded from the statistics.
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Figure 3: Maps of the temporal correlations over the Tropics between
NDVI (MODIS) and MWI at 1.4 GHz (SMAP) (top panel), between NDVI
(MODIS) and MWI at 6 GHz (AMSR2) (middle panel), and between MWI
at 1.4 GHz (SMAP) and at 6 GHz (AMSR2) (bottom panel). Pixels with
p-values below 0.05 are not displayed.

structure (trunk, branches, leaves), with their respective constituents and
sizes. Except over dense forests, with increasing NDVI (due to vegetation
chlorophyll activity or ’greenness’), the emissivity polarization difference at
6 GHz (and at higher frequencies) decreases with increasing extinction in
the foliage. At 1.4 GHz, the vegetation extinction is lower than at higher
frequencies: the effect of the soil moisture on the variability of the emissiv-
ity polarization difference can still be observed when the vegetation is not
totally opaque.

Figure 4 presents cross-sections of MWI, NDVI, and AGC at two lon-
gitudes in Africa and in South America, for June and December. All the
variables are normalized for an easier comparison (see the figure caption).
Large gradients are observed for all variables in Africa, from the semi-arid
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regions north of 5◦N, to the dense forest around the equator, down to the
shrubland and grassland southwards. In South America, the Amazon River
and its associated floodplains induce very large values of MWIs (at ∼ 3◦S
at 60◦W and ∼ 2◦S at 55◦W). The presence of standing water at the surface
generates strong polarization differences in the microwave surface emissivity
and this property has been exploited to derive the extent and dynamics of the
surface water at global scale (e.g., [Prigent et al., 2020]). In the equatorial
forest where AGC reaches its maximum values, in Africa as well as in South
America, NDVI reaches high values whereas MWIs show their lowest values,
as expected. Note that in these evergreen tropical forests, NDVI tends to
vary during the year, although MWI values appear quite stable, regardless
of the season. These temporal changes in NDVI over evergreen forests have
already been documented at several occasions (e.g., [Prigent et al., 2001] )
and are essentially related to atmospheric contamination (water vapor and
possibly clouds) in NDVI, with the contamination modulated by the dis-
placement of the Inter Tropical Convective Zone with seasons. Over shrub-
land and grassland with low AGC, NDVI during summer can reach values
of the same order as over very dense forests (see for instance the high values
of NDVI in Africa in December around 10◦S). In these regions, the seasonal
changes of MWI at 1.4 GHz is significant and much larger than at higher
frequencies, with even opposite behavior as observed between 5◦S and 10◦S
at longitude 25◦E (top right panel in Figure 4). An increase in soil moisture
between June and December induces a vegetation increase (as indicated by
the increase in NDVI). It results in an increase in the emissivity polariza-
tion difference (MWI) at 1.4 GHz, very sensitive to the soil moisture and
not significantly attenuated by the vegetation, whereas at higher microwave
frequencies, MWI decreases for increasing vegetation extinction. Depending
on the vegetation parameters at a given time of the year and depending
on the wavelength of observation, the soil and vegetation contribute differ-
ently to the signal, and these complementarities can be exploited to better
characterize the vegetation with multi-frequency passive microwaves.

For selected vegetation types in Africa (following the GlobCover classi-
fication), Figure 5 presents the normalized histograms of NDVI and MWIs
at 1.4, 6, 18 GHz for June and December, for two regions north and south
of the equator. For each region and each vegetation type, the mean AGC
[Saatchi et al., 2011] is indicated. For a given season, with increasing vege-
tation density from grassland to evergreen forest (and corresponding AGC
increase), NDVI increases and MWIs tend to decrease, as expected. The
temporal changes from June to December for a given vegetation type is more
complex, as already observed in Figure 3 with positive or negative tempo-
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Figure 4: Cross-sections of AGC [Saatchi et al., 2011], NDVI (MODIS),
MWI at 1.4 GHz (SMAP), and MWI at 6 and 36 GHz (AMSR2), for two
different longitudes in Africa (top), and in South America (bottom), for
two months (June as solid lines and December as dashed lines). Data are
averaged over 2◦ around the given longitude, and over the month for the
dynamic variables. For each figure separately, AGC, NDVI, and MWIs are
normalized by their maximum and minimum values over the two months
(and over the three frequencies for MWIs).
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ral correlations between NDVI and MWIs, depending on the frequency and
on the relative contribution of the soil and vegetation in the signal. The
evergreen forest has stable signatures for both seasons and regions, for all
variables except some changes for NDVI as already discussed.

4.2 Retrieval of the vegetation parameters and quantifica-
tion of microwave observation synergy

So far, we analyzed the individual sensitivity of each passive microwave ob-
servation from 1.4 to 36 GHz to the vegetation parameters, through the
use of a simple microwave index. Recently, several papers also studied the
individual sensitivity of the VOD in the different frequency bands to the veg-
etation information (e.g., AGC in [Chaparro et al., 2019] or the vegetation
height in [Baur et al., 2019]).

Now, we propose to evaluate the synergy of the multi-frequency mi-
crowave observations by comparing the retrieval of NDVI and AGC, using
different microwave frequency combinations. The analysis in the previous
section showed that the spatial and temporal correlation patterns between
MWIs and vegetation information (NDVI and AGC) could be rather com-
plex and not necessarily linear, justifying the use of the NN retrieval method,
compared to multi-linear regressions.

Tests are conducted, first using individual passive microwave frequen-
cies to reproduce the vegetation information, second using their different
combinations to analyze their synergy, including the combination that cor-
responds to CIMR. Ten different passive microwave combinations have been
tested: first, each frequency separately (the 1.4 GHz alone corresponding
to SMAP), then the 6, 10, 18, and 36 GHz combination corresponding to
AMSR2, and finally the successive addition of frequencies to the 1.4 GHz,
to reach the full combination of considered frequencies corresponding to the
CIMR configuration. For each frequency, the MWI and the TBH are both
used as inputs to the NNs. For each vegetation parameter and frequency
combination, a new NN is trained: 20 NNs were thus trained, 10 for the
NDVI retrieval and 10 for the AGC retrieval.

All NNs are trained on the same NDVI or AGC training dataset, for com-
parison purposes between the frequency combinations. The training dataset
contains ∼140 000 combinations of the vegetation parameter and the pas-
sive microwave observations, for NDVI and AGB separately. For NDVI,
time coincident NDVI and passive microwave observations are considered as
previously mentioned. For AGC, the NN to reproduce AGC is trained on
the same AGC values, regardless of the time period but we tested the train-
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Figure 5: Normalized histograms of NDVI and MWIs at 1.4, 6, and 18 GHz,
for two regions in Africa, for selected vegetation types, as described by
the GlobCover classification, for June (solid lines) and December (dashed
lines). Top: north of the equator. Bottom: south of the equator. For each
region and each vegetation type, the mean AGC from [Saatchi et al., 2011]
is indicated.
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ing of AGC retrieval by first averaging the microwave observations at the
different time steps, and very similar results were obtained. The natural dis-
tribution of AGC shows two distinct peaks, one for low AGC at ∼30 Mg/ha
and another one at high AGC at ∼120 Mg/ha (see Figure 2). The original
training database distribution is resampled to avoid an under representation
of medium AGC values. This procedure has already been applied with suc-
cess at different occasions for similar problems (e.g., [Prigent et al., 2020])
and it has been systematically applied to the training of all the frequency
combinations for the retrieval of AGC. NDVI distribution is smoother and
this procedure has not been applied to the retrieval of this variable.

Figure 6 presents the results of the retrieval evaluation for both NDVI
and AGC, for all the passive microwave combinations, as evaluated with the
two selected metrics, the coefficient of determination R2, and the RMSE.
The evaluation is performed on the remaining 8-day periods in the original
dataset, excluding the four 8-day periods from the training dataset.

For the retrieval of NDVI, none of the frequency alone matches the per-
formances obtained with the combination of at least two frequencies. 1.4 and
10 GHz, when used alone, tend to produce the best results. Note that the
linear correlation of MWI at 1.4 GHz with NDVI was lower than at higher
frequencies (see Figure 2). We checked that when using a multi-linear re-
gression retrieval with the same inputs (MWI and TBH for each frequency),
the retrieval results were poorer at 1.4 GHz than at higher frequencies (and
significantly much poorer than with the NN for each frequency). The NN
retrieval systematically outperforms the linear regression and manages to ex-
tract the complex non-linear information present in the observations. The
coefficient of determination R2 between retrieved and true NDVI reaches
0.84 when using all CIMR frequencies, with a RMSE of 0.07 (compared to
0.09 with the 1.4 GHz only). Compared to AMSR2, the CIMR frequency
combination performs slightly better with respect to the two selected metrics
for NDVI, but the improvement is not significant, especially when consid-
ering that the addition of 1.4 GHz to the frequencies from 6 to 36 GHz
penalizes the spatial resolution of the retrieved product (with a spatial res-
olution of 55 km at 1.4 GHz compared to 15 km at 6 GHz with CIMR).

For the retrieval of AGC, 1.4 GHz is the frequency that has the high-
est information content, with significantly better performances than any
other frequency alone. The coefficient of determination R2 drops signifi-
cantly from 1.4 to 6 GHz and gets worse at higher frequencies (Figure 6,
top panel). That was already concluded by other studies analyzing the rela-
tionship between AGC and the VODs for the different frequencies (e.g.,
[Chaparro et al., 2019]). In parallel, AGC retrieval error shows a sharp
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increase from 1.4 to 6 GHz and then a moderate increase for the higher
frequencies. The addition of the higher frequencies to the 1.4 GHz chan-
nels improves the AGC retrieval results, with R2 reaching 0.82 with CIMR
(compared to 0.77 with SMAP 1.4 GHz alone), with a RMSE of 21 Ma/ha
(compared to 24 Ma/ha with 1.4 GHz only).

Figure 7 shows the RMSE of the retrievals for each vegetation vari-
able, as a function of the variable itself, for the SMAP, AMSR2, and CIMR
configurations. For NDVI, CIMR and AMSR2 performances are close, re-
gardless of the NDVI values. For AGC, CIMR performances closely follow
the variations of the SMAP ones, as a function of AGC. However, from low
to high NDVI or AGC, the CIMR frequency combination always provides
the lowest error for both NDVI and AGC estimations. It is thus expected
that CIMR will contribute to an improved and consistent estimation of both
photosynthetic and non-photosynthetic above ground biomass.

A similar exercice has been applied to EVI (instead of NDVI) and to
AGC estimated by [Avitabile et al., 2016] (instead of AGC from [Saatchi et al., 2011]).
For these two variables, the performance of the retrievals is reduced, com-
pared to NDVI and AGC from [Saatchi et al., 2011] (not shown). This
is especially noticeable for EVI, regardless of the frequency combination.
It could be interpreted as a reduced consistency between the passive mi-
crowave observations and EVI and AGC from [Avitabile et al., 2016], com-
pared to what is existing with NDVI and AGC from [Saatchi et al., 2011].
[Fan et al., 2019] also tends to favor AGC from [Saatchi et al., 2011] com-
pared to the one from [Avitabile et al., 2016] for comparison with VOD at
1.4 GHz. The saturation observed with EVI over the tropical forests, as
compared to NDVI, can be responsible for the reduced performances of the
EVI retrieval.

5 Conclusion

Satellite passive microwave observations from 1.4 to 36 GHz already showed
sensitivity to vegetation parameters, primarily through the calculations of
VODs at each frequency separately. Here we evaluated the synergy of this
frequency range for vegetation characterization through the estimation of
two vegetation parameters, the foliage photosynthesis activity as represented
by NDVI, and the vegetation above ground carbon stock with AGC, using
different combinations of channels in the considered frequency range. NN
retrievals are trained on the two considered vegetation parameters, for sev-
eral microwave channel combinations, including the CIMR configuration.
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Figure 6: Performance of NDVI and AGC retrievals with different pas-
sive microwave combinations. True NDVI and AGC are respectively from
MODIS and from [Saatchi et al., 2011]. Top: the coefficient of determina-
tion R2 between the retrieval and the truth for NDVI (left axis) and AGC
(right axis). Bottom: the retrieval error (RMSE) for NDVI (left axis) and
AGC (right axis).
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Figure 7: Top: NDVI retrieval error (RMSE), as a function of NDVI, for
SMAP, AMSR2, and CIMR frequency combinations. The normalized NDVI
distribution is also indicated in dashed line (see left axis). Bottom: Same
for AGC.
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This methodology avoids the use of any assumptions in the complex inter-
action between the surface (vegetation and soil) and the radiation, as well as
any ancillary observations, to propose a genuine and objective evaluation of
the information content of the passive microwave frequencies for vegetation
characterization, without any a priori.

The performance of the NN vegetation retrievals is used to quantify the
synergy of different frequency combinations. For the retrieval of NDVI, the
coefficient of determination R2 between retrieved and true NDVI reaches
0.84 when using the full 1.4 to 36 GHz range as will be measured by CIMR,
with a retrieval error of 0.07. For the retrieval of AGC, the coefficient of
determination R2 reaches 0.82 with CIMR, with an error of 21 Mg/ha. This
study also confirmed that 1.4 GHz observations have the highest sensitivity
to AGC, as compared to other frequencies up to 36 GHz, at least under
tropical environments.

CIMR will provide valuable ecological indicators to enhance our present
global vegetation understanding. Considering both vegetation aspects to-
gether (foliage photosynthesis activity and carbon stocks) offers a more ro-
bust and consistent characterization and assessment of long-term vegetation
dynamics at large scale.

Acknowledgements

The authors would like to thank Jean-Pierre Wigneron for valuable discus-
sions. They would also like to thank Craig Donlon and the ESA CIMR Mis-
sion Advisory Group. Comments from the editor and from three anonymous
reviewers made it possible to significantly improve the initial manuscript.

References

[Aires et al., 2001] Aires, F., Prigent, C., Rossow, W., and Rothstein, M.
(2001). A new neural network approach including first guess for retrieval
of atmospheric water vapor, cloud liquid water path, surface temperature,
and emissivities over land from satellite microwave observations. Journal
of Geophysical Research: Atmospheres, 106(D14):14887–14907.

[Aires et al., 2005] Aires, F., Prigent, C., and Rossow, W. B. (2005). Sensi-
tivity of satellite microwave and infrared observations to soil moisture at
a global scale: 2. Global statistical relationships. Journal of Geophysical
Research D: Atmospheres, 110(11):1–14.

24



[Avitabile et al., 2016] Avitabile, V., Herold, M., Heuvelink, G. B., Lewis,
S. L., Phillips, O. L., Asner, G. P., Armston, J., Ashton, P. S., Banin, L.,
Bayol, N., et al. (2016). An integrated pan-tropical biomass map using
multiple reference datasets. Global change biology, 22(4):1406–1420.

[Baccini et al., 2012] Baccini, A., Goetz, S., Walker, W., Laporte, N., Sun,
M., Sulla-Menashe, D., Hackler, J., Beck, P., Dubayah, R., Friedl, M.,
et al. (2012). Estimated carbon dioxide emissions from tropical deforesta-
tion improved by carbon-density maps. Nature climate change, 2(3):182–
185.

[Baur et al., 2019] Baur, M. J., Jagdhuber, T., Feldman, A. F., Akbar,
R., and Entekhabi, D. (2019). Estimation of relative canopy absorp-
tion and scattering at l-, c-and x-bands. Remote Sensing of Environment,
233:111384.

[Bernard et al., 1990] Bernard, R., Hallikainen, M., Kerr, Y., Kuenzi, K.,
Maetzler, C., Pampaloni, P., Duchossois, G., Menard, Y., and Rast, M.
(1990). Mimr: Multifrequency passive microwave radiometer. Technical
report.

[Bonan, 2015] Bonan, G. (2015). Ecological climatology: concepts and ap-
plications. Cambridge University Press.

[Brandt et al., 2018] Brandt, M., Wigneron, J.-P., Chave, J., Tagesson, T.,
Penuelas, J., Ciais, P., Rasmussen, K., Tian, F., Mbow, C., Al-Yaari, A.,
et al. (2018). Satellite passive microwaves reveal recent climate-induced
carbon losses in african drylands. Nature ecology & evolution, 2(5):827–
835.

[Brown and Lugo, 1982] Brown, S. and Lugo, A. E. (1982). The storage
and production of organic matter in tropical forests and their role in the
global carbon cycle. Biotropica, pages 161–187.

[Calvet et al., 2010] Calvet, J.-C., Wigneron, J.-P., Walker, J., Karbou, F.,
Chanzy, A., and Albergel, C. (2010). Sensitivity of passive microwave
observations to soil moisture and vegetation water content: L-band to w-
band. IEEE Transactions on geoscience and remote sensing, 49(4):1190–
1199.

[Chaparro et al., 2019] Chaparro, D., Duveiller, G., Piles, M., Cescatti, A.,
Vall-Llossera, M., Camps, A., and Entekhabi, D. (2019). Sensitivity of
l-band vegetation optical depth to carbon stocks in tropical forests: a

25



comparison to higher frequencies and optical indices. Remote Sensing of
Environment, 232:111303.

[Choudhury et al., 1987] Choudhury, B., Tucker, C., Golus, R., and New-
comb, W. (1987). Monitoring vegetation using nimbus-7 scanning mul-
tichannel microwave radiometer’s data. International Journal of Remote
Sensing, 8(3):533–538.

[Chukhlantsev, 2006] Chukhlantsev, A. A. (2006). Microwave radiometry of
vegetation canopies, volume 24. Springer Science & Business Media.

[de Rosnay et al., 2020] de Rosnay, P., Munoz-Sabater, J., Albergel, C.,
Isaksen, L., English, S., Drusch, M., and Wigneron, J.-P. (2020). Smos
brightness temperature forward modelling and long term monitoring at
ecmwf. Remote Sensing of Environment, 237:111424.

[Elias and Potvin, 2003] Elias, M. and Potvin, C. (2003). Assessing inter-
and intra-specific variation in trunk carbon concentration for 32 neotrop-
ical tree species. Canadian Journal of Forest Research, 33(6):1039–1045.

[Entekhabi et al., 2014] Entekhabi, D., Yueh, S., and De Lannoy, G. (2014).
Smap handbook.

[Fan et al., 2019] Fan, L., Wigneron, J.-P., Ciais, P., Chave, J., Brandt, M.,
Fensholt, R., Saatchi, S. S., Bastos, A., Al-Yaari, A., Hufkens, K., et al.
(2019). Satellite-observed pantropical carbon dynamics. Nature plants,
5(9):944–951.

[Fernandez-Moran et al., 2017] Fernandez-Moran, R., Wigneron, J.-P.,
De Lannoy, G., Lopez-Baeza, E., Parrens, M., Mialon, A., Mahmoodi,
A., Al-Yaari, A., Bircher, S., Al Bitar, A., et al. (2017). A new calibra-
tion of the effective scattering albedo and soil roughness parameters in
the smos sm retrieval algorithm. International journal of applied earth
observation and geoinformation, 62:27–38.

[Ferrazzoli et al., 2002] Ferrazzoli, P., Guerriero, L., and Wigneron, J.-P.
(2002). Simulating l-band emission of forests in view of future satel-
lite applications. IEEE Transactions on Geoscience and Remote Sensing,
40(12):2700–2708.

[Frappart et al., 2020] Frappart, F., Wigneron, J.-P., Li, X., Liu, X., Al-
Yaari, A., Fan, L., Wang, M., Moisy, C., Le Masson, E., Lafkih, Z. A.,
et al. (2020). Global monitoring of the vegetation dynamics from the
vegetation optical depth (vod): A review. Remote Sensing, 12(18):2915.

26



[Hagan and Menhaj, 1994] Hagan, M. T. and Menhaj, M. B. (1994). Train-
ing feedforward networks with the marquardt algorithm. IEEE transac-
tions on Neural Networks, 5(6):989–993.

[Huete et al., 2002] Huete, A., Didan, K., Miura, T., Rodriguez, E. P., Gao,
X., and Ferreira, L. G. (2002). Overview of the radiometric and bio-
physical performance of the modis vegetation indices. Remote sensing of
environment, 83(1-2):195–213.

[Jimenez et al., 2009] Jimenez, C., Prigent, C., and Aires, F. (2009). To-
ward an estimation of global land surface heat fluxes from multisatellite
observations. Journal of Geophysical Research: Atmospheres, 114(D6).

[Jones et al., 2011] Jones, M. O., Jones, L. A., Kimball, J. S., and McDon-
ald, K. C. (2011). Satellite passive microwave remote sensing for mon-
itoring global land surface phenology. Remote Sensing of Environment,
115(4):1102–1114.

[Jones et al., 2014] Jones, M. O., Kimball, J. S., and Nemani, R. R.
(2014). Asynchronous amazon forest canopy phenology indicates adapta-
tion to both water and light availability. Environmental Research Letters,
9(12):124021.

[Kilic et al., 2018] Kilic, L., Prigent, C., Aires, F., Boutin, J., Heygster, G.,
Tonboe, R. T., Roquet, H., Jimenez, C., and Donlon, C. (2018). Expected
performances of the copernicus imaging microwave radiometer (cimr) for
an all-weather and high spatial resolution estimation of ocean and sea
ice parameters. Journal of Geophysical Research: Oceans, 123(10):7564–
7580.

[Kolassa et al., 2013] Kolassa, J., Aires, F., Polcher, J., Prigent, C.,
Jimenez, C., and Pereira, J.-M. (2013). Soil moisture retrieval from
multi-instrument observations: Information content analysis and re-
trieval methodology. Journal of Geophysical Research: Atmospheres,
118(10):4847–4859.

[Konings et al., 2016] Konings, A. G., Piles, M., Rotzer, K., McColl, K. A.,
Chan, S. K., and Entekhabi, D. (2016). Vegetation optical depth and
scattering albedo retrieval using time series of dual-polarized l-band ra-
diometer observations. Remote Sensing of Environment, 172:178–189.

[Li et al., 2021] Li, X., Wigneron, J.-P., Frappart, F., Fan, L., Ciais, P.,
Fensholt, R., Entekhabi, D., Brandt, M., Konings, A. G., Liu, X., et al.

27



(2021). Global-scale assessment and inter-comparison of recently devel-
oped/reprocessed microwave satellite vegetation optical depth products.
Remote Sensing of Environment, 253:112208.

[Liu et al., 2011] Liu, Y. Y., de Jeu, R. A., McCabe, M. F., Evans, J. P.,
and van Dijk, A. I. (2011). Global long-term passive microwave satellite-
based retrievals of vegetation optical depth. Geophysical Research Letters,
38(18).

[Maeda et al., 2016] Maeda, T., Taniguchi, Y., and Imaoka, K. (2016).
Gcom-w1 amsr2 level 1r product: Dataset of brightness temperature mod-
ified using the antenna pattern matching technique. IEEE Transactions
on Geoscience and Remote Sensing, 54(2):770–782.

[Momen et al., 2017] Momen, M., Wood, J. D., Novick, K. A., Pangle, R.,
Pockman, W. T., McDowell, N. G., and Konings, A. G. (2017). Interacting
effects of leaf water potential and biomass on vegetation optical depth.
Journal of Geophysical Research: Biogeosciences, 122(11):3031–3046.

[Njoku and Li, 1999] Njoku, E. G. and Li, L. (1999). Retrieval of land sur-
face parameters using passive microwave measurements at 6-18 ghz. IEEE
Transactions on Geoscience and Remote Sensing, 37(1):79–93.

[Owe et al., 2001] Owe, M., de Jeu, R., and Walker, J. (2001). A methodol-
ogy for surface soil moisture and vegetation optical depth retrieval using
the microwave polarization difference index. IEEE Transactions on Geo-
science and Remote Sensing, 39(8):1643–1654.

[Paloscia and Pampaloni, 1988] Paloscia, S. and Pampaloni, P. (1988). Mi-
crowave polarization index for monitoring vegetation growth. IEEE
Transactions on Geoscience and Remote Sensing, 26(5):617–621.

[Piepmeier et al., 2018] Piepmeier, J., Mohammed, P., Peng, J., Kim, E.,
De Amici, G., and Ruf, C. (2018). Smap l1b radiometer half-orbit time-
ordered brightness temperatures. Technical report.

[Prigent et al., 2001] Prigent, C., Aires, F., Rossow, W., and Matthews,
E. (2001). Joint characterization of vegetation by satellite observations
from visible to microwave wavelengths: A sensitivity analysis. Journal of
Geophysical Research: Atmospheres, 106(D18):20665–20685.

[Prigent et al., 2020] Prigent, C., Jimenez, C., and Bousquet, P. (2020).
Satellite-derived global surface water extent and dynamics over the last

28



25 years (giems-2). Journal of Geophysical Research: Atmospheres,
125(3):e2019JD030711.

[Rodriguez-Fernandez et al., 2019] Rodriguez-Fernandez, N., de Rosnay, P.,
Albergel, C., Richaume, P., Aires, F., Prigent, C., and Kerr, Y. (2019).
Smos neural network soil moisture data assimilation in a land surface
model and atmospheric impact. Remote Sensing, 11(11):1334.

[Rumelhart et al., 1986] Rumelhart, D. E., Hinton, G. E., and Williams,
R. J. (1986). Learning internal representations by error propagation. In
Rumelhart, D. E., McClelland, J. L., and the PDP Research Group, edi-
tors, Parallel distributed processing: explorations in the microstructure of
cognition, vol. I,, pages 318–362. MIT Press, Cambridge, Mass.

[Saatchi et al., 2011] Saatchi, S. S., Harris, N. L., Brown, S., Lefsky, M.,
Mitchard, E. T., Salas, W., Zutta, B. R., Buermann, W., Lewis, S. L.,
Hagen, S., et al. (2011). Benchmark map of forest carbon stocks in tropical
regions across three continents. Proceedings of the national academy of
sciences, 108(24):9899–9904.

[Shi et al., 2008] Shi, J., Jackson, T., Tao, J., Du, J., Bindlish, R., Lu, L.,
and Chen, K. (2008). Microwave vegetation indices for short vegetation
covers from satellite passive microwave sensor amsr-e. Remote sensing of
environment, 112(12):4285–4300.

[Tucker, 1979] Tucker, C. J. (1979). Red and photographic infrared linear
combinations for monitoring vegetation. Remote sensing of environment,
8:127–150.

[Ulaby and Long, 2015] Ulaby, F. and Long, D. (2015). Microwave radar
and radiometric remote sensing. Artech House.

[Ulaby et al., 1981] Ulaby, F. T., Moore, R. K., and Fung, A. K. (1981). Mi-
crowave remote sensing: Active and passive. volume 1-microwave remote
sensing fundamentals and radiometry.

[Wigneron et al., 1995] Wigneron, J.-P., Chanzy, A., Calvet, J.-C., and
Bruguier, N. (1995). A simple algorithm to retrieve soil moisture and veg-
etation biomass using passive microwave measurements over crop fields.
Remote Sensing of Environment, 51(3):331–341.

[Wigneron et al., 2007] Wigneron, J.-P., Kerr, Y., Waldteufel, P., Saleh, K.,
Escorihuela, M.-J., Richaume, P., Ferrazzoli, P., De Rosnay, P., Gurney,

29



R., Calvet, J.-C., et al. (2007). L-band microwave emission of the bio-
sphere (l-meb) model: Description and calibration against experimental
data sets over crop fields. Remote Sensing of Environment, 107(4):639–
655.

[Wigneron et al., 2021] Wigneron, J.-P., Li, X., Frappart, F., Fan, L., Al-
Yaari, A., De Lannoy, G., Liu, X., Wang, M., Le Masson, E., and Moisy,
C. (2021). Smos-ic data record of soil moisture and l-vod: Historical devel-
opment, applications and perspectives. Remote Sensing of Environment,
254:112238.

30


	Introduction
	Data
	Satellite passive microwaves
	The 1.4 GHz observations (L band)
	The 6 to 36 GHz observations (C, X, Ku, and Ka bands)

	Vegetation-related datasets
	MODIS vegetation indices
	Above Ground Carbon stock
	Land cover dataset


	Method
	Results
	Large Scale Correlation Analysis
	Retrieval of the vegetation parameters and quantification of microwave observation synergy

	Conclusion

